JPH07234292A - Bimetal - Google Patents

Bimetal

Info

Publication number
JPH07234292A
JPH07234292A JP5674594A JP5674594A JPH07234292A JP H07234292 A JPH07234292 A JP H07234292A JP 5674594 A JP5674594 A JP 5674594A JP 5674594 A JP5674594 A JP 5674594A JP H07234292 A JPH07234292 A JP H07234292A
Authority
JP
Japan
Prior art keywords
alloy
bimetal
thermal expansion
temperature range
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5674594A
Other languages
Japanese (ja)
Other versions
JP3522821B2 (en
Inventor
Masaaki Tomita
昌明 冨田
Kenji Hirano
健治 平野
Masaaki Ishio
雅昭 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP05674594A priority Critical patent/JP3522821B2/en
Publication of JPH07234292A publication Critical patent/JPH07234292A/en
Application granted granted Critical
Publication of JP3522821B2 publication Critical patent/JP3522821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a bimetal which has a proportional temperature range equal to or higher than that of a bimetal wherein a 42wt.% Ni-Fe alloy is used as a low-thermal-expansion alloy, and which has a high curvature characteristic so that fts coefficient of curvature is greater than that of a bimetal with a 36wt.% Ni-Fe alloy. CONSTITUTION:An Ni-Co-Fe low-thermal-expansion alloy, with an Ni content nd a Co content both restricted to very small ranges and the sum of Ni and Co being within a specific range so that its coefficient of thermal expansion at 30 deg.C-100 deg.C is equal to that of an alloy with a nominal composition consisting of 31wt.% Ni, 5wt.% Co and Fe, and so that its thermal expansion is as small as 2X10<-6>/ deg.C or less over a temperature range of 30-300 deg.C and with such characteristics as to have a transition point of 250 deg.C or higher and a transformation temperature of -50 deg.C or lower, is joined to a high-thermal-expansion metal or alloy, either directly or with an intermediate layer of a metal or alloy between them. Therefore, this bimetal enables stable, highly accurate heat control in heat controlling equipment or the like and can be reduced in size and weight and have an extended life so as to have a broader range of applications.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱制御機器等に多用
されるバイメタルの改良に係り、特に低熱膨張合金とし
て特定組成範囲からなるNi−Co−Fe系低熱膨張合
金を使用することにより高わん曲特性を有し、かつ比例
温度範囲の拡大を可能としたバイメタルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of bimetals, which are often used in thermal control equipment and the like, and in particular, the use of Ni--Co--Fe low thermal expansion alloys having a specific composition range as low thermal expansion alloys improves The present invention relates to a bimetal that has bending characteristics and is capable of expanding the proportional temperature range.

【0002】[0002]

【従来の技術】一般にバイメタルは熱膨張係数の異なる
少なくとも2種以上の金属あるいは合金を適当な方法で
接着貼合わせて、板または条に圧延し、それらの熱膨張
係数の差に応じて温度変化によりわん曲する性質を有す
るもので、熱制御機器をはじめカラーテレビの色調調整
等、幅広い分野に使用されている。
2. Description of the Related Art In general, a bimetal is formed by bonding at least two kinds of metals or alloys having different coefficients of thermal expansion to each other by an appropriate method, rolling them into a plate or strip, and changing the temperature according to the difference in the coefficients of thermal expansion. It has the property of bending more and more, and is used in a wide range of fields such as heat control devices and color tone adjustment of color televisions.

【0003】バイメタルを構成する金属あるいは合金と
しては、低熱膨張係数を有する材料としてNi−Fe合
金が使用され、また高熱膨張係数を有する材料として使
用温度範囲等に応じNi、Zn−Cu合金、Ni−Cr
−Fe合金、Ni−Mn−Fe合金、Ni−Mo−Fe
合金、Cu−Ni−Mn合金等が使用されている。
As the metal or alloy forming the bimetal, a Ni--Fe alloy is used as a material having a low coefficient of thermal expansion, and a Ni, Zn--Cu alloy, or Ni as a material having a high coefficient of thermal expansion is used as a material having a high coefficient of thermal expansion. -Cr
-Fe alloy, Ni-Mn-Fe alloy, Ni-Mo-Fe
Alloys, Cu-Ni-Mn alloys, etc. are used.

【0004】また、バイメタルの用途に応じてバイメタ
ルの電気抵抗(体積抵抗率)を調整するために、前記低
熱膨張合金と高熱膨張金属又は合金との間にCu、Cu
合金、Ni、Ni合金等の中間層金属又は合金を介在さ
せて接着貼合わせた構成が知られている。さらに、必要
に応じてバイメタルの表面にステンレス系合金等の耐食
性被覆を形成した構成、Al、Zn等のゲッター材被覆
を形成した構成等が知られている。
Further, in order to adjust the electric resistance (volume resistivity) of the bimetal according to the application of the bimetal, Cu, Cu between the low thermal expansion metal and the high thermal expansion metal or the alloy is used.
There is known a configuration in which an intermediate layer metal or alloy such as an alloy, Ni, or Ni alloy is interposed and bonded. Furthermore, a configuration in which a corrosion-resistant coating such as a stainless alloy is formed on the surface of a bimetal as necessary, a configuration in which a getter material coating such as Al or Zn is formed, and the like are known.

【0005】[0005]

【発明が解決しようとする課題】以上に説明するよう
に、従来から知られているバイメタルの構成は、低熱膨
張合金と高熱膨張金属又は合金を、中間層金属又は合金
を介在させ、あるいは介在させないで接合された構成か
らなるが、いずれの構成においても、低熱膨張合金とし
てはNi−Fe合金が使用されている。バイメタルに使
用されるNi−Fe合金として最も一般的なものとして
は36wt%Ni−Fe合金が知られている(JIS
C 2530)。しかし、36wt%Ni−Fe合金の
熱膨張の変移点は約200℃であり、該変移点以上の温
度においては熱膨張が極めて大きくなるため、バイメタ
ルとしての比例温度範囲も150℃程度以下の範囲に限
られるという欠点を有している。
As described above, the conventionally known bimetal structure has a low thermal expansion alloy and a high thermal expansion metal or alloy with or without an intermediate layer metal or alloy. However, in any of the configurations, a Ni—Fe alloy is used as the low thermal expansion alloy. A 36 wt% Ni-Fe alloy is known as the most general Ni-Fe alloy used for a bimetal (JIS.
C 2530). However, the transition point of the thermal expansion of the 36 wt% Ni-Fe alloy is about 200 ° C, and the thermal expansion becomes extremely large at a temperature above the transition point. Therefore, the proportional temperature range as a bimetal is also within the range of about 150 ° C or less. It has the drawback of being limited to

【0006】熱膨張の変移点が36wt%Ni−Fe合
金よりも高いNi−Fe合金としては42wt%Ni−
Fe合金が知られている。42wt%Ni−Fe合金の
熱膨張の変移点は約350℃であり、バイメタルとして
の比例温度範囲も350℃程度まで拡大することができ
る。しかし、本質的に42wt%Ni−Fe合金の熱膨
張は36wt%Ni−Fe合金の熱膨張に比べ、相当大
きいため(例えば、30〜100℃の温度範囲における
平均熱膨張係数で比較すると42wt%Ni−Fe合金
は約4×10-6・K-1であり、36wt%Ni−Fe合
金は約1.7×10-6・K-1である)、バイメタルとし
てのわん曲係数が小さいという欠点を有している。
As a Ni-Fe alloy having a thermal expansion transition point higher than that of the 36 wt% Ni-Fe alloy, 42 wt% Ni-
Fe alloys are known. The transition point of the thermal expansion of the 42 wt% Ni-Fe alloy is about 350 ° C, and the proportional temperature range as a bimetal can be expanded to about 350 ° C. However, the thermal expansion of 42 wt% Ni-Fe alloy is essentially much larger than that of 36 wt% Ni-Fe alloy (for example, the average thermal expansion coefficient in the temperature range of 30 to 100 ° C is 42 wt%. Ni-Fe alloy is about 4 × 10 -6 · K -1 and 36 wt% Ni-Fe alloy is about 1.7 × 10 -6 · K -1 ), which has a small bending coefficient as a bimetal. It has drawbacks.

【0007】先に説明したようにバイメタルの用途は非
常に広範囲であり、近年では使用温度範囲も拡大する傾
向にあり、例えば熱制御機器等においても高温度域での
高精度の制御が要求されることから、バイメタルに対し
ても高温度域でのリニアなわん曲特性が要求される。す
なわち、比例温度範囲の拡大が不可欠となる。また、熱
制御機器等においては小型軽量化とともに、高寿命化が
強く要求されることから、バイメタルに対してもわん曲
係数を一層向上することが望まれている。しかし、現在
提案されている低熱膨張合金として36wt%Ni−F
e合金や42wt%Ni−Fe合金を用いたバイメタル
では、先に説明したような欠点を有することから、近年
の要求を満足することができない。
As described above, the use of bimetal is extremely wide, and in recent years, the operating temperature range tends to expand. For example, thermal control equipment and the like also require highly accurate control in a high temperature range. Therefore, even bimetals are required to have linear bending characteristics in the high temperature range. That is, it is essential to expand the proportional temperature range. Further, thermal control equipment and the like are strongly required to be small and lightweight and have a long life. Therefore, it is desired to further improve the bending coefficient of bimetal. However, as a currently proposed low thermal expansion alloy, 36 wt% Ni-F
Bimetals using an e alloy or a 42 wt% Ni—Fe alloy cannot satisfy the recent requirements because they have the drawbacks described above.

【0008】この発明は、上記の欠点を解決し、低熱膨
張合金として42wt%Ni−Fe合金を用いたバイメ
タルと同等以上の比例温度範囲を有し、かつ36wt%
Ni−Fe合金を用いたバイメタルよりもわん曲係数が
大きな高わん曲特性を有するバイメタルの提供を目的と
している。
The present invention solves the above-mentioned drawbacks and has a proportional temperature range equal to or higher than that of a bimetal using a 42 wt% Ni-Fe alloy as a low thermal expansion alloy, and 36 wt%.
It is an object of the present invention to provide a bimetal having high bending characteristics, which has a larger bending coefficient than a bimetal using a Ni-Fe alloy.

【0009】[0009]

【課題を解決するための手段】先に、この発明の発明者
の一人が、高温度域でも熱膨張係数が変化せず、極めて
小さな熱膨張係数を有するNi−Co−Fe系低熱膨張
合金としてNi 31.5〜34wt%、Co 6〜
8.5wt%、かつ38.5≦Ni+Co≦40.5w
t%を満足し、残部Fe及び不可避的不純物元素からな
る低熱膨張合金を提案した(特願平4−278206
号)。このNi−Co−Fe系低熱膨張合金は、それぞ
れ極狭い含有範囲に規制されたNiとCoの総量を特定
範囲内とすることにより、30℃〜100℃の熱膨張係
数を従来の所謂スーパーインバー合金と呼ばれる公称組
成31wt%Ni−5wt%Co−Fe合金の熱膨張係
数と同等にすることができ、さらに30〜300℃にわ
たって熱膨張が2×10-6/℃以下と極めて小さく、さ
らに、変移点が250℃以上、変態温度が−50℃以下
となり、低温度から高温度域の高範囲の使用環境温度に
よっても熱膨張係数が極めて小さく変化しない優れた特
性を発揮することを特徴としている。
First, one of the inventors of the present invention has proposed a Ni-Co-Fe-based low thermal expansion alloy having a very small thermal expansion coefficient which does not change even in a high temperature range. Ni 31.5 to 34 wt%, Co 6 to
8.5 wt% and 38.5 ≦ Ni + Co ≦ 40.5w
A low thermal expansion alloy satisfying t% and consisting of balance Fe and unavoidable impurity elements was proposed (Japanese Patent Application No. 4-278206).
issue). This Ni-Co-Fe-based low thermal expansion alloy has a coefficient of thermal expansion of 30 ° C. to 100 ° C., which is a conventional so-called super invar, by making the total amount of Ni and Co regulated within an extremely narrow content range within a specific range. It can be made equal to the coefficient of thermal expansion of a nominal composition of 31 wt% Ni-5 wt% Co-Fe alloy called an alloy, and the thermal expansion is extremely small at 2 × 10 −6 / ° C. or less over 30 to 300 ° C. The transition point is 250 ° C. or higher, the transformation temperature is −50 ° C. or lower, and the excellent characteristic that the coefficient of thermal expansion does not change extremely small even when used in a high temperature range of low temperature to high temperature is characterized. .

【0010】発明者等は、この特定組成範囲からなるN
i−Co−Fe系低熱膨張合金をバイメタルを構成する
低熱膨張合金として使用した場合の諸特性について種々
の実験を繰り返した結果、従来にない高温度域における
わん曲特性と比例温度範囲の拡大が可能であることを知
見し、発明を完成したのである。
The inventors of the present invention have made N
As a result of repeating various experiments on various characteristics when the i-Co-Fe-based low thermal expansion alloy was used as a low thermal expansion alloy forming the bimetal, the bending characteristics in the high temperature range and the expansion of the proportional temperature range which were not found in the past were found. They found that it was possible and completed the invention.

【0011】すなわち、この発明は、Ni 31.5〜
34wt%、Co 6〜8.5wt%、かつ38.5≦
Ni+Co≦40.5wt%を満足し、残部Fe及び不
可避的不純物元素からなる低熱膨張合金と、高熱膨張金
属又は合金を、直接あるいは中間層金属又は合金を介在
させて接合してなることを特徴とするバイメタルであ
る。また、上記バイメタルにおいて一層の比例温度範囲
の拡大を可能とする構成として低熱膨張合金がNi≧3
1.5wt%、7<Co<8wt%、かつNi+Co≦
40.5wt%を満足し、残部Fe及び不可避的不純物
元素からなることを特徴とするバイメタルを併せて提案
する。
That is, the present invention provides Ni 31.5-
34 wt%, Co 6 to 8.5 wt%, and 38.5 ≦
Ni + Co ≦ 40.5 wt% is satisfied, and a low thermal expansion alloy consisting of the balance Fe and unavoidable impurity elements and a high thermal expansion metal or alloy are joined directly or with an intermediate layer metal or alloy interposed therebetween. It is a bimetal. Further, in the above bimetal, the low thermal expansion alloy is Ni ≧ 3 as a structure capable of further expanding the proportional temperature range.
1.5 wt%, 7 <Co <8 wt%, and Ni + Co ≦
We also propose a bimetal that satisfies 40.5 wt% and is composed of the balance Fe and unavoidable impurity elements.

【0012】また、この発明は、バイメタルの少なくと
も一方の表面に、Ni、Ni−Cu合金、Fe−Cr合
金、Fe−Ni−Cr合金、Tiのいずれかの箔をクラ
ッドして耐食性の向上を図ったバイメタル、バイメタル
の少なくとも一方の表面にAl、Znのいずれかの箔を
クラッドしたバイメタルを併せて提案する。
Further, according to the present invention, at least one surface of the bimetal is clad with a foil of any one of Ni, Ni-Cu alloy, Fe-Cr alloy, Fe-Ni-Cr alloy and Ti to improve the corrosion resistance. A bimetal in which at least one surface of the intended bimetal or a bimetal is clad with a foil of Al or Zn is also proposed.

【0013】この発明のバイメタルの主たる特徴である
低熱膨張合金の組成の限定理由を以下に説明する。Ni
は、本系組成基本成分であり、31.5wt%未満では
γ→α′変態温度が−50℃以上となり、使用中や輸送
中にγ→α′変態してしまう可能性もあり、一旦γ→
α′変態を起こすと熱膨張が急激に増大し好ましくな
く、また34wt%を超えると熱膨張が大きくなるた
め、31.5〜34wt%の範囲とする。Coは、本系
組成基本成分であり、6wt%未満では熱膨張の変移点
が250℃未満となると同時に変移点を超える温度での
熱膨張が大きくなり、この発明の主たる目的の一つであ
るバイメタルの比例温度範囲の拡大が実現できなくな
る。また、8.5wt%を超えると熱膨張が大きくなる
ため、6〜8.5wt%の範囲とする。NiとCoの総
量規制は、Ni+Coが38.5wt%未満では熱膨張
の変移点が250℃未満となるとともに変移点を超える
温度での熱膨張が大きくなり、この発明の主たる目的の
一つであるバイメタルの比例温度範囲の拡大が実現でき
なくなる。さらに40.5wt%を超えると熱膨張が大
きくなるため、Ni+Coは38.5〜40.5wt%
の範囲とする。さらに、Feは、本系組成基本成分であ
り、NiやCo等の含有残余を占める。
The reasons for limiting the composition of the low thermal expansion alloy, which is the main feature of the bimetal of the present invention, will be described below. Ni
Is a basic component of this system composition, and if it is less than 31.5 wt%, the γ → α ′ transformation temperature becomes −50 ° C. or higher, and there is a possibility that the γ → α ′ transformation may occur during use or transportation. →
When the α'transformation occurs, the thermal expansion sharply increases, which is not preferable, and when it exceeds 34 wt%, the thermal expansion increases, so the range is 31.5 to 34 wt%. Co is a basic component of the present system composition, and if it is less than 6 wt%, the transition point of thermal expansion becomes less than 250 ° C. and, at the same time, the thermal expansion at a temperature exceeding the transition point becomes large, which is one of the main objects of the present invention. It is not possible to expand the proportional temperature range of bimetal. Further, if it exceeds 8.5 wt%, the thermal expansion becomes large, so the range is set to 6 to 8.5 wt%. The total amount of Ni and Co is regulated so that when Ni + Co is less than 38.5 wt%, the transition point of thermal expansion is less than 250 ° C. and the thermal expansion at a temperature exceeding the transition point becomes large, which is one of the main purposes of the present invention. The expansion of the proportional temperature range of a certain bimetal cannot be realized. Further, if it exceeds 40.5 wt%, the thermal expansion becomes large, so that Ni + Co is 38.5-40.5 wt%.
The range is. Further, Fe is a basic component of this system composition, and occupies the remaining content of Ni, Co and the like.

【0014】上記の組成範囲において、熱膨張の変移点
を高くしバイメタルにおける比例温度範囲の一層の拡大
を可能とするためには基本成分であるNi、Coの組成
範囲をNi≧31.5wt%、7<Co<8wt%、か
つNi+Co≦40.5wt%とすることが望ましい。
この組成範囲からなるNi−Co−Fe系低熱膨張合金
においては熱膨張の変移点が約290℃程度になる。添
加元素は特に限定しないが、材料の機械的特性等を考慮
すると、例えば、Cは0.02wt%以下、Siは0.
25wt%以下、Mnは0.5wt%以下が望ましい。
In the above composition range, in order to raise the transition point of thermal expansion and to further expand the proportional temperature range in the bimetal, the composition range of Ni and Co which are the basic components is Ni ≧ 31.5 wt%. , 7 <Co <8 wt%, and Ni + Co ≦ 40.5 wt%.
In the Ni—Co—Fe low thermal expansion alloy having this composition range, the transition point of thermal expansion is approximately 290 ° C. The additive element is not particularly limited, but considering the mechanical properties of the material, for example, C is 0.02 wt% or less, and Si is 0.
25 wt% or less, and Mn is preferably 0.5 wt% or less.

【0015】この発明のバイメタルを構成する高熱膨張
金属又は合金としては、公知の種々の材料が適用でき
る。例えば、高熱膨張金属又は合金としてNiまたはC
u、Zn20〜40wt%と残部CuからなるZn−C
u合金を使用する構成では、比較的低温用(〜150℃
程度)のバイメタルとして有効であり、特に、電気抵抗
が低く、熱伝導率が高く、動作感度がよいという特徴を
有するバイメタルが得られる。また、高熱膨張金属合金
としてNi17〜26wt%にCr2.5〜12wt
%、Mn5〜7wt%、Mo3〜7wt%の一種と残部
FeからなるNi−Cr−Fe合金、Ni−Mn−Fe
合金、Ni−Mo−Fe合金を使用する構成では、約3
00℃までの広い温度範囲を有し、かつ350℃まで高
いわん曲特性を持つ特徴を有するバイメタルが得られ
る。さらに、高熱膨張金属合金としてMn70〜80w
t%、Ni5〜15wt%、残部CuからなるCu−N
i−Mn合金を使用する構成では、高抵抗バイメタル
(20℃における体積抵抗率:〜140μΩ・cm程
度)として有効であり、特に、約220℃までの中温度
域で最高の湾曲を示す高いわん曲係数を有し、かつ電気
抵抗も高いことから通電発熱時に大きな湾曲量が確保で
きる特徴を有するバイメタルが得られる。
As the high thermal expansion metal or alloy forming the bimetal of the present invention, various known materials can be applied. For example, Ni or C as a high thermal expansion metal or alloy
Zn-C composed of u, Zn 20 to 40 wt% and the balance Cu
In the configuration using u alloy, for relatively low temperature (up to 150 ° C)
It is effective as a bimetal, and in particular, a bimetal having features of low electric resistance, high thermal conductivity, and good operation sensitivity can be obtained. Also, as a high thermal expansion metal alloy, Ni 17 to 26 wt% and Cr 2.5 to 12 wt%
%, Mn 5 to 7 wt%, Mo 3 to 7 wt%, and the balance Fe, Ni-Cr-Fe alloy, Ni-Mn-Fe
Alloy, Ni-Mo-Fe alloy is used, about 3
It is possible to obtain a bimetal having a wide temperature range up to 00 ° C. and a characteristic having a high bending property up to 350 ° C. Further, as a high thermal expansion metal alloy, Mn 70-80w
Cu-N consisting of t%, Ni 5 to 15 wt%, and the balance Cu
In the structure using the i-Mn alloy, it is effective as a high resistance bimetal (volume resistivity at 20 ° C .: about 140 μΩ · cm), and in particular, a high bowl that exhibits the highest curvature in the middle temperature range up to about 220 ° C. It is possible to obtain a bimetal which has a bending coefficient and also has a high electric resistance, so that a large amount of bending can be secured at the time of heating by energization.

【0016】この発明は、図1のAに示す如く、以上に
説明したNi−Co−Fe系低熱膨張合金板1と種々の
組成範囲からなる高熱膨張金属又は合金からなる高熱膨
張材料板2を直接接合一体化した構成の他、例えば、図
1のBに示す如く、前記低熱膨張合金板1と高熱膨張材
料板2との間に、Cu、Cu合金、Ni、Ni合金等の
金属又は合金からなる中間層材料板3を介在させて接合
一体化し、バイメタルの電気抵抗(体積抵抗率)を調整
した構成においても、この発明の本質的な特徴を有効に
実現することができる。
As shown in FIG. 1A, the present invention comprises a Ni-Co-Fe system low thermal expansion alloy plate 1 described above and a high thermal expansion material plate 2 made of a high thermal expansion metal or alloy having various composition ranges. In addition to the structure of direct bonding and integration, for example, as shown in FIG. 1B, a metal or alloy such as Cu, Cu alloy, Ni, or Ni alloy is provided between the low thermal expansion alloy plate 1 and the high thermal expansion material plate 2. The essential characteristics of the present invention can be effectively realized even in a structure in which the intermediate layer material plate 3 made of is interposed and integrated to adjust the electric resistance (volume resistivity) of the bimetal.

【0017】また、図1のAに示す前記低熱膨張合金板
1と高熱膨張材料板2を直接接合一体化した構成の他
に、図1のCに示す如く、低熱膨張合金板1と高熱膨張
材料板2を直接接合一体化したものの両面にNi、Ni
−Cu合金、Fe−Cr合金、Fe−Ni−Cr合金、
Ti等の耐食性に優れた被覆層4,4を形成することに
よってスチームトラップ用等の上記にさらされる雰囲気
内での使用を可能とすることができる。もちろん、被覆
層4を低熱膨張合金板1あるいは高熱膨張材料板2のい
ずれか一方面にのみ設けることもできる。上記の耐食性
被覆層4は使用雰囲気やバイメタル本体の材料に応じて
バイメタルの一方主面又は両主面に形成するが、この発
明の本質的な特徴を有効に実現するために、材質や厚さ
等を適宜選定することが望ましい。さらに、図1のCに
示す構成と同様に前記低熱膨張合金板1と高熱膨張材料
板2とを直接接合一体化するとともに、少なくとも一方
主両面にAl、Zn等のゲッター材被覆による被覆層
4,4を形成し、蛍光ランプ用グロースタータ等に使用
することも可能である。また、図1のBに示す中間層材
料板3を介在させて低熱膨張合金板1と高熱膨張材料板
2とを接合一体化した構成に上記の被覆層4をいずれか
一方面、あるいは両面に設けることができる。
Further, in addition to the structure in which the low thermal expansion alloy plate 1 and the high thermal expansion material plate 2 are directly joined and integrated as shown in A of FIG. 1, as shown in C of FIG. Ni, Ni on both sides of the material plate 2 directly bonded and integrated
-Cu alloy, Fe-Cr alloy, Fe-Ni-Cr alloy,
By forming the coating layers 4 and 4 such as Ti having excellent corrosion resistance, it can be used in the atmosphere exposed to the above for steam traps and the like. Of course, the coating layer 4 may be provided on only one surface of the low thermal expansion alloy plate 1 or the high thermal expansion material plate 2. The above-mentioned corrosion-resistant coating layer 4 is formed on one main surface or both main surfaces of the bimetal according to the use atmosphere and the material of the bimetal main body, but in order to effectively realize the essential features of the present invention, the material and thickness It is desirable to select the appropriate items. Further, similar to the structure shown in FIG. 1C, the low thermal expansion alloy plate 1 and the high thermal expansion material plate 2 are directly joined and integrated, and at least one main surface is covered with a getter material coating layer 4 such as Al or Zn. , 4 can be formed and used as a glow starter for a fluorescent lamp or the like. In addition, the coating layer 4 is formed on one side or both sides of the structure in which the low thermal expansion alloy plate 1 and the high thermal expansion material plate 2 are joined and integrated by interposing the intermediate layer material plate 3 shown in FIG. 1B. Can be provided.

【0018】すなわち、この発明においてはバイメタル
を構成する低熱膨張合金が特許請求の範囲に記載される
特定組成からなることを主たる特徴とし、さらに高熱膨
張金属又は合金、中間層金属又は合金、被覆金属又は合
金等を適宜選定することにより、各種用途に応じた優れ
た特性を有するバイメタルの提供を可能とする。
That is, in the present invention, the low thermal expansion alloy constituting the bimetal is mainly characterized by having the specific composition described in the claims, and further, the high thermal expansion metal or alloy, the intermediate layer metal or alloy, and the coating metal. Alternatively, by appropriately selecting an alloy or the like, it is possible to provide a bimetal having excellent properties according to various uses.

【0019】[0019]

【作用】この発明のバイメタルは、特に低熱膨張合金と
して30〜300℃にわたって熱膨張が2×10-6/℃
以下と極めて小さく、さらに、変移点が250℃以上、
変態温度が−50℃以下である極狭い含有範囲に規制さ
れたNiとCoの総量を特定範囲内としたFe−Ni−
Co系合金を効果的に配置することにより、わん曲係数
の向上とともに比例温度範囲の拡大を可能とし、特に、
高温度域でのリニアなわん曲特性が得られる。すなわ
ち、わん曲係数の向上に伴いバイメタルの部品寸法が小
さくでき、該バイメタルを配置する機器の小型軽量化が
可能となる。電気抵抗は従来材と同程度となり、現状の
抵抗材としての特徴は損なわれていない。また、比例温
度範囲の拡大は単にバイメタルの用途を拡大するだけで
なく、高温度域での作動が安定し、熱制御機器等におけ
る高精度の制御が実現できる。
The bimetal of the present invention has a thermal expansion of 2 × 10 −6 / ° C. over 30 to 300 ° C., especially as a low thermal expansion alloy.
It is extremely small as below, and the transition point is 250 ° C or more,
Fe-Ni-with the total amount of Ni and Co regulated in an extremely narrow content range with a transformation temperature of -50 ° C or less within a specific range
By arranging the Co-based alloy effectively, it is possible to improve the bending coefficient and expand the proportional temperature range.
Linear bending characteristics in high temperature range can be obtained. That is, the component size of the bimetal can be reduced with the improvement of the bending coefficient, and the size and weight of the device in which the bimetal is arranged can be reduced. The electrical resistance is almost the same as that of conventional materials, and the current characteristics of resistance materials are not impaired. Further, the expansion of the proportional temperature range not only expands the application of bimetal, but also stabilizes the operation in the high temperature range, and can realize highly accurate control in a heat control device or the like.

【0020】[0020]

【実施例】この発明のバイメタルの特徴を以下に示す一
実施例によって説明する。この発明のバイメタルと比較
例のバイメタルともに公知の製造方法、すなわち、バイ
メタルを構成する所定組成範囲の低熱膨張合金板、高熱
膨張合金板、さらに必要に応じて中間層金属又は合金
板、被覆金属又は合金箔を所定の圧延率にて冷間圧接
し、拡散焼鈍、仕上げ圧延、幅切断等の工程を経て厚さ
0.5mmのバイメタルとした。なお、いずれのバイメ
タルも低熱膨張合金板と高熱膨張合金板との厚さ比を
1:1とした。各々のバイメタル構成を表1に示す。ま
た、得られたバイメタルの比例温度範囲、わん曲係数
(JIS C 2530に基づく)、体積抵抗率を測定
し、その結果を表2に示す。なお、従来から変位量(わ
ん曲量)が大きなバイメタル構成として知られる比較例
の試料No.13とこの発明の試料No.1(高熱膨張
合金は試料No.13と同一材料)との温度変化と変位
量(わん曲量)との関係を図2に示す。また、従来から
比例温度範囲が広いバイメタル構成として知られる比較
例の試料No.16とこの発明の試料No.6(高熱膨
張合金は試料No.16と同一材料)との温度変化と変
位量(わん曲量)との関係を図3に示す。
EXAMPLES The characteristics of the bimetal of the present invention will be described with reference to the following examples. A known manufacturing method for both the bimetal of the present invention and the bimetal of the comparative example, that is, a low thermal expansion alloy plate having a predetermined composition range forming the bimetal, a high thermal expansion alloy plate, and if necessary, an intermediate layer metal or alloy plate, a coating metal or The alloy foil was cold-pressed at a predetermined rolling rate, and subjected to steps such as diffusion annealing, finish rolling, and width cutting to obtain a bimetal having a thickness of 0.5 mm. In each of the bimetals, the thickness ratio of the low thermal expansion alloy plate and the high thermal expansion alloy plate was set to 1: 1. Table 1 shows each bimetal structure. Further, the proportional temperature range, bending coefficient (based on JIS C 2530) and volume resistivity of the obtained bimetal were measured, and the results are shown in Table 2. The sample No. of the comparative example, which is conventionally known as a bimetal structure having a large displacement amount (bending amount), is used. 13 and the sample No. of this invention. 2 shows the relationship between the temperature change and the amount of displacement (bending amount) with No. 1 (high thermal expansion alloy is the same material as sample No. 13). In addition, the sample No. of the comparative example, which is conventionally known as a bimetal structure having a wide proportional temperature range. 16 and sample No. 16 of this invention. FIG. 3 shows the relationship between the temperature change and the amount of displacement (bending amount) with No. 6 (the high thermal expansion alloy is the same material as sample No. 16).

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1および表2よりこの発明のバイメタル
の比例温度範囲が従来のバイメタルの比例温度範囲に比
べて、大幅に広くなっていることがわかる。また、わん
曲係数においてもこの発明のバイメタルのほうが大きい
ことが分かる。(試料No.1と13、4と14、5と
15、6と16、7と17、8と18、9と19、10
と20、11と21、12と22はいずれも高熱膨張合
金が同一でありこの発明のバイメタルの効果を比較でき
る)。特に図2より、この発明のバイメタルは従来のバ
イメタルでは得ることのできない大きな変位量を得るこ
とができ、また、高温度域においてもその直線性が失わ
れないことから、非常に広温度範囲にて安定した精度の
高い熱制御が可能であることが分かる。また、図3よ
り、従来の42Ni−Fe合金を低熱膨張合金として配
置したバイメタルと同等以上の広い比例温度範囲を有
し、しかも変位量も大きいという優れた特徴を有してい
ることが分かる。
It can be seen from Tables 1 and 2 that the proportional temperature range of the bimetal of the present invention is much wider than that of the conventional bimetal. Also, it is understood that the bimetal of the present invention has a larger bending coefficient. (Sample Nos. 1 and 13, 4 and 14, 5 and 15, 6 and 16, 7 and 17, 8 and 18, 9 and 19, 10
And 20, 11 and 21, 12 and 22 have the same high thermal expansion alloy, and the effects of the bimetal of the present invention can be compared). In particular, as shown in FIG. 2, the bimetal of the present invention can obtain a large displacement amount that cannot be obtained by the conventional bimetal, and its linearity is not lost even in a high temperature range. It can be seen that stable and highly accurate heat control is possible. Further, FIG. 3 shows that it has an excellent characteristic that it has a wide proportional temperature range equal to or more than that of a bimetal in which a conventional 42Ni—Fe alloy is arranged as a low thermal expansion alloy, and has a large displacement amount.

【0024】[0024]

【発明の効果】以上の実施例からも明らかなように、こ
の発明のバイメタルは、低熱膨張合金として42wt%
Ni−Fe合金を用いたバイメタルと同等以上の比例温
度範囲を有し、かつ36wt%Ni−Fe合金を用いた
バイメタルよりもわん曲係数が大きな高わん曲特性を有
するバイメタルの提供を可能とするもので、特に、熱制
御機器等においては安定した精度の高い熱制御が実現で
きるとともに小型軽量化、高寿命化等が達成でき、バイ
メタルの用途を一層拡大することが可能となる。
As is clear from the above examples, the bimetal of the present invention is 42 wt% as a low thermal expansion alloy.
(EN) It is possible to provide a bimetal having a proportional temperature range equal to or higher than that of a bimetal using an Ni-Fe alloy and having a high bending characteristic having a larger bending coefficient than a bimetal using a 36 wt% Ni-Fe alloy. In particular, in a heat control device or the like, stable and highly accurate heat control can be realized, and reduction in size, weight, and life can be achieved, and the application of bimetal can be further expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】A,B,Cはこの発明によるバイメタルの積層
構成を示す縦断説明図である。
1A, 1B and 1C are longitudinal explanatory views showing a laminated structure of bimetal according to the present invention.

【図2】バイメタルの温度変化と変位量(わん曲量)と
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a temperature change and a displacement amount (bending amount) of a bimetal.

【図3】バイメタルの温度変化と変位量(わん曲量)と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a change in temperature of a bimetal and a displacement amount (bending amount).

【符号の説明】[Explanation of symbols]

1 低熱膨張合金板 2 高熱膨張材料板 3 中間層材料板 4 被覆層 1 low thermal expansion alloy plate 2 high thermal expansion material plate 3 intermediate layer material plate 4 coating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni 31.5〜34wt%、Co 6
〜8.5wt%、かつ38.5≦Ni+Co≦40.5
wt%を満足し、残部Fe及び不可避的不純物元素から
なる低熱膨張合金と、高熱膨張金属又は合金を、直接あ
るいは中間層金属又は合金を介在させて接合してなるこ
とを特徴とするバイメタル。
1. Ni 31.5 to 34 wt%, Co 6
Up to 8.5 wt% and 38.5 ≦ Ni + Co ≦ 40.5
A bimetal, characterized in that a low thermal expansion alloy satisfying wt% and consisting of balance Fe and unavoidable impurity elements and a high thermal expansion metal or alloy are joined directly or with an intermediate layer metal or alloy interposed.
【請求項2】 低熱膨張合金がNi≧31.5wt%、
7<Co<8wt%、かつNi+Co≦40.5wt%
を満足し、残部Fe及び不可避的不純物元素からなるこ
とを特徴とする請求項1のバイメタル。
2. The low thermal expansion alloy is Ni ≧ 31.5 wt%,
7 <Co <8 wt% and Ni + Co ≦ 40.5 wt%
And the balance consists of Fe and inevitable impurity elements.
JP05674594A 1993-12-27 1994-03-01 bimetal Expired - Fee Related JP3522821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05674594A JP3522821B2 (en) 1993-12-27 1994-03-01 bimetal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35029193 1993-12-27
JP5-350291 1993-12-27
JP05674594A JP3522821B2 (en) 1993-12-27 1994-03-01 bimetal

Publications (2)

Publication Number Publication Date
JPH07234292A true JPH07234292A (en) 1995-09-05
JP3522821B2 JP3522821B2 (en) 2004-04-26

Family

ID=26397726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05674594A Expired - Fee Related JP3522821B2 (en) 1993-12-27 1994-03-01 bimetal

Country Status (1)

Country Link
JP (1) JP3522821B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069437A (en) * 1996-06-20 2000-05-30 Kabushiki Kaisha Toshiba Thermal deformation member for electron tube and color picture tube using thereof, and thermal deformation member for electric current control and circuit breaker and using thereof
JP2008170438A (en) * 2007-01-05 2008-07-24 Uri Fine Plating Co Ltd Plated type bimetal, and manufacturing method therefor
KR101354703B1 (en) * 2007-04-11 2014-01-27 주식회사 한국클래드텍 Bimetal using invar sheet and phosphorus deoxidized copper sheet
JP2015079594A (en) * 2013-10-15 2015-04-23 株式会社小松ライト製作所 Breaker, safety circuit including the same, and secondary-battery circuit
JP2017510039A (en) * 2014-03-27 2017-04-06 リテルヒューズ・インク Insulation heat shut-off device
US11955205B2 (en) 2009-06-11 2024-04-09 Proterial, Ltd. Thermosensitive deformation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201478B1 (en) * 2020-08-06 2021-01-12 주식회사 동성이에스 Optimized Nozzle type Invar Steam trap

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069437A (en) * 1996-06-20 2000-05-30 Kabushiki Kaisha Toshiba Thermal deformation member for electron tube and color picture tube using thereof, and thermal deformation member for electric current control and circuit breaker and using thereof
US6188172B1 (en) 1996-06-20 2001-02-13 Kabushiki Kaisha Toshiba Color picture tube using a thermal deformation member
JP2008170438A (en) * 2007-01-05 2008-07-24 Uri Fine Plating Co Ltd Plated type bimetal, and manufacturing method therefor
KR101354703B1 (en) * 2007-04-11 2014-01-27 주식회사 한국클래드텍 Bimetal using invar sheet and phosphorus deoxidized copper sheet
US11955205B2 (en) 2009-06-11 2024-04-09 Proterial, Ltd. Thermosensitive deformation apparatus
JP2015079594A (en) * 2013-10-15 2015-04-23 株式会社小松ライト製作所 Breaker, safety circuit including the same, and secondary-battery circuit
JP2017510039A (en) * 2014-03-27 2017-04-06 リテルヒューズ・インク Insulation heat shut-off device
US9831054B2 (en) 2014-03-27 2017-11-28 Littelfuse, Inc. Insulated thermal cut-off device

Also Published As

Publication number Publication date
JP3522821B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
EP0659548B1 (en) Bimetal
US5783145A (en) Iron-nickel alloy and cold-rolled strip with a cubic texture
JP3522821B2 (en) bimetal
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
US5236789A (en) Palladium alloys having utility in electrical applications
US5139891A (en) Palladium alloys having utility in electrical applications
JP2001279357A (en) Magnetic shape memory alloy
US5306950A (en) Electrode assembly for a semiconductor device
EP0783830A1 (en) Electric heating element
CA1041065A (en) Thermometric bimetal of high strength at high temperature
ATE246266T1 (en) LOW THERMAL EXPANSION IRON-NICKEL ALLOY WITH SPECIAL MECHANICAL PROPERTIES
EP0587307A1 (en) Aluminium alloys
MXPA02011664A (en) Hardened fe-ni alloy for making integrated circuit grids and method for making same.
US7005105B2 (en) Fe-Cr-Al alloys for electric resistance wires
US20020179202A1 (en) Method for connecting shape-memory material and steel or copper material
JP3213139B2 (en) Clad material
JP2883245B2 (en) Lead frame material
JP3419786B2 (en) Thermal deformation member for electron tube
Hsieh et al. Transformation temperatures and second phases in Ti–Ni–Si ternary shape memory alloys with Si≤ 2 at.%
JPH01255639A (en) Fin material for heat exchanger made of aluminum
JP2960563B2 (en) Composite metal laminate for semiconductor mounting board
JP2004115905A (en) Low thermal expansion alloy, and low thermal expansion alloy sheet
JP2003155529A (en) High-damping copper alloy material, and copper alloy used for it
JP4255993B2 (en) Long pressure welded composite plate and manufacturing method thereof
JP2675143B2 (en) Bimetal with excellent clad adhesion

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees