JPH07234163A - Temperature detector for heat treatment apparatus - Google Patents

Temperature detector for heat treatment apparatus

Info

Publication number
JPH07234163A
JPH07234163A JP5139094A JP5139094A JPH07234163A JP H07234163 A JPH07234163 A JP H07234163A JP 5139094 A JP5139094 A JP 5139094A JP 5139094 A JP5139094 A JP 5139094A JP H07234163 A JPH07234163 A JP H07234163A
Authority
JP
Japan
Prior art keywords
wafer
temperature
heat treatment
strand
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5139094A
Other languages
Japanese (ja)
Other versions
JP3388627B2 (en
Inventor
Wataru Okase
亘 大加瀬
Yasushi Yagi
靖司 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Original Assignee
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokyo Electron Tohoku Ltd filed Critical Tokyo Electron Ltd
Priority to JP05139094A priority Critical patent/JP3388627B2/en
Publication of JPH07234163A publication Critical patent/JPH07234163A/en
Application granted granted Critical
Publication of JP3388627B2 publication Critical patent/JP3388627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To optimize the power control of a heating means or the positional setting of a semiconductor wafer in a reaction tube, in measuring the surface temp. of the wafer by a thermocouple in a heat treatment device of the wafer, by reducing the error between a temp. measured value and the actual temp. at the time of processing to the utmost. CONSTITUTION:The thermal contact of the strand 61 (61a, 61b) of a thermocouple 6 is brought into contact with the surface of a semiconductor wafer. The exposed length of the strand 61 exposed from the cover pipe 6 made of alumina of the thermocouple 6 (6A-6C) is set to 40 times or more the diameter of the strand and, for example, when the diameter of the strand is 0.1mm, the exposed length of the strand is set to 4mm or more. By this constitution, even when the temp. rising and falling speed of the wafer is large, the heat transmitting through the strand 61 from the wafer to escape to the cover pipe 62 high in heat capacity is reduced and the error between a temp. measured value and the actual temp. at the time of processing is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱処理装置用の温度検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting device for a heat treatment apparatus.

【0002】[0002]

【従来の技術】半導体デバイスの超微細化、高集積化に
伴い、デバイスの各層の薄膜化が進む一方、半導体ウエ
ハ(以下「ウエハ」という)についても6インチサイズ
から8インチ、12インチサイズへと大口径化が進めら
れており、このため大面積の極薄膜技術の開発が重要な
課題となっている。また例えばキャパシタ絶縁膜の酸化
膜や、ゲート酸化膜の形成あるいは不純物イオンの拡散
処理では、膜質、膜厚や拡散深さがサーマルバジュット
(熱履歴)の影響を大きく受けるため、熱履歴をできる
だけ小さく抑えて熱処理を行うことが必要である。
2. Description of the Related Art As semiconductor devices become finer and more highly integrated, the thickness of each layer of the device is becoming thinner, while semiconductor wafers (hereinafter referred to as "wafers") are also changed from 6-inch size to 8-inch or 12-inch size. Therefore, the development of ultra-thin film technology for large areas has become an important issue. In addition, for example, in the oxide film of the capacitor insulating film, the formation of the gate oxide film, or the diffusion process of the impurity ions, the film quality, the film thickness, and the diffusion depth are greatly affected by the thermal budget (thermal history). It is necessary to keep the heat treatment as small as possible.

【0003】ここで従来のバッチ式熱処理装置の一つで
ある縦型熱処理装置では、ヒータに囲まれた反応管内
に、多数のウエハを棚状に積層した保持具を搬入して熱
処理を行っているが、反応管の側方に配置されたヒータ
によりウエハを加熱しているため、ウエハを急速に加熱
しようとするとウエハの中央部と周縁部との間に大きな
温度勾配が生じてしまうし、また反応管の長さ方向位置
についても温度勾配が避けられないため、ウエハの熱処
理について面内均一性及び面間均一性(ウエハ間の均一
性)を高めることにも限界があり、次世代のデバイスを
製造するために、大面積で均一な極薄膜を形成すること
は極めて困難である。
Here, in a vertical type heat treatment apparatus which is one of the conventional batch type heat treatment apparatuses, a holder in which a large number of wafers are stacked in a rack is carried into a reaction tube surrounded by a heater to perform heat treatment. However, since the wafer is heated by the heater disposed on the side of the reaction tube, a large temperature gradient is generated between the central portion and the peripheral portion of the wafer when the wafer is rapidly heated, In addition, since a temperature gradient is unavoidable in the position of the reaction tube in the length direction, there is a limit to increase the in-plane uniformity and the inter-plane uniformity (wafer-to-wafer uniformity) in the heat treatment of the wafer. It is extremely difficult to form an ultrathin film having a large area and uniform for manufacturing a device.

【0004】このようなことから、本発明者は、縦型熱
処理装置の熱処理炉を改良し、反応管内に例えば1枚の
ウエハを保持具に載せて設定位置に搬入した後、加熱源
の温度を変化させて、あるいはウエハの高さ位置を変化
させてウエハの温度を制御する方法を検討しており、こ
の方法によれば、ウエハの面内温度について高い均一性
が期待できる。
From the above, the present inventor has improved the heat treatment furnace of the vertical heat treatment apparatus so that, for example, one wafer is placed on the holder in the reaction tube and carried into the set position, and then the temperature of the heating source is changed. Is being studied, or a method of controlling the temperature of the wafer by changing the height position of the wafer is being studied. According to this method, high uniformity of the in-plane temperature of the wafer can be expected.

【0005】ところでこのような方法を実施するために
は、加熱源の電力制御やウエハの移動パターンの設定作
業において、ウエハ表面の温度を極めて正確に測定する
ことが必要である。つまりウエハの温度を正確に把握で
きなければ電力制御パターンやウエハの移動パターンな
どの設定そのものの信頼性が低くなり、実際の熱処理時
にウエハの温度について高い面内均一性を得ることがで
きないからである。従来ウエハの表面温度を検出する方
法としては、図7に示すように例えば白金−白金ロジウ
ムなどの例えば線径0.1mmの素線11をアルミナな
どの被覆管12で被覆してなる熱電対1を用い、被覆管
12の先端より素線11を例えば約2mm露出させ、素
線11の先端(2本の素線11a、11bの結合端)を
ウエハWの表面に接触させて表面温度を測定していた。
By the way, in order to carry out such a method, it is necessary to measure the temperature of the wafer surface extremely accurately in the power control of the heating source and the work of setting the movement pattern of the wafer. In other words, if the temperature of the wafer cannot be accurately grasped, the reliability of the settings themselves such as the power control pattern and the movement pattern of the wafer will be low, and it will not be possible to obtain high in-plane uniformity of the wafer temperature during the actual heat treatment. is there. As a conventional method for detecting the surface temperature of a wafer, as shown in FIG. 7, a thermocouple 1 formed by coating a wire 11 having a wire diameter of 0.1 mm, such as platinum-platinum rhodium, with a coating tube 12 such as alumina. The wire 11 is exposed from the tip of the cladding tube 12 by, for example, about 2 mm, and the tip of the wire 11 (the joining end of the two wires 11a and 11b) is brought into contact with the surface of the wafer W to measure the surface temperature. Was.

【0006】[0006]

【発明が解決しようとする課題】しかしながら例えばウ
エハを、ある温度から急速に昇温または降温した場合例
えば反応管内にて加熱源に近い所定位置まで上昇させる
と、急速にウエハが設定温度まで昇温するが、この場合
ウエハの表面の複数個所に夫々熱電対を配置して各点の
温度を測定すると、温度が設定温度付近まで上昇直後に
各点の温度が不安定になり、また各点の間で温度のばら
つきがある。この温度のばらつきは、ウエハを急速に昇
温または降温したときにウエハの表面の実温度(熱電対
をウエハに装着していない場合の実際の表面温度)が不
安定であり、また面内不均一性が存在することも原因の
一つであるが、その他熱電対の温度検出値が実温度に対
して誤差を含んでいることが考えられる。このような誤
差はそれ程大きくはないと考えられるが熱処理時間が短
い場合には、熱処理の初期時の熱履歴の変動は処理結果
に大きな影響を及ぼす。例えば次世代のデバイスに用い
られる酸化膜は非常に薄いので数オングストロームの膜
厚の差が問題になり、例えば1000℃付近の酸化処理
では1℃異なれば膜厚が1オングストローム異なるし、
また不純物の拡散処理により浅いPN接合を得る場合に
も問題であり、ウエハの加熱方法自体の検討のみなら
ず、実温度に対する温度測定誤差を極力抑えなければな
らないという問題がある。
However, when the temperature of the wafer is rapidly raised or lowered from a certain temperature, for example, when the wafer is raised to a predetermined position near the heating source in the reaction tube, the temperature of the wafer is rapidly raised to the set temperature. However, in this case, if thermocouples are arranged at multiple points on the surface of the wafer and the temperature at each point is measured, the temperature at each point becomes unstable immediately after the temperature rises to around the set temperature, and the temperature at each point becomes unstable. There are variations in temperature between them. This variation in temperature causes the actual temperature of the wafer surface (actual surface temperature when the thermocouple is not mounted on the wafer) to be unstable when the temperature of the wafer is rapidly raised or lowered, and the in-plane non-uniformity. The existence of the uniformity is also one of the causes, but it is conceivable that the temperature detection value of the other thermocouple contains an error with respect to the actual temperature. It is considered that such an error is not so large, but when the heat treatment time is short, the fluctuation of the thermal history at the initial stage of the heat treatment greatly affects the treatment result. For example, since the oxide film used in the next-generation device is very thin, a difference in film thickness of several angstroms becomes a problem. For example, in the oxidation treatment at around 1000 ° C., if the film thickness differs by 1 ° C., the film thickness will differ by 1 angstrom.
There is also a problem in obtaining a shallow PN junction by the impurity diffusion process, and there is a problem that not only the method of heating the wafer but also the temperature measurement error with respect to the actual temperature must be suppressed as much as possible.

【0007】本発明は、このような事情のもとになされ
たものであり、その目的は、ウエハの被処理面の温度を
高精度に測定することができ、これによりウエハに対し
て均一な熱処理を行うことのできる熱処理装置用の温度
検出装置を提供することにある。
The present invention has been made under the above circumstances, and an object thereof is to measure the temperature of the surface to be processed of the wafer with high accuracy, and thereby to make the temperature uniform on the wafer. It is an object of the present invention to provide a temperature detecting device for a heat treatment apparatus capable of performing heat treatment.

【0008】[0008]

【課題を解決するための手段】本発明は、ウエハを実際
に熱処理するときの実温度と温度測定値との誤差が熱電
対の被覆管により影響を受けている点を思い出してなさ
れたものである。即ち請求項1の発明は、半導体ウエハ
の熱処理装置において、素線を被覆管により被覆した熱
電対により半導体ウエハの温度を検出する温度検出装置
において、前記被覆管の先端部より露出している素線の
露出長さが当該素線の線径の40倍以上の長さに設定さ
れていることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been made in consideration of the fact that the error between the actual temperature and the temperature measurement value when the wafer is actually heat-treated is affected by the thermocouple cladding tube. is there. That is, according to the invention of claim 1, in a heat treatment apparatus for a semiconductor wafer, in a temperature detection device for detecting the temperature of a semiconductor wafer by a thermocouple in which an element wire is covered with a coating tube, the element exposed from the tip of the coating tube. The exposed length of the wire is set to be 40 times or more the wire diameter of the strand.

【0009】請求項2の発明は、請求項1の発明におい
て、半導体ウエハが20℃/分以上の温度変化を受ける
ことを特徴とする。請求項3の発明は、請求項1または
2の発明において、熱処理装置の反応管の一端側に加熱
領域が形成され、半導体ウエハを前記反応管の他端側か
ら前記加熱領域に移動させることを特徴とする。請求項
4の発明は、請求項1、2または3の発明において、反
応管内で行われる熱処理は、酸化、拡散処理または熱化
学気相反応処理(Chemical vapor deposition)である
ことを特徴とする。
According to a second aspect of the invention, in the first aspect of the invention, the semiconductor wafer is subjected to a temperature change of 20 ° C./min or more. According to the invention of claim 3, in the invention of claim 1 or 2, a heating region is formed on one end side of the reaction tube of the heat treatment apparatus, and the semiconductor wafer is moved from the other end side of the reaction tube to the heating region. Characterize. The invention of claim 4 is characterized in that, in the invention of claim 1, 2 or 3, the heat treatment performed in the reaction tube is oxidation, diffusion treatment or thermochemical vapor deposition reaction (Chemical vapor deposition).

【0010】[0010]

【作用】ウエハの表面に熱電対の素線の先端(素線の結
合端)を接触させたとき、または溶着したとき素線の被
覆管は熱容量が大きいのでこの被覆管に熱が逃げ、また
例えばウエハの上方に加熱源が位置する場合、上方から
の輻射熱が被覆管に吸熱されると推察される。従ってウ
エハの温度を急速に変化させたときに、温度測定値の実
温度に対する追従性が悪くなるが、被覆管から露出する
素線の露出長さを大きくすることによって被覆管の温度
測定への影響が緩和され、前記露出長さを素線の線径の
40倍以上の長さに設定しておくことにより、温度測定
値が実温度に実質的に等しくなり、均一な熱処理を行う
ことができる。
When the tip of the wire of the thermocouple (bonding end of the wire) is brought into contact with the surface of the wafer or when the wire is welded, the sheath of the strand has a large heat capacity, so heat escapes to this sheath. For example, when the heating source is located above the wafer, it is assumed that the radiant heat from above is absorbed by the cladding tube. Therefore, when the temperature of the wafer is rapidly changed, the trackability of the measured temperature value to the actual temperature deteriorates, but by increasing the exposed length of the wire exposed from the cladding tube, the temperature measurement of the cladding tube The influence is mitigated, and by setting the exposed length to be 40 times or more the wire diameter of the strand, the measured temperature value becomes substantially equal to the actual temperature, and uniform heat treatment can be performed. it can.

【0011】[0011]

【実施例】図1は本発明の実施例の全体構成を示す図で
ある。図1中2は石英からなる有底筒状の反応管であ
り、この反応管2は開口端が下方側になるように筒状の
断熱体21の中に配置されている。反応管2の上方側に
は加熱手段22例えば抵抗発熱体が設けられており、こ
の抵抗発熱体としては、例えばニケイ化モリブデン(M
oSi2 )、鉄とクロムとアルミニウムとの合金線であ
るカンタル(商品名)線などを用いることができる。
FIG. 1 is a diagram showing the overall construction of an embodiment of the present invention. Reference numeral 2 in FIG. 1 denotes a bottomed cylindrical reaction tube made of quartz, and the reaction tube 2 is arranged in a cylindrical heat insulator 21 with its open end facing downward. A heating means 22, for example, a resistance heating element is provided on the upper side of the reaction tube 2. As the resistance heating element, for example, molybdenum disilicide (M
oSi 2 ), Kanthal (trade name) wire which is an alloy wire of iron, chromium and aluminum can be used.

【0012】前記反応管2と加熱手段22との間には例
えば炭化ケイ素(SiC)からなる熱制御板23が後述
のウエハWと対向するように配置されている。この熱制
御板23は前記加熱手段22から入射した輻射熱をウエ
ハWの被処理面に対して垂直に入射させるためのもので
あり、ウエハWを全面に亘って均一に加熱するためには
外径がウエハWの2倍以上であることが好ましい。
A heat control plate 23 made of, for example, silicon carbide (SiC) is arranged between the reaction tube 2 and the heating means 22 so as to face a wafer W described later. The heat control plate 23 is for causing the radiant heat that has entered from the heating means 22 to enter perpendicularly to the surface to be processed of the wafer W, and in order to uniformly heat the entire surface of the wafer W, the outer diameter Is more than twice as large as the wafer W.

【0013】前記断熱体21の下端部には、水などの冷
媒が通る冷媒流路をなす冷却手段30が取り付けられて
いる。更に反応管2の下方側には、金属性のマニホール
ド32が設けられており、このマニホールド32にはガ
ス供給管31及び図示しない排気管が接続されている。
ガス供給管31の内端側は反応管2内にて上方に伸長し
て、供給口がウエハWの斜め上方に位置している。また
マニホールド32には、図示していないがシャッタによ
り開閉されるウエハ搬出入口が形成されている。マニホ
ールド32の下端側には被処理空間を気密にシールする
蓋体33か設けられている。
At the lower end of the heat insulator 21, there is attached a cooling means 30 which forms a coolant passage through which a coolant such as water passes. Further, a metallic manifold 32 is provided below the reaction tube 2, and a gas supply pipe 31 and an exhaust pipe (not shown) are connected to the manifold 32.
The inner end side of the gas supply pipe 31 extends upward in the reaction tube 2, and the supply port is located diagonally above the wafer W. The manifold 32 has a wafer loading / unloading port (not shown) that is opened / closed by a shutter. At the lower end side of the manifold 32, there is provided a lid 33 that hermetically seals the processing space.

【0014】前記反応管2内にはウエハ保持具4が昇降
軸51の頂部に設けられている。このウエハ保持具4
は、例えば炭化ケイ素(SiC)からなり、ウエハWを
保持する保持突起が周縁部に例えば3〜4個形成されて
いる。前記昇降軸51は前記蓋体33を例えば磁気シー
ル部34を介して気密にかつ回転、昇降自在に貫通して
おり、昇降軸51の下端は、昇降アーム52に設けられ
た回転機構53に連結されている。前記昇降アーム52
は、モータ55により駆動されるボールネジ54に螺合
しており、ボールネジ54の回動により図示しないガイ
ド棒にガイドされつつ昇降できるように構成されてい
る。
A wafer holder 4 is provided inside the reaction tube 2 at the top of an elevating shaft 51. This wafer holder 4
Is made of, for example, silicon carbide (SiC), and has, for example, 3 to 4 holding projections for holding the wafer W formed at the peripheral edge portion. The elevating shaft 51 penetrates the lid 33 in a gastight manner, for example, via a magnetic seal portion 34 so as to rotate and elevate freely, and the lower end of the elevating shaft 51 is connected to a rotating mechanism 53 provided on an elevating arm 52. Has been done. The lifting arm 52
Is screwed into a ball screw 54 driven by a motor 55, and is configured to be able to move up and down while being guided by a guide rod (not shown) by the rotation of the ball screw 54.

【0015】そして前記ウエハW上には、ウエハWの表
面温度を測定するための熱電対6が設けられており、こ
の実施例では、図2及び図3に詳細に示すようにウエハ
の周縁部、周縁部と中央部との間の領域、及びウエハの
中央部の3ヶ所の温度を夫々測定するように3つの熱電
対6A〜6Cが用いられている。前記熱電対6(6A〜
6C)は、各々の先端を接続して熱接点60を形成した
例えば白金−白金ロジウムよりなる2種の金属の素線6
1(61a、61b)と、この素線61(61a、61
b)を被覆する例えばアルミナよりなる被覆管62とを
有してなる。
A thermocouple 6 for measuring the surface temperature of the wafer W is provided on the wafer W. In this embodiment, as shown in detail in FIGS. , Three thermocouples 6A to 6C are used so as to measure the temperatures at the three regions of the area between the peripheral portion and the central portion and the central portion of the wafer, respectively. The thermocouple 6 (6A ~
6C) is a wire 6 made of, for example, two kinds of metal, which is made of, for example, platinum-platinum rhodium, in which each tip is connected to form a thermal contact 60.
1 (61a, 61b) and this wire 61 (61a, 61b)
a coating tube 62 made of, for example, alumina for coating b).

【0016】前記素線61において被覆管62から露出
している露出長さは、素線61の線径の40倍以上の長
さに設定される。素線61の線径は、例えば0.1mm
とされ、この場合素線61の露出長さは、4mm以上と
される。この実施例では、被覆管62の先端から素線6
1が水平に伸び更にL字状に屈曲しており、図3に示す
ように露出している水平部分の長さH及び垂直部分の長
さPは夫々2mm及び2mmに設定されている。ただし
素線61の露出部分は図4に示すように直線状に伸びて
いて、ウエハWの表面に対して所定の角度で斜めから接
触していてもよい。この場合素線61の露出長さLは上
述の条件を満たしていることが必要である。
The exposed length of the wire 61 exposed from the coating tube 62 is set to be 40 times or more the wire diameter of the wire 61. The wire diameter of the wire 61 is, for example, 0.1 mm
In this case, the exposed length of the wire 61 is 4 mm or more. In this embodiment, the wire 6 is inserted from the tip of the cladding tube 62.
1 extends horizontally and further bends in an L-shape, and as shown in FIG. 3, the length H of the exposed horizontal portion and the length P of the exposed vertical portion are set to 2 mm and 2 mm, respectively. However, the exposed portion of the wire 61 may extend linearly as shown in FIG. 4, and may be in contact with the surface of the wafer W obliquely at a predetermined angle. In this case, the exposed length L of the wire 61 needs to satisfy the above conditions.

【0017】各熱電対6は例えばマニホールド32より
外部に気密に引き出されて制御部7に導かれている。こ
の制御部7は、熱電対6の温度検出信号を処理して図示
しないディスプレイにウエハWの各点の温度を表示した
り、加熱手段22の電力制御やモータ55の駆動制御を
行う機能を有する。例えばオペレータは、ウエハWを保
持具5に載せて所定の加熱領域まで移動させたときに熱
電対6から得られるウエハWの温度プロファイルに基づ
いて最適な温度プロファイルが得られるように加熱手段
22の電力制御パターンやウエハWの昇降パターン(モ
ータ55の制御パターン)を設定し、その設定されたパ
ターンに基づいて熱処理装置が運転されることになる。
Each thermocouple 6 is led out to the control section 7 in an airtight manner from the manifold 32, for example. The control unit 7 has a function of processing the temperature detection signal of the thermocouple 6 to display the temperature of each point of the wafer W on a display (not shown), and controlling the electric power of the heating means 22 and the drive control of the motor 55. . For example, the operator of the heating means 22 may obtain an optimum temperature profile based on the temperature profile of the wafer W obtained from the thermocouple 6 when the wafer W is placed on the holder 5 and moved to a predetermined heating region. A power control pattern and a lifting / lowering pattern of the wafer W (control pattern of the motor 55) are set, and the heat treatment apparatus is operated based on the set patterns.

【0018】次に上述実施例の作用について述べる。先
ずウエハ保持具4をマニホールド32の位置まで下降さ
せておき、図示しない搬出入口よりウエハWをウエハ保
持具4の上に載せ、熱電対6(6A〜6C)を夫々既述
のようにウエハWの所定位置に設定する。一方、加熱手
段22より熱制御板23を介して反応管2内に放射され
た輻射熱により、ウエハの面内にて完全に均一な温度に
加熱されている加熱領域が反応管2内に形成されてい
る。そして前記搬出入口を閉じた後昇降軸51を上昇さ
せると共に、ガス供給管31よりダミーとしてのガス例
えばN2 ガスを実際のプロセスと同様の流量で反応管2
内に供給する。そしてウエハWのある移動パターンにお
いては、ウエハWの表面温度は例えば50℃/分で上昇
した後一定値に落ち着くが、この場合各熱電対6A〜6
Cの温度測定値は図5に示すように揃っており、プロセ
ス時の実際の温度を精度良く再現している。
Next, the operation of the above embodiment will be described. First, the wafer holder 4 is lowered to the position of the manifold 32, the wafer W is placed on the wafer holder 4 from a carry-in / out port (not shown), and the thermocouples 6 (6A to 6C) are respectively attached to the wafer W as described above. Set to the predetermined position. On the other hand, a radiant heat radiated from the heating means 22 through the heat control plate 23 into the reaction tube 2 forms a heating region in the reaction tube 2 which is heated to a completely uniform temperature in the plane of the wafer. ing. Then, after closing the loading / unloading port, the elevating shaft 51 is raised, and the gas as the dummy, for example, N 2 gas is supplied from the gas supply pipe 31 at the same flow rate as in the actual process.
Supply in. Then, in a certain movement pattern of the wafer W, the surface temperature of the wafer W rises at, for example, 50 ° C./minute and then settles to a constant value. In this case, each thermocouple 6A to 6A is used.
The temperature measurement values of C are uniform as shown in FIG. 5, and the actual temperature during the process is accurately reproduced.

【0019】この効果は素線61の露出長さを変えて測
定することによって裏付けられる。即ち素線61の線径
が0.1mmの場合、前記露出長さを2mm、3mm、
4mm、5mm、6mmの5通りに設定して、各熱電対
を共通のウエハの表面に付け、昇温速度を50℃/秒も
の高速にして温度測定値を調べたところ、各熱電対の温
度測定値のばらつきは、4mmの露出長さの熱電対の温
度測定値を基準にすると、昇温状態では2mm及び3m
mの露出長さのものでは−30℃〜−50℃であり、5
mm及び6mmの露出長さのものでは数℃程度であっ
た。また昇温状態から安定状態に移行する領域において
は、2mm及び3mmの露出長さのものでは−10℃〜
−20℃であり、5mm及び6mmの露出長さのもので
は1〜2℃であった。なお図6(a)、(b)は夫々4
mm及び2mmの露出長さの熱電対の温度測定値を示す
グラフである。
This effect is confirmed by changing the exposed length of the wire 61 and measuring it. That is, when the wire diameter of the wire 61 is 0.1 mm, the exposed length is 2 mm, 3 mm,
The temperature of each thermocouple was set to 5 mm (4 mm, 5 mm, 6 mm), each thermocouple was attached to the surface of a common wafer, and the temperature measurement value was examined at a high heating rate of 50 ° C./sec. Based on the measured temperature of a thermocouple with an exposed length of 4 mm, the variation in the measured values is 2 mm and 3 m in the temperature rising state.
The exposure length of m is -30 ° C to -50 ° C, which is 5
For exposed lengths of mm and 6 mm, it was about several degrees Celsius. In the region where the temperature rises to the stable state, the exposure length of 2 mm and 3 mm is -10 ° C to
The temperature was −20 ° C., and was 1-2 ° C. for the exposed lengths of 5 mm and 6 mm. Note that FIG. 6A and FIG.
3 is a graph showing measured temperature values of thermocouples with exposed lengths of mm and 2 mm.

【0020】従って、熱電対の露出長さが2mm、ある
いは3mmの場合には温度測定値が実温度よりも低く、
特に目標温度に安定する前は誤差が大きいため、ウエハ
の面内温度を測定した場合には、各測定値の誤差が大き
く、これに対し、露出長さが4mm以上であれば実温度
に近いため、ウエハの面内の各測定値のばらつきが小さ
くなることがわかる。
Therefore, when the exposed length of the thermocouple is 2 mm or 3 mm, the measured temperature value is lower than the actual temperature,
In particular, before the temperature stabilizes at the target temperature, the error is large. Therefore, when the in-plane temperature of the wafer is measured, the error in each measured value is large, whereas if the exposure length is 4 mm or more, it is close to the actual temperature. Therefore, it can be seen that the dispersion of each measured value in the plane of the wafer becomes small.

【0021】このようにウエハWの温度を急速に昇温し
たときに、素線61の露出長さによって温度測定値が左
右される理由については、ウエハWに与えられる輻射熱
が急速に大きくなると、熱容量の大きな被覆管62の温
度上昇がウエハWの表面の温度上昇に比べて遅れるた
め、素線61の露出長さが小さい場合にはその熱の一部
がウエハWから素線61を伝って熱容量の大きな被覆管
62に逃げ、このためウエハWの表面温度が一時的に不
安定になる。これに対し素線61の露出長さが大きい場
合には即ち露出長さが素線の線径の40倍以上であれば
素線61から被覆管62に逃げる熱が小さくなるため、
素線62が接している部分の温度が安定し、従ってウエ
ハWの面方向の温度分布が実質的に完全に均一である加
熱領域では、各熱電対6A〜6Cの温度測定値が揃うこ
ととなり、実温度に対する温度測定値の誤差が例えば1
/3〜1/10程度に小さくなる。なお上述実施例で
は、熱制御板23からウエハWの表面に対して垂直に輻
射熱が放射されるため、被覆管62が熱接点に対して影
にならないように、被覆管62を熱接点の真上に位置さ
せないようにすることが好ましい。
The reason why the temperature measurement value depends on the exposed length of the wire 61 when the temperature of the wafer W is rapidly increased in this way is that the radiant heat applied to the wafer W rapidly increases. Since the temperature rise of the coating tube 62 having a large heat capacity is delayed as compared with the temperature rise of the surface of the wafer W, when the exposed length of the wire 61 is small, a part of the heat is transmitted from the wafer W through the wire 61. It escapes to the coating tube 62 having a large heat capacity, and thus the surface temperature of the wafer W becomes temporarily unstable. On the other hand, when the exposed length of the wire 61 is large, that is, when the exposed length is 40 times or more the wire diameter of the wire, the heat escaping from the wire 61 to the coating tube 62 becomes small,
In the heating region where the temperature of the portion in contact with the wire 62 is stable, and therefore the temperature distribution in the surface direction of the wafer W is substantially completely uniform, the temperature measurement values of the thermocouples 6A to 6C are uniform. , The error of the measured temperature value with respect to the actual temperature is 1
It becomes as small as / 3 to 1/10. In the above-mentioned embodiment, since the radiant heat is radiated from the heat control plate 23 perpendicularly to the surface of the wafer W, the coating tube 62 is placed at the true position of the heat contact so that the coating tube 62 does not shade the heat contact. It is preferably not located above.

【0022】また以上述べた現象は、ウエハを急速に降
温する場合にも同様に起こり、本発明者の実験によれ
ば、ウエハの昇温あるいは降温速度が20℃/分以上の
ときに、前記露出長さの影響が現われてくる。
The phenomenon described above also occurs when the temperature of the wafer is rapidly lowered, and according to the experiments conducted by the inventor of the present invention, when the temperature rising or cooling rate of the wafer is 20 ° C./min or more, The effect of exposure length appears.

【0023】以上において本発明はバッチ式の縦型熱処
理装置に対しても適用できる。図6はその一例を示す図
であり、反応管81は、断熱体82に囲まれており、こ
の断熱体82の内側には、例えば高さ方向に3つに分割
された抵抗発熱体よりなる加熱手段83a〜83cが設
けられている。84はウエハ保持具をなすウエハボート
であり、多数枚のウエハWが棚状に積層されて、ボート
エレベータ85によりロード、アンロードされる。86
は蓋体、87はガス供給管、88は排気管、89は制御
部である。そして互に異なる高さのいくつかのウエハW
に対して夫々表面の温度を測定するために、上述実施例
と同様な構成の熱電対6が設けられている。
In the above, the present invention can also be applied to a batch type vertical heat treatment apparatus. FIG. 6 is a diagram showing an example thereof, in which the reaction tube 81 is surrounded by a heat insulator 82, and inside the heat insulator 82, for example, a resistance heating element divided into three in the height direction is formed. Heating means 83a to 83c are provided. Reference numeral 84 denotes a wafer boat that serves as a wafer holder. A large number of wafers W are stacked in a shelf shape and loaded and unloaded by the boat elevator 85. 86
Is a lid, 87 is a gas supply pipe, 88 is an exhaust pipe, and 89 is a controller. And several wafers W of different heights
On the other hand, in order to measure the surface temperature, the thermocouple 6 having the same structure as that of the above-described embodiment is provided.

【0024】このようにして各ウエハWの温度を測定す
れば、ウエハWの面間の温度分布(各ウエハ間の温度分
布)を正確に把握でき、また更に各ウエハ毎に、互に異
なる複数の面内位置の温度測定を行えば、ウエハWの面
内温度分布について正確に把握できる。従ってこの測定
結果にもとづいて例えば各加熱手段83a〜83cの電
力制御の設定やウエハボートの改良を行うことにより、
良好な熱処理を行うことができるようになる。
By measuring the temperature of each wafer W in this manner, the temperature distribution between the surfaces of the wafer W (the temperature distribution between the wafers) can be accurately grasped, and furthermore, each wafer has a plurality of different temperatures. By measuring the temperature at the in-plane position, the in-plane temperature distribution of the wafer W can be accurately grasped. Therefore, based on this measurement result, for example, by setting the power control of each heating means 83a to 83c and improving the wafer boat,
Good heat treatment can be performed.

【0025】本発明は、次世代のデバイスのキャパシタ
酸化膜やゲート酸化膜などの極薄酸化膜を得るための酸
化処理、あるいは浅いPN接合を得るための拡散処理を
行う場合に大きな効果が得られるが、その他CVD、ア
ッシングなど種々の熱処理を行う装置に対しても適用す
ることができる。
The present invention has a great effect when an oxidation treatment for obtaining an ultrathin oxide film such as a capacitor oxide film or a gate oxide film for a next-generation device or a diffusion treatment for obtaining a shallow PN junction is performed. However, the present invention can also be applied to an apparatus for performing various heat treatments such as CVD and ashing.

【0026】[0026]

【発明の効果】本発明によれば、ウエハの温度を測定す
るにあたってウエハを急速に昇温あるいは降温した場合
にも、実温度に非常に近い温度測定値を得ることがで
き、この結果ウエハに対して均一な熱処理を行うことが
できる。
According to the present invention, even when the temperature of the wafer is rapidly raised or lowered in measuring the temperature of the wafer, it is possible to obtain a temperature measurement value very close to the actual temperature. On the other hand, uniform heat treatment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】本発明の実施例の要部を示す側面図である。FIG. 2 is a side view showing a main part of the embodiment of the present invention.

【図3】本発明の実施例の要部を示す斜視図である。FIG. 3 is a perspective view showing a main part of an embodiment of the present invention.

【図4】本発明の実施例に係る熱電対を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a thermocouple according to an embodiment of the present invention.

【図5】本発明の実施例により得られた温度測定値を示
す特性図である。
FIG. 5 is a characteristic diagram showing temperature measurement values obtained according to an example of the present invention.

【図6】実施例と比較例とについて夫々温度測定値を示
す特性図である。
FIG. 6 is a characteristic diagram showing temperature measurement values for an example and a comparative example.

【図7】本発明の他の実施例を示す全体構成図である。FIG. 7 is an overall configuration diagram showing another embodiment of the present invention.

【図8】従来の温度測定装置の一部を示す説明図であ
る。
FIG. 8 is an explanatory view showing a part of a conventional temperature measuring device.

【符号の説明】 2 反応管 22 加熱手段 23 熱制御板 4 ウエハ保持具 W 半導体ウエハ 6 熱電対 61、61a、61b 素線 62 被覆管 81 反応管 83a〜83c 加熱手段 84 ウエハボート[Description of Reference Signs] 2 reaction tube 22 heating means 23 thermal control plate 4 wafer holder W semiconductor wafer 6 thermocouple 61, 61a, 61b strand 62 coating tube 81 reaction tube 83a to 83c heating means 84 wafer boat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 靖司 神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事 業所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasushi Yagi 1-24-1 Machiya, Shiroyama-cho, Tsukui-gun, Kanagawa Tokyo Electron Tohoku Co., Ltd. Sagami Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハの熱処理装置において、素
線を被覆管により被覆した熱電対により半導体ウエハの
温度を検出する温度検出装置において、 前記被覆管の先端部より露出している素線の露出長さが
当該素線の線径の40倍以上の長さに設定されているこ
とを特徴とする熱処理装置用の温度検出装置。
1. A heat treatment apparatus for a semiconductor wafer, wherein in a temperature detecting device for detecting the temperature of a semiconductor wafer by a thermocouple in which an element wire is covered with a coating tube, the element wire exposed from the tip of the coating tube is exposed. A temperature detecting device for a heat treatment device, wherein the length is set to be 40 times or more the wire diameter of the strand.
【請求項2】 半導体ウエハが20℃/分以上の温度変
化を受けることを特徴とする請求項1記載の熱処理装置
用の温度検出装置。
2. The temperature detecting device for a heat treatment apparatus according to claim 1, wherein the semiconductor wafer is subjected to a temperature change of 20 ° C./min or more.
【請求項3】 熱処理装置の反応管の一端側に加熱領域
が形成され、半導体ウエハを前記反応管の他端側から前
記加熱領域に移動させることを特徴とする請求項1また
は2記載の熱処理装置用の温度検出装置。
3. The heat treatment according to claim 1, wherein a heating region is formed on one end side of the reaction tube of the heat treatment apparatus, and the semiconductor wafer is moved from the other end side of the reaction tube to the heating region. Temperature detection device for equipment.
【請求項4】 反応管内で行われる熱処理は、酸化、拡
散処理または熱化学気相反応処理であることを特徴とす
る請求項1、2または3記載の熱処理装置用の温度検出
装置。
4. The temperature detecting device for a heat treatment apparatus according to claim 1, 2 or 3, wherein the heat treatment performed in the reaction tube is oxidation, diffusion treatment or thermochemical vapor phase reaction treatment.
JP05139094A 1994-02-23 1994-02-23 Heat treatment apparatus and heat treatment method Expired - Fee Related JP3388627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05139094A JP3388627B2 (en) 1994-02-23 1994-02-23 Heat treatment apparatus and heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05139094A JP3388627B2 (en) 1994-02-23 1994-02-23 Heat treatment apparatus and heat treatment method

Publications (2)

Publication Number Publication Date
JPH07234163A true JPH07234163A (en) 1995-09-05
JP3388627B2 JP3388627B2 (en) 2003-03-24

Family

ID=12885620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05139094A Expired - Fee Related JP3388627B2 (en) 1994-02-23 1994-02-23 Heat treatment apparatus and heat treatment method

Country Status (1)

Country Link
JP (1) JP3388627B2 (en)

Also Published As

Publication number Publication date
JP3388627B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
US6774060B2 (en) Methods and apparatus for thermally processing wafers
TW459270B (en) Fast heating and cooling apparatus for semiconductor wafers
KR101005953B1 (en) Insulating film forming method
JP3241401B2 (en) Rapid heat treatment equipment
KR102072525B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and program
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
US5678989A (en) Heat treatment method using a vertical processing tube
US20110073589A1 (en) Thermal processing apparatus
CN107924825A (en) Manufacture method, lining processor and the program of semiconductor devices
JP7391942B2 (en) Semiconductor device manufacturing method, substrate processing device, program, and substrate processing method
US8172950B2 (en) Substrate processing apparatus and semiconductor device producing method
JP3388627B2 (en) Heat treatment apparatus and heat treatment method
JP3421465B2 (en) Heat treatment apparatus and method
JP2003045818A (en) Substrate treating apparatus and method of manufacturing semiconductor device
US7141765B2 (en) Heat treating device
JP3507548B2 (en) Heat treatment method
JPH07147257A (en) Heat treatment method and device therefor
JP2016157923A (en) Substrate processing apparatus, semiconductor device manufacturing method and heating part
JPH05206043A (en) Heat treatment method
JPH09246261A (en) Heat treatment equipment and its temperature control method
JP2005259902A (en) Substrate processor
JP2640269B2 (en) Processing method and processing apparatus
KR101379149B1 (en) Temperature measuring device, heat treatment device for wafer and method of heat treatment of wafer
WO2022196063A1 (en) Substrate treatment device, production method for semiconductor device, and program
JP3126455B2 (en) Heat treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees