JPH07233715A - Intake/exhaust valve driving controller for internal combustion engine - Google Patents

Intake/exhaust valve driving controller for internal combustion engine

Info

Publication number
JPH07233715A
JPH07233715A JP2294194A JP2294194A JPH07233715A JP H07233715 A JPH07233715 A JP H07233715A JP 2294194 A JP2294194 A JP 2294194A JP 2294194 A JP2294194 A JP 2294194A JP H07233715 A JPH07233715 A JP H07233715A
Authority
JP
Japan
Prior art keywords
valve
intake
drive shaft
exhaust valve
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2294194A
Other languages
Japanese (ja)
Other versions
JP3347860B2 (en
Inventor
Yoshihiko Yamada
吉彦 山田
Seinosuke Hara
誠之助 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP02294194A priority Critical patent/JP3347860B2/en
Publication of JPH07233715A publication Critical patent/JPH07233715A/en
Application granted granted Critical
Publication of JP3347860B2 publication Critical patent/JP3347860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of irregular movement such as the jumping of an intake valve during the eccentric controlling time of an annular disc, etc. CONSTITUTION:An annular disc 29 is freely swingably provided between the second flange part 32 of a driving axis 21 and the first flange part 27 of a camshaft 22 through a disc housing 35 by a driving mechanism. The constitution of an intake/exhaust valve driving controller of an internal combustion engine is premised in such a way that the angular velocity of the camshaft 22 against the driving axis 21 is changed in an eccentric position against the axial center X of the driving axis 21 of the annular disc 29. When the operating angle of an intake valve is controlled o the minimum extent following to the eccentric movement of the annular disc 29, the profile of the cam 26 is set in such a manner that a load pattern against a cam surface during a valve lifting time a the spring set load pattern curve of a valve spring are arranged approximately in parallel to each other having an approximate constant difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の運転状態に
応じて吸気・排気弁の開閉時期を可変制御する吸排気弁
駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve drive control device for variably controlling the opening / closing timing of intake / exhaust valves according to the operating state of an internal combustion engine.

【0002】[0002]

【従来の技術】この種の従来の装置としては種々提供さ
れており、その一つとして本出願人が先に出願した特願
平4−11591号に記載されたものがある。
2. Description of the Related Art Various conventional devices of this kind have been provided, and one of them is described in Japanese Patent Application No. 4-11591 previously filed by the present applicant.

【0003】図10〜図12に基づいて概略を説明すれ
ば、この吸排気弁駆動制御装置は、多気筒機関のクラン
ク軸からスプロケットを介して回転力が伝達される中空
状の駆動軸1と、該駆動軸1の外周同軸上に相対回転自
在に設けられたカムシャフト2と、各気筒毎に分割され
た該カムシャフト2の分割端部間に設けられた制御機構
3とを備えている。
The outline will be described with reference to FIGS. 10 to 12. This intake / exhaust valve drive control device has a hollow drive shaft 1 to which a rotational force is transmitted from a crankshaft of a multi-cylinder engine via a sprocket. A camshaft 2 is provided coaxially with the outer periphery of the drive shaft 1 so as to be relatively rotatable, and a control mechanism 3 is provided between divided ends of the camshaft 2 divided for each cylinder. .

【0004】前記駆動軸1は、機関前後方向に沿って延
設され、スプロケット側の図外の1番ジャーナルがシリ
ンダヘッド7の上端部に設けられたカム軸受に回転自在
に支持されている。
The drive shaft 1 extends along the longitudinal direction of the engine, and a first journal (not shown) on the sprocket side is rotatably supported by a cam bearing provided at the upper end of the cylinder head 7.

【0005】前記各カムシャフト2は、夫々外周に1気
筒当たり2つの吸気弁4,4をバルブリフター4a,4
aを介してバルブスプリング5のばね力に抗して開作動
させる2個のカム6,6を一体に有していると共に、シ
リンダヘッド7上の一対のカム軸受8,9によって回転
自在に支持されている。
Each of the camshafts 2 has two intake valves 4 and 4 per cylinder on the outer periphery thereof and valve lifters 4a and 4 respectively.
It has two cams 6 and 6 which are opened against the spring force of the valve spring 5 via a, and is rotatably supported by a pair of cam bearings 8 and 9 on the cylinder head 7. Has been done.

【0006】前記制御機構3は、各カムシャフト2の一
端部に一体に設けられた円環状の第1フランジ部10
と、駆動軸1の所定外周位置に連結ピン11によりスリ
ーブ12を介して固定されて、前記第1フランジ部10
に対向する円環状の第2フランジ部13と、両フランジ
部10,13間に介装されて駆動軸1の軸心Xから略径
方向へ揺動自在に設けられた略円環状のディスクハウジ
ング14と、該ディスクハウジング14の内周に有する
大径な支持孔14a内にプレーンベアリング15を介し
て回転自在に保持された環状ディスク16とを備えてい
る。
The control mechanism 3 has an annular first flange portion 10 integrally provided at one end portion of each camshaft 2.
Is fixed to a predetermined outer peripheral position of the drive shaft 1 by a connecting pin 11 via a sleeve 12, and the first flange portion 10
An annular second flange portion 13 facing each other, and a substantially annular disk housing interposed between the flange portions 10 and 13 so as to be swingable in a substantially radial direction from the axis X of the drive shaft 1. 14 and an annular disc 16 rotatably held in a large-diameter support hole 14a provided in the inner periphery of the disc housing 14 via a plain bearing 15.

【0007】また、前記ディスクハウジング14は、直
径方向の一端部がシリンダヘッド7の上端部に固定され
た図外の支軸によって回転自在に支持されていると共
に、他端部が前記支軸を中心に駆動機構により揺動する
ようになっている。更に、第1,第2フランジ部10,
13の外周部には、互いに180°位置に細長い係合溝
17,18が半径方向に沿って形成されている。一方、
環状ディスク16の両側面には、互いに反対方向に突出
して前記各係合溝17,18に係合するピン19,20
が突設されている。
The disk housing 14 has one end in the diametrical direction rotatably supported by a support shaft (not shown) fixed to the upper end of the cylinder head 7, and the other end supports the support shaft. It is designed to swing around a drive mechanism. Furthermore, the first and second flange portions 10,
Elongated engaging grooves 17 and 18 are formed in the outer peripheral portion of the member 13 at positions of 180 ° from each other along the radial direction. on the other hand,
Pins 19 and 20 projecting in opposite directions to engage with the engaging grooves 17 and 18 are formed on both side surfaces of the annular disc 16.
Is projected.

【0008】そして、例えば機関の高回転時には、ディ
スクハウジング14が揺動せずに、環状ディスク16の
中心が駆動軸1の軸心Xに合致する一方、機関の低回転
時には、図外の駆動機構によりディスクハウジング14
が揺動し、環状ディスク16を駆動軸1の軸心Xに対し
て偏心動させる。
Then, for example, when the engine rotates at high speed, the disk housing 14 does not swing and the center of the annular disk 16 coincides with the axis X of the drive shaft 1. On the other hand, when the engine rotates at low speed, a drive not shown in the drawing is performed. Disk housing 14 by mechanism
Oscillates to move the annular disk 16 eccentrically with respect to the axis X of the drive shaft 1.

【0009】即ち、例えば機関高回転時には、環状ディ
スク16の中心が駆動軸1の軸心Xに合致して、駆動軸
1とカムシャフト2との回転位相差が生じない。したが
って、駆動軸1の回転に伴い制御機構3を介してカムシ
ャフト2が駆動軸1と同期回転し、カム6,6による弁
の作動角が図13Aの実線で示すように大きくなり、開
弁時期が早くなる共に、閉弁時期が遅くなるため、吸気
慣性力を利用した吸気充填効率が向上する。
That is, for example, when the engine is rotating at high speed, the center of the annular disk 16 coincides with the axis X of the drive shaft 1 and the rotational phase difference between the drive shaft 1 and the cam shaft 2 does not occur. Therefore, as the drive shaft 1 rotates, the cam shaft 2 rotates synchronously with the drive shaft 1 via the control mechanism 3, and the valve operating angle by the cams 6 and 6 increases as shown by the solid line in FIG. Since the valve closing timing is delayed as the timing is advanced, the intake charging efficiency using the intake inertial force is improved.

【0010】一方、低回転域では、駆動機構によりディ
スクハウジング14を介して環状ディスク16の中心が
駆動軸1の軸心Xから偏心可能に制御されるため、各ピ
ン19,20が各係合溝17,18の内周面に沿って径
方向に摺動し、一方側ピン20が駆動軸1の軸心Xに接
近する場合は、他方側ピン19は軸心Xから離れる関係
になる。したがって、この場合は、環状ディスク16
は、駆動軸1に対して角速度が大きくなり、カムシャフ
ト2の角速度も大きくなる。このため、カムシャフト2
は、駆動軸1に対して2重に増速された状態になる。し
たがって、駆動軸1とカムシャフト2の回転位相差が図
13Bに示すように変化し、カムシャフト2の角速度が
相対的に大きい場合は、駆動軸1に対する回転位相は両
者1,2が等速になるまで進み、やがてカムシャフト2
の角速度が相対的に小さくなると、回転位相は両者1,
2が等速になるまで遅れる。
On the other hand, in the low rotation range, the center of the annular disk 16 is controlled by the drive mechanism via the disk housing 14 so as to be eccentric from the axis X of the drive shaft 1, so that the pins 19 and 20 are engaged with each other. When the one side pin 20 approaches the axial center X of the drive shaft 1 by sliding in the radial direction along the inner peripheral surfaces of the grooves 17 and 18, the other side pin 19 is separated from the axial center X. Therefore, in this case, the annular disc 16
Increases the angular velocity with respect to the drive shaft 1 and also increases the angular velocity of the camshaft 2. Therefore, the camshaft 2
Is in a state in which the speed is doubled with respect to the drive shaft 1. Therefore, when the rotational phase difference between the drive shaft 1 and the cam shaft 2 changes as shown in FIG. 13B and the angular velocity of the cam shaft 2 is relatively large, the rotational phase with respect to the drive shaft 1 is constant at both 1 and 2. Until the camshaft 2
When the angular velocity of becomes relatively small, the rotational phase becomes
Delay until 2 becomes constant speed.

【0011】そして、図13Bで示すように回転位相差
の最大,最小点の途中に同位相点Pが存在し、同図Bの
回転位相の変化では、弁の作動角が図13Aの破線で示
すようにP点よりも前の開弁時期が遅れ、P点より後の
閉弁時期が進み、全体に小さく制御される。したがっ
て、吸排気弁のバルブオーバラップが小さくなり、燃焼
室の残留ガスが減少し、安定した燃焼により燃費の向上
が図れる。また、早い閉弁時期制御により吸気充填効率
が向上し、低速トルクを高めることができる。
As shown in FIG. 13B, an in-phase point P exists in the middle of the maximum and minimum points of the rotational phase difference, and when the rotational phase changes in FIG. 13B, the valve operating angle is indicated by the broken line in FIG. 13A. As shown, the valve opening timing before point P is delayed, and the valve closing timing after point P is advanced, so that the overall control is made small. Therefore, the valve overlap of the intake and exhaust valves is reduced, the residual gas in the combustion chamber is reduced, and stable combustion improves fuel efficiency. Further, the intake valve charging efficiency is improved by the early valve closing timing control, and the low speed torque can be increased.

【0012】[0012]

【発明が解決しようとする課題】ところで、斯かる吸排
気弁駆動制御装置にあっては、機関運転状態の変化に応
じてカムリフト中の弁作動角を可変制御することによ
り、機関性能の向上を図っているが、低回転時に弁作動
角を小さく制御した場合、つまり開弁時期が短縮制御さ
れた場合は、カム6のリフト時のカム面に対する荷重が
増加して吸気弁4がカム6により与えられるリフト曲線
が外れてジャンピング等の不整運動を起こす惧れがあ
る。
By the way, in such an intake / exhaust valve drive control device, the engine performance is improved by variably controlling the valve operating angle during the cam lift according to changes in the engine operating state. As shown in the drawing, when the valve operating angle is controlled to be small at low speed, that is, when the valve opening timing is controlled to be shortened, the load on the cam surface during the lift of the cam 6 increases and the intake valve 4 is driven by the cam 6. There is a risk that the given lift curve will deviate and irregular movements such as jumping will occur.

【0013】即ち、開閉作動中における吸気弁4の持つ
慣性力(加速度)、特にカムリフト時(吸気弁4の開作
動時)におけるカム面6aに対する負の荷重が増加して
バルブスプリングのばねセット荷重よりも大きくなるこ
とによってジャンピング等が発生し易くなる。したがっ
て、斯かる負の荷重を十分に小さくし、常に慣性力がバ
ルブスプリングのばねセット荷重により小さくなるよう
にカム6,6のプロフィールを設定することが望まし
い。
That is, the inertial force (acceleration) of the intake valve 4 during the opening / closing operation, especially the negative load on the cam surface 6a at the time of the cam lift (when the intake valve 4 is open) increases to increase the spring set load of the valve spring. If it is larger than this, jumping or the like is likely to occur. Therefore, it is desirable to set such negative loads sufficiently small and set the profiles of the cams 6 and 6 so that the inertial force is always reduced by the spring set load of the valve spring.

【0014】しかしながら、前記従来の装置にあって
は、図15に示すように高回転時において環状ディスク
16が駆動軸1に同心制御されて、吸気弁4の弁作動角
が大きくかつ負のカム面6aに対する荷重パターン曲線
(FC)が小さく制御された時点でバルブスプリング5
のばねセット荷重パターン曲線FSを決定し、両パター
ン曲線FC,FSが略平行となるようにカムプロフィー
ルを設定している。
However, in the above-mentioned conventional device, as shown in FIG. 15, the annular disc 16 is concentrically controlled by the drive shaft 1 at the time of high rotation so that the intake valve 4 has a large valve operating angle and a negative cam. When the load pattern curve (FC) on the surface 6a is controlled to be small, the valve spring 5
The spring set load pattern curve FS is determined and the cam profile is set so that both pattern curves FC and FS are substantially parallel.

【0015】このため、前述のように、低回転時に弁作
動角を小さく制御した場合には、図14に示すように負
の荷重が増加して該荷重パターン曲線FCの略中央部F
C1がばねセット荷重パターン曲線FSと略等しいか、
より大きくなってジャンピング等が発生してしまう。こ
の結果、機関性能の低下を招くばかりか、動弁系の作動
不良を起こす惧れがある。
For this reason, as described above, when the valve operating angle is controlled to be small at low rotation speed, the negative load increases and the substantially central portion F of the load pattern curve FC as shown in FIG.
C1 is almost equal to the spring set load pattern curve FS,
It becomes larger and jumping etc. occurs. As a result, not only the engine performance is deteriorated, but also the valve train may malfunction.

【0016】そこで、前記ジャンピング等を防止するた
めにバルブスプリング5のばねセット荷重を大きくする
と、駆動トルクが大きくなり、燃費が悪化したり、ある
いはカム面6aのベース側荷重も増加して吸気弁4の焼
き付き等が発生する惧れがある。
Therefore, if the spring set load of the valve spring 5 is increased in order to prevent the jumping or the like, the driving torque increases, the fuel consumption deteriorates, or the load on the base side of the cam surface 6a increases to increase the intake valve. There is a fear that seizure of 4 etc. will occur.

【0017】[0017]

【課題を解決するための手段】本発明は、前記先願の問
題点に鑑みて案出されたもので、請求項1の発明は、機
関によって回転駆動する駆動軸と、該駆動軸の外部同軸
上に相対回転可能に配設され、かつ外周面に吸排気弁を
駆動するカムを有するカムシャフトと、該カムシャフト
の端部側に駆動軸と同軸上に配置され、かつ駆動軸の軸
心に対して偏心揺動自在な環状ディスクと、該環状ディ
スクを駆動軸に対して同心あるいは偏心動させる駆動機
構とを備え、前記環状ディスクの偏心揺動に伴いカムシ
ャフトの角速度の変化を得て前記吸排気弁の作動角を可
変制御する吸排気弁駆動制御装置において、前記作動角
が最小に制御された際に、前記吸排気弁のバルブリフト
時のカム面に対する荷重パターン曲線とバルブスプリン
グのばねセット荷重パターン曲線が略一定の差をもって
略平行となるように前記カムのプロフィールを設定した
ことを特徴としている。
The present invention has been devised in view of the problems of the above-mentioned prior application. The invention of claim 1 is a drive shaft which is rotationally driven by an engine, and the outside of the drive shaft. A cam shaft coaxially rotatably disposed and having a cam for driving an intake / exhaust valve on the outer peripheral surface, and a shaft of the drive shaft disposed coaxially with the drive shaft on the end side of the cam shaft. Equipped with an annular disc that can be eccentrically oscillated with respect to the center, and a drive mechanism that concentrically or eccentrically moves the annular disc with respect to a drive shaft, and obtains a change in the angular velocity of the camshaft with eccentric oscillation of the annular disc. In the intake / exhaust valve drive control device for variably controlling the operating angle of the intake / exhaust valve, a load pattern curve and a valve spring for the cam surface at the time of valve lift of the intake / exhaust valve when the operating angle is controlled to the minimum. Spring set load It is characterized in that the pattern curve has set the profile of the cam so as to be substantially parallel with the difference between the substantially constant.

【0018】請求項2の発明は、前記作動角が最大に可
変制御された際に、前記吸排気弁のバルブリフト時のカ
ム面対する荷重パターン曲線が前記バルブリフトの略中
央付近で略凹状あるいは略平坦状になるように前記カム
のプロフィールを設定したことを特徴としている。
According to a second aspect of the present invention, when the operating angle is variably controlled to the maximum, the load pattern curve for the cam surface of the intake / exhaust valve at the time of valve lift is substantially concave near the center of the valve lift. It is characterized in that the profile of the cam is set so as to be substantially flat.

【0019】[0019]

【作用】前記請求項1及び2の発明によれば、機関低回
転時に環状ディスクを偏心揺動させて弁の作動角を小さ
く制御した際には、カム面に対する荷重パターン曲線の
負の加速度域(略中央部)が大きくなっても、バルブス
プリングのばね荷重パターン曲線と一定差をもって略平
行になり、常にばねセット荷重パターンよりも小さくな
る。このため、吸排気弁のジャンピング等の発生が確実
に防止される。
According to the first and second aspects of the present invention, when the annular disc is eccentrically oscillated and the valve operating angle is controlled to be small at a low engine speed, the negative acceleration range of the load pattern curve with respect to the cam surface is obtained. Even if the (approximately central portion) becomes large, it becomes substantially parallel to the spring load pattern curve of the valve spring with a constant difference, and is always smaller than the spring set load pattern. Therefore, the occurrence of jumping of the intake / exhaust valve is reliably prevented.

【0020】[0020]

【実施例】図3〜図6は本発明に係る吸排気弁駆動制御
装置を4気筒の内燃機関の吸気側に適用した実施例を示
し、図中21は機関のクランク軸からスプロケットを介
して回転力が伝達される駆動軸、22は該駆動軸21の
外周に相対回転可能に配置され、かつ駆動軸21の中心
Xと同軸上に設けられた複数のカムシャフトであって、
前記駆動軸21は、機関前後方向に延設されていると共
に、軽量化等の要請から内部中空状に形成されている。
3 to 6 show an embodiment in which the intake / exhaust valve drive control device according to the present invention is applied to the intake side of a four-cylinder internal combustion engine. In FIG. 3, reference numeral 21 denotes a crankshaft of the engine through a sprocket. A drive shaft to which the rotational force is transmitted, 22 is a plurality of cam shafts that are arranged on the outer periphery of the drive shaft 21 so as to be relatively rotatable, and are provided coaxially with the center X of the drive shaft 21,
The drive shaft 21 extends in the front-rear direction of the engine and is formed in an internal hollow shape in order to reduce the weight.

【0021】前記カムシャフト22は、長手方向の所定
位置で各気筒毎に軸直角方向から4分割されており、内
部軸方向に形成された挿通孔22a内に駆動軸21が挿
通している一方、図外のシリンダヘッド上端部に有する
カム軸受52,53に回転自在に支持されている。ま
た、図4に示すようにカムシャフト22の外周の所定位
置に1気筒当たり2つの吸気弁23をバルブスプリング
24のばね力に抗してバルブリフター25を介して開作
動させる複数のカム26…が一体に設けられている。
The camshaft 22 is divided into four parts from the direction perpendicular to the axis for each cylinder at a predetermined position in the longitudinal direction, and the drive shaft 21 is inserted into an insertion hole 22a formed in the internal axial direction. It is rotatably supported by cam bearings 52, 53 provided at the upper end of the cylinder head (not shown). Further, as shown in FIG. 4, a plurality of cams 26 for opening two intake valves 23 per cylinder at predetermined positions on the outer periphery of the camshaft 22 through the valve lifter 25 against the spring force of the valve spring 24. Are provided integrally.

【0022】また、各カムシャフト22の一方側の分割
端部に第1フランジ部27が一体に固定されており、こ
の第1フランジ部27は、図6にも示すように中空部か
ら半径方向に沿った細長い矩形状の第1係合溝30が形
成されていると共に、その外周面の円周方向に後述する
環状ディスク29の一側面に摺接する突起面27aが一
体に設けられている。
Further, a first flange portion 27 is integrally fixed to one split end portion of each cam shaft 22. The first flange portion 27 extends from the hollow portion in the radial direction as shown in FIG. An elongated rectangular first engaging groove 30 is formed along with, and a protruding surface 27a that slidably contacts one side surface of an annular disk 29 described later is provided integrally in the circumferential direction of the outer peripheral surface thereof.

【0023】また、この第1フランジ部27に一定の隙
間をもって対峙する他方側のカムシャフト22の端部側
にスリーブ28と該スリーブ28に一体に有する第2フ
ランジ部32配置されており、第1フランジ部27と第
2フランジ32との対向面間に環状ディスク29が配置
されている。
A sleeve 28 and a second flange portion 32 integrally formed with the sleeve 28 are arranged on the end side of the camshaft 22 on the other side facing the first flange portion 27 with a constant gap. An annular disk 29 is arranged between the facing surfaces of the first flange portion 27 and the second flange 32.

【0024】前記スリーブ28は、小径な一端部がカム
シャフト22の前記他方側の分割端部内に回転自在に挿
入していると共に、略中央位置に直径方向に貫通した連
結軸31を介して駆動軸21に連結固定されている。こ
の第2フランジ部32は、図7に示すように第1フラン
ジ部27の第1係合溝30と径方向の反対側に半径方向
に沿った細長い矩形状の係合溝33が形成されていると
共に、外周面に環状ディスク29の他側面に摺接する突
起面32aが一体に設けられている。
One end of the sleeve 28 having a small diameter is rotatably inserted into the other end of the camshaft 22 on the other side, and is driven through a connecting shaft 31 penetrating diametrically at a substantially central position. It is connected and fixed to the shaft 21. As shown in FIG. 7, the second flange portion 32 has an elongated rectangular engagement groove 33 formed in the radial direction on the side opposite to the first engagement groove 30 of the first flange portion 27 in the radial direction. In addition, the outer peripheral surface is integrally provided with a protruding surface 32a that is in sliding contact with the other side surface of the annular disk 29.

【0025】前記環状ディスク29は、略ドーナツ板状
を呈し、内径がカムシャフト22の内径と略同径に形成
されて、駆動軸21の外周面との間に環状の隙間部Sが
形成されていると共に、小巾の外周部29aが環状ベア
リング34を介してディスクハウジング35の内周面に
回転自在に支持されている。また、直径線上の対向位置
に貫通形成された保持孔29b,29cには、各係合溝
30,33に係入する一対のピン36,37が設けられ
ている。この各ピン36,37は、互いにカムシャフト
軸方向へ逆向きに突出しており、基部が保持孔29b,
29c内に回転自在に支持されていると共に、先端部の
両側縁に図6及び図7に示すように前記係合溝30,3
3の対向内面30a,30b、33a,33bと当接す
る2面巾状の平面部36a,36b、37a,37bが
形成されている。
The annular disc 29 has a substantially donut plate shape, an inner diameter thereof is substantially equal to the inner diameter of the cam shaft 22, and an annular gap S is formed between the annular disc 29 and the outer peripheral surface of the drive shaft 21. In addition, the outer peripheral portion 29a having a small width is rotatably supported on the inner peripheral surface of the disk housing 35 via the annular bearing 34. In addition, a pair of pins 36 and 37 that engage with the engagement grooves 30 and 33 are provided in the holding holes 29b and 29c that are formed through the opposing positions on the diameter line. The pins 36 and 37 project in the opposite directions to each other in the axial direction of the camshaft, and the bases of the pins 36 and 37 have holding holes 29b and 29b.
29c is rotatably supported, and the engaging grooves 30, 3 are formed on both side edges of the tip portion as shown in FIGS. 6 and 7.
A flat surface portion 36a, 36b, 37a, 37b having a width across flats is formed so as to come into contact with the facing inner surfaces 30a, 30b, 33a, 33b of No. 3.

【0026】前記ディスクハウジング35は、図3〜図
5に示すように略円環状を呈し、外周の一端部に有する
ボス部35a及び該ボス部35aを貫通した枢支ピン3
8を支点として図4中上下に揺動自在に設けられている
一方、該ボス部35aと反対側の外周面にレバー部35
bが半径方向に沿って突設されている。また、このディ
スクハウジング35は、レバー部35bを介して駆動機
構39により揺動するようになっている。
The disk housing 35 has a substantially annular shape as shown in FIGS. 3 to 5, and has a boss portion 35a at one end of the outer periphery and a pivot pin 3 penetrating the boss portion 35a.
8 is provided so as to be vertically swingable in FIG. 4, and the lever portion 35 is provided on the outer peripheral surface opposite to the boss portion 35a.
b is projected along the radial direction. The disc housing 35 is swung by a drive mechanism 39 via a lever portion 35b.

【0027】前記駆動機構39は、図4及び図8に示す
ようにシリンダヘッドの所定部位に対向して形成された
第1,第2シリンダ40,41と、該各シリンダ40,
41内から出没自在に設けられて各先端縁で前記レバー
部35aの円弧状先端を上下方向から挾持する油圧ピス
トン42及びプランジャ43と、前記第1シリンダ40
内の受圧室40aに油圧を給排して油圧ピストン42を
進退動させる油圧回路44とを備えている。
As shown in FIGS. 4 and 8, the drive mechanism 39 includes first and second cylinders 40 and 41 formed facing a predetermined portion of the cylinder head, and the respective cylinders 40 and 41.
41, a hydraulic piston 42 and a plunger 43, which are provided so as to be retractable from within 41 and hold the arcuate tip end of the lever portion 35a from above and below at each tip edge, and the first cylinder 40.
And a hydraulic circuit 44 for moving the hydraulic piston 42 forward and backward by supplying and discharging hydraulic pressure to and from the pressure receiving chamber 40a.

【0028】前記第2シリンダ41内に設けられたプラ
ンジャ43は、略有底円筒状に形成され、第2シリンダ
41内に弾装されたコイルスプリング45のばね力で進
出方向(レバー部方向)に付勢されている。
The plunger 43 provided in the second cylinder 41 is formed in a substantially cylindrical shape with a bottom, and the spring force of the coil spring 45 elastically mounted in the second cylinder 41 causes the plunger 43 to advance (toward the lever portion). Is urged by.

【0029】前記油圧回路44は、一端部がオイルパン
46内に、他端部が受圧室40aに夫々連通した油通路
47と、該油通路47のオイルパン46側に設けられた
オイルポンプ48と、該オイルポンプ48の下流側に設
けられた3ポート2位置型の電磁切換弁49とから主と
して構成されている。前記電磁切換弁49は、機関回転
数や吸入空気量等の信号に基づいて現在の機関運転状態
を検出するコントローラ50からのON−OFF信号に
よって流路を切り換え作動し、ON信号によって油通路
47全体を連通する一方、OFF信号によって油通路4
7とドレン通路51を連通するようになっている。
The hydraulic circuit 44 has an oil passage 47 having one end communicating with the inside of the oil pan 46 and the other end communicating with the pressure receiving chamber 40a, and an oil pump 48 provided on the oil pan 46 side of the oil passage 47. And a 3-port 2-position electromagnetic switching valve 49 provided on the downstream side of the oil pump 48. The electromagnetic switching valve 49 switches the flow passage by an ON-OFF signal from the controller 50 that detects the current engine operating state based on signals such as the engine speed and the intake air amount, and the oil passage 47 is activated by the ON signal. While communicating with the whole, the oil passage 4 by the OFF signal
7 and the drain passage 51 are communicated with each other.

【0030】そして、前記カム26は、そのプロフィー
ルが前記環状ディスク29の駆動軸21の軸心に対する
偏心揺動時に吸気弁23のバルブリフト時のカム面26
aに対する荷重パターン曲線FCとバルブスプリング2
4のばねセット荷重パターン曲線FSが略一定の差をも
って略平行となるように設定されている。
The profile of the cam 26 is such that the cam surface 26 when the intake valve 23 is lifted when the annular disc 29 swings eccentrically with respect to the axis of the drive shaft 21.
Load pattern curve FC and valve spring 2 for a
The spring set load pattern curve FS of No. 4 is set to be substantially parallel with a substantially constant difference.

【0031】具体的に説明すれば、カムプロフィール
は、環状ディスク29が駆動軸21の軸心と同心制御
(大作動角制御)されている場合に、図2に示すように
バルブリフト時におけるカム面26aに対する荷重パタ
ーン曲線FCの中央部FC1が凹状になるように設定さ
れ、したがって、ばねセット荷重パターン曲線FSとは
中央部FC1の両側で若干近づくものの中央部FC1付
近では大きく離れるように形成されている。
More specifically, the cam profile is such that, when the annular disk 29 is controlled concentric with the axis of the drive shaft 21 (large operating angle control), the cam profile during valve lift as shown in FIG. The center portion FC1 of the load pattern curve FC with respect to the surface 26a is set to be concave. Therefore, the spring set load pattern curve FS is formed so as to be slightly close to both sides of the center portion FC1 but to be largely separated near the center portion FC1. ing.

【0032】これによって、前述のように環状ディスク
29の偏心制御(小作動角制御)時には、図1に示すよ
うにバルブリフト中における荷重パターン曲線FCとば
ねセット荷重パターン曲線FSが一定の差(FS−F
C)で離間しつつ略平行となり、常に荷重パターン曲線
FCがばねセット荷重パターン曲線FSを超えることが
ないように形成されている。
As a result, during the eccentricity control (small operating angle control) of the annular disk 29 as described above, as shown in FIG. 1, the load pattern curve FC and the spring set load pattern curve FS during the valve lift have a constant difference ( FS-F
In C), they are separated from each other and become substantially parallel to each other so that the load pattern curve FC does not always exceed the spring set load pattern curve FS.

【0033】以下、本実施例の作用について説明する。The operation of this embodiment will be described below.

【0034】機関高回転時には、斯かる運転状態を検出
したコントローラ50から電磁切換弁49にON信号が
出力されると、オイルポンプ48から油通路47に圧送
された作動油はそのまま受圧室40aに供給される。し
たがって、該受圧室40aの内圧上昇に伴い油圧ピスト
ン42が、図4,図8の実線で示すようにコイルスプリ
ング45のばね力に抗してレバー部35bを押し上げる
ので、ディスクハウジング35つまり環状ディスク29
の回転中心Yと駆動軸21の中心Xが合致する。この場
合は、環状ディスク29と駆動軸21との間に回転位相
は生じず、またカムシャフト22の中心と環状ディスク
29の中心Yも合致しているため、両者22,29間の
回転位相差も生じない。したがって、駆動軸21の回転
に伴い、連結軸31を介してスリーブ28が同期回転す
ると共に、第2フランジ部32側の係合溝33とピン3
7,環状ディスク29,ピン36,第1フランジ部27
側の係合溝30を介してカムシャフト22も同期回転す
る。したがって、吸気弁23は、図13Aの実線で示す
ように弁作動角が大きくなって、閉弁時期が十分に遅く
なる。この結果、吸気充填効率が向上して高出力トルク
が得られる。
At the time of high engine speed, when an ON signal is output from the controller 50 which has detected such an operating state to the electromagnetic switching valve 49, the hydraulic oil pumped from the oil pump 48 to the oil passage 47 is directly sent to the pressure receiving chamber 40a. Supplied. Therefore, as the internal pressure of the pressure receiving chamber 40a rises, the hydraulic piston 42 pushes up the lever portion 35b against the spring force of the coil spring 45 as shown by the solid lines in FIGS. 29
The rotation center Y of the drive shaft 21 and the center X of the drive shaft 21 coincide with each other. In this case, no rotational phase is generated between the annular disc 29 and the drive shaft 21, and the center of the camshaft 22 and the center Y of the annular disc 29 are also aligned, so the rotational phase difference between the two 22 and 29 is the same. Does not occur. Therefore, as the drive shaft 21 rotates, the sleeve 28 rotates synchronously via the connecting shaft 31, and the engagement groove 33 and the pin 3 on the second flange portion 32 side.
7, annular disc 29, pin 36, first flange portion 27
The camshaft 22 also rotates synchronously via the side engagement groove 30. Therefore, the intake valve 23 has a large valve operating angle as shown by the solid line in FIG. 13A, and the valve closing timing is sufficiently delayed. As a result, intake charging efficiency is improved and high output torque is obtained.

【0035】一方、機関低回転時には、コントローラ5
0から電磁切換弁49にOFF信号が出力されて、油通
路47の上流側を遮断すると共に、油通路47の下流側
とドレン通路51を連通する。このため、受圧室40a
内の作動油は、油通路47を逆流してドレン通路51か
らオイルパン46内に戻され、したがって、受圧室40
aの内圧低下に伴い油圧ピストン42がバルブスプリン
グ24及びコイルスプリング45のばね力でプランジャ
43を介して後退移動する。これにより、ディスクハウ
ジング35は、図4,図8の一点鎖線で示すようにプラ
ンジャ43により押し下げられて枢支ピン38を支点と
して下方へ揺動し、環状ディスク29の中心Yが駆動軸
21の中心Xと偏心する。したがって、第2フランジ部
32の係止溝33とピン37並びに第1フランジ部27
の係止溝30とピン36との摺動位置が駆動軸21の1
回転毎に往復移動し、環状ディスク29の角速度が変化
して不等角速度回転になる。
On the other hand, when the engine speed is low, the controller 5
An OFF signal is output from 0 to the electromagnetic switching valve 49 to shut off the upstream side of the oil passage 47 and connect the downstream side of the oil passage 47 and the drain passage 51. Therefore, the pressure receiving chamber 40a
The hydraulic oil inside flows back through the oil passage 47 and is returned from the drain passage 51 into the oil pan 46.
The hydraulic piston 42 moves backward through the plunger 43 by the spring force of the valve spring 24 and the coil spring 45 as the internal pressure of a decreases. As a result, the disc housing 35 is pushed down by the plunger 43 as shown by the alternate long and short dash line in FIGS. 4 and 8 and swings downward with the pivot pin 38 as a fulcrum, and the center Y of the annular disc 29 is set to the drive shaft 21. Eccentric with center X. Therefore, the locking groove 33 of the second flange portion 32, the pin 37, and the first flange portion 27.
The sliding position between the locking groove 30 and the pin 36 of the drive shaft 21 is 1
It reciprocates with each rotation, and the angular velocity of the annular disk 29 changes, resulting in unequal angular velocity rotation.

【0036】即ち、一方のピン37が係合溝33内を摺
動して駆動軸21の中心Xから離れ、他方のピン36が
係合溝30内を摺動して中心Xに接近すると、環状ディ
スク29は駆動軸21に対して角速度が大きくなり、カ
ムシャフト22の角速度も大きくなる。したがって、カ
ムシャフト22は、駆動軸21に対して2重に増速され
た状態になる。この結果、カムシャフト22及びカム2
6と駆動軸21との回転位相差は、図13Bに示すよう
に変化する。したがって、吸気弁23は、そのバルブリ
フト特性が図13Aの破線で示すようにバルブリフトは
一定のまま弁作動角(バルブタイミング)が小さくな
り、閉弁時期が十分に早くなる。このため、吸気充填効
率が向上して低速トルクが向上する。
That is, when one pin 37 slides in the engagement groove 33 and separates from the center X of the drive shaft 21, and the other pin 36 slides in the engagement groove 30 and approaches the center X, The annular disc 29 has a large angular velocity with respect to the drive shaft 21, and the angular velocity of the camshaft 22 also increases. Therefore, the camshaft 22 is in a state in which the speed is doubled with respect to the drive shaft 21. As a result, the cam shaft 22 and the cam 2
The rotation phase difference between 6 and the drive shaft 21 changes as shown in FIG. 13B. Therefore, the intake valve 23 has a small valve operating angle (valve timing) with a constant valve lift, as shown by the broken line in FIG. 13A, and the valve closing timing is sufficiently advanced. Therefore, the intake charging efficiency is improved and the low speed torque is improved.

【0037】また、本実施例では、前述のように機関低
回転時には、吸気弁23のバルブリフト中の負の荷重パ
ターン曲線FCが図1に示すようにばねセット荷重パタ
ーン曲線FSから超えることなく、常に略平行状態とな
っているため、吸気弁23のジャンピング等の不整運動
の発生を確実に防止することができる。
Further, in this embodiment, as described above, the negative load pattern curve FC during the valve lift of the intake valve 23 does not exceed the spring set load pattern curve FS during the valve lift of the intake valve 23 as shown in FIG. Since it is always in a substantially parallel state, it is possible to reliably prevent occurrence of irregular movement such as jumping of the intake valve 23.

【0038】しかも、バルブスプリング24のばねセッ
ト荷重を大きくすることなく、カム面26aに対する荷
重を小さくしてジャンピング等を防止したため、駆動ト
ルクの増加を抑制でき、燃費の悪化や吸気弁23の焼付
き等の発生も防止できる。
Moreover, since the load on the cam surface 26a is reduced without increasing the spring set load of the valve spring 24 to prevent jumping or the like, an increase in drive torque can be suppressed, fuel consumption is deteriorated, and intake valve 23 burns. Occurrence of sticking can be prevented.

【0039】尚、機関高回転時に弁作動角を大きく制御
した際には、図2に示すように荷重パターン曲線FCの
中央部FC1が凹状になるが、吸気弁23のジャンピン
グの発生が起こらないことは勿論のこと、機関の高出力
化に大きな影響を与えることはない。
When the valve operating angle is controlled to a large value at high engine speed, the central portion FC1 of the load pattern curve FC becomes concave as shown in FIG. 2, but the jumping of the intake valve 23 does not occur. Needless to say, it does not significantly affect the high output of the engine.

【0040】また、他例として、弁作動角の大制御中に
おける荷重パターン曲線FCの中央部FC1を図2の一
点鎖線で示すように略平坦状となるようにカム6のプロ
フィールを設定することも可能である。この場合も、弁
作動角の小制御時に荷重パターン曲線FCとばね荷重パ
ターン曲線FSとを一定の差をもって略平行にすること
が可能になる。尚、前記曲線FCと曲線FSとの一定の
差をもって略平行となる期間を、吸気弁23の開弁期間
の半分に設定すれば、機関の吸入量を減らすことなく、
吸気弁23の開弁加速度も急激に増加することがないた
め、安定した機関の高出力化が図れる。
As another example, the profile of the cam 6 is set so that the center portion FC1 of the load pattern curve FC during the large control of the valve operating angle becomes substantially flat as shown by the alternate long and short dash line in FIG. Is also possible. Also in this case, the load pattern curve FC and the spring load pattern curve FS can be made substantially parallel to each other with a certain difference when the valve operating angle is controlled to be small. If the period in which the curves FC and FS are substantially parallel to each other with a constant difference is set to half the opening period of the intake valve 23, the intake amount of the engine is not reduced.
Since the valve opening acceleration of the intake valve 23 also does not increase sharply, stable output of the engine can be increased.

【0041】さらに、図9はさらに異なるカム面26a
に対する荷重パターンの他例を示している。即ち、駆動
軸21に対するカムシャフト22の回転位相差をずらし
て、吸気弁23の大作動角制御時におけるバルブリフト
Yつまり弁開閉時期と、小作動角制御時におけるバルブ
リフトZつまり弁開閉時期を非対称とした場合には、小
作動角制御時における負の荷重パターン曲線FC(実
線)とばねセット荷重パターン曲線FSを略一定をもっ
て略平行とするために、大作動角時における負の荷重パ
ターン曲線FCを破線で示すように中央部から開弁初期
側を凹状になるようにカム26のプロフィールを設定し
たものである。したがって、この場合も前記実施例と同
様な作用効果が得られる。
Further, FIG. 9 shows a different cam surface 26a.
The other example of the load pattern with respect to is shown. That is, the rotational phase difference of the camshaft 22 with respect to the drive shaft 21 is shifted so that the valve lift Y during the large operating angle control of the intake valve 23, that is, the valve opening / closing timing, and the valve lift Z during the small operating angle control, that is, the valve opening / closing timing. In the case of asymmetry, the negative load pattern curve FC (solid line) and the spring set load pattern curve FS at the time of small operating angle control are made substantially parallel to each other so that the negative load pattern curve FC is at a large operating angle. The profile of the cam 26 is set such that the valve opening side from the center is concave as shown by the broken line FC. Therefore, also in this case, the same effect as that of the above-described embodiment can be obtained.

【0042】尚、本発明は前記各実施例に限定されるも
のではなく、小作動角制御時における負の荷重パターン
曲線FCとばねセット荷重パターン曲線FSを常に一定
の差をもって略平行になるようにカムプロフィールを設
定できればよく、弁の開閉時期の変化は問わない。ま
た、吸気弁の他に排気弁側にも適用できることは勿論で
ある。
The present invention is not limited to the above embodiments, and the negative load pattern curve FC and the spring set load pattern curve FS at the time of small operating angle control are always substantially parallel with a certain difference. It suffices if the cam profile can be set to, and the change in the valve opening / closing timing does not matter. Further, it goes without saying that the invention can be applied to the exhaust valve side as well as the intake valve.

【0043】[0043]

【発明の効果】以上の説明で明らかなように、本発明に
係る吸排気弁駆動制御装置によれば、吸排気弁の作動角
が最小に制御された際において、バルブリフト時のカム
面に対する荷重パターン曲線をバルブスプリングのばね
セット荷重パターン曲線よりも小さくなるようにカムの
プロフィールを設定したため、吸排気弁の開閉作動中に
おけるジャンピング等の不整運動の発生を確実に防止で
きる。
As is apparent from the above description, according to the intake / exhaust valve drive control device of the present invention, when the operating angle of the intake / exhaust valve is controlled to the minimum, the cam surface for the valve lift is lifted. Since the cam profile is set so that the load pattern curve is smaller than the spring set load pattern curve of the valve spring, it is possible to reliably prevent the occurrence of irregular motion such as jumping during the opening / closing operation of the intake / exhaust valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の環状ディスクの偏心制御時
のカム面に対する荷重パターン曲線とばねセット荷重パ
ターン曲線を示す図。
FIG. 1 is a diagram showing a load pattern curve and a spring set load pattern curve for a cam surface during eccentricity control of an annular disc according to an embodiment of the present invention.

【図2】本実施例の環状ディスクの同心制御時のカム面
に対する荷重パターン曲線とばねセット荷重パターン曲
線を示す図。
FIG. 2 is a diagram showing a load pattern curve and a spring set load pattern curve for a cam surface during concentric control of the annular disc of the present embodiment.

【図3】本実施例の要部を示す一部破断図。FIG. 3 is a partially cutaway view showing a main part of this embodiment.

【図4】図1のA矢視図。FIG. 4 is a view on arrow A in FIG.

【図5】本実施例の一部を示す平面図。FIG. 5 is a plan view showing a part of the present embodiment.

【図6】図5のB−B線断面図。6 is a cross-sectional view taken along the line BB of FIG.

【図7】図5のC−C線断面図。7 is a cross-sectional view taken along the line CC of FIG.

【図8】本実施例の駆動手段を示す概略図。FIG. 8 is a schematic diagram showing a driving means of the present embodiment.

【図9】本発明の他例を示す特性図。FIG. 9 is a characteristic diagram showing another example of the present invention.

【図10】先願の装置における一部破断図。FIG. 10 is a partially cutaway view of the device of the prior application.

【図11】図10のD−D線断面図。11 is a sectional view taken along line DD of FIG.

【図12】図10のE−E線断面図。12 is a cross-sectional view taken along the line EE of FIG.

【図13】Aは駆動軸とカムシャフトとの回転位相差の
特性図、Bはバルブリフト特性図。
13A is a characteristic diagram of a rotational phase difference between a drive shaft and a camshaft, and B is a valve lift characteristic diagram.

【図14】先願装置における環状ディスクの偏心制御時
のカム面に対する荷重パターン曲線とばねセット荷重パ
ターン曲線を示す図。
FIG. 14 is a diagram showing a load pattern curve and a spring set load pattern curve for a cam surface during eccentricity control of an annular disc in a prior application device.

【図15】同先願装置における環状ディスクの同心制御
時のカム面に対する荷重パターン曲線とばねセット荷重
パターン曲線を示す図。
FIG. 15 is a view showing a load pattern curve and a spring set load pattern curve for a cam surface at the time of concentric control of an annular disk in the prior application device.

【符号の説明】[Explanation of symbols]

21…駆動軸 22…カムシャフト 23…吸気弁 24…バルブスプリング 26…カム 29…環状ディスク 35…ディスクハウジング 39…駆動機構 FC…カム面に対する荷重パターン曲線 FS…ばねセット荷重パターン曲線 21 ... Drive shaft 22 ... Cam shaft 23 ... Intake valve 24 ... Valve spring 26 ... Cam 29 ... Annular disc 35 ... Disc housing 39 ... Drive mechanism FC ... Load pattern curve for cam surface FS ... Spring set load pattern curve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関によって回転駆動する駆動軸と、該
駆動軸の外部同軸上に相対回転可能に配設され、かつ外
周面に吸排気弁を駆動するカムを有するカムシャフト
と、該カムシャフトの端部側に駆動軸と同軸上に配置さ
れ、かつ駆動軸の軸心に対して偏心揺動自在な環状ディ
スクと、該環状ディスクを駆動軸に対して同心あるいは
偏心動させる駆動機構とを備え、前記環状ディスクの偏
心揺動に伴いカムシャフトの角速度の変化を得て前記吸
排気弁の作動角を可変制御する吸排気弁駆動制御装置に
おいて、 前記作動角が最小に制御された際に、前記吸排気弁のバ
ルブリフト時の前記カム面に対する荷重パターン曲線と
バルブスプリングのばねセット荷重パターン曲線が略一
定の差をもって略平行となるように前記カムのプロフィ
ールを設定したことを特徴とする内燃機関の吸排気弁駆
動制御装置。
1. A camshaft, which is rotatably driven by an engine, a camshaft, which is disposed coaxially with the outside of the drive shaft so as to be relatively rotatable, and which has an outer peripheral surface for driving an intake / exhaust valve, and a camshaft. An annular disc disposed coaxially with the drive shaft on the end side of the drive shaft and eccentrically swingable with respect to the axis of the drive shaft; and a drive mechanism for concentrically or eccentrically moving the annular disc with respect to the drive shaft. In the intake / exhaust valve drive control device for variably controlling the operating angle of the intake / exhaust valve by obtaining a change in the angular velocity of the camshaft with the eccentric swing of the annular disc, when the operating angle is controlled to a minimum. The profile of the cam is set so that the load pattern curve on the cam surface at the time of valve lift of the intake / exhaust valve and the spring set load pattern curve of the valve spring are substantially parallel with a substantially constant difference. Intake and exhaust valve drive control device for an internal combustion engine, characterized in that the.
【請求項2】 前記作動角が最大に可変制御された際
に、前記吸排気弁のバルブリフト時のカム面に対する荷
重パターン曲線が前記バルブリフトの略中央付近で略凹
状あるいは略平坦状になるように前記カムのプロフィー
ルを設定したことを特徴とする内燃機関の吸排気弁駆動
制御装置。
2. When the operating angle is variably controlled to the maximum, the load pattern curve for the cam surface of the intake / exhaust valve when the valve is lifted is substantially concave or substantially flat near the center of the valve lift. An intake / exhaust valve drive control device for an internal combustion engine, wherein the cam profile is set as described above.
JP02294194A 1994-02-22 1994-02-22 Intake and exhaust valve drive control device for internal combustion engine Expired - Fee Related JP3347860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02294194A JP3347860B2 (en) 1994-02-22 1994-02-22 Intake and exhaust valve drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02294194A JP3347860B2 (en) 1994-02-22 1994-02-22 Intake and exhaust valve drive control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07233715A true JPH07233715A (en) 1995-09-05
JP3347860B2 JP3347860B2 (en) 2002-11-20

Family

ID=12096659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02294194A Expired - Fee Related JP3347860B2 (en) 1994-02-22 1994-02-22 Intake and exhaust valve drive control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3347860B2 (en)

Also Published As

Publication number Publication date
JP3347860B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JPH05202718A (en) Intake and exhaust valve driving control device for internal combustion engine
JP3355225B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2000213315A (en) Variable valve system for internal combustion engine
JP3347860B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3355211B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3386236B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3933229B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0734828A (en) Intake/exhaust valve drive control device of internal combustion engine
JP2601060Y2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3283905B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2007239495A (en) Variable valve gear for engine
JP3143272B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH09242520A (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0667808U (en) Intake and exhaust valve drive control device for internal combustion engine
JP3205058B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3445421B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0742516A (en) Intake/exhaust valve driving control device of internal combustion engine
JP3355850B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH08158827A (en) Intake/exhaust valve driving control device for internal combustion engine
JPH10252430A (en) Intake/exhaust valve driving control device for internal combustion engine
JP2586631Y2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3385809B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH06323117A (en) Intake and exhaust valves driving control device for internal combustion engine
JPH0734829A (en) Intake/exhaust valve drive control device of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees