JPH0734829A - Intake/exhaust valve drive control device of internal combustion engine - Google Patents

Intake/exhaust valve drive control device of internal combustion engine

Info

Publication number
JPH0734829A
JPH0734829A JP18501293A JP18501293A JPH0734829A JP H0734829 A JPH0734829 A JP H0734829A JP 18501293 A JP18501293 A JP 18501293A JP 18501293 A JP18501293 A JP 18501293A JP H0734829 A JPH0734829 A JP H0734829A
Authority
JP
Japan
Prior art keywords
drive shaft
intake
valve
exhaust valve
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18501293A
Other languages
Japanese (ja)
Inventor
Akira Hidaka
章 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP18501293A priority Critical patent/JPH0734829A/en
Publication of JPH0734829A publication Critical patent/JPH0734829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve the precision in controlling the valve timing by increasing the angular velocity of a cam shaft to further increase the ratio of change of the working angle of a valve. CONSTITUTION:A disk housing is provided in a swayable manner between a second flange part of a driving shaft 21 and a first flange part of a cam shaft through a driving mechanism, and the angular velocity of the cam shaft is changed by the eccentric movement of the center from the axial center (X) of the driving shaft 21 through a pin 36 and an engaging groove 30 as the disk housing is swayed. Each engaging groove 30 is formed in an inclined manner not in the radial direction of each flange part 27, but forward in the rotational direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の運転状態に
応じて吸気・排気弁の開閉時期を可変制御する吸排気弁
駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve drive control device for variably controlling the opening / closing timing of intake / exhaust valves according to the operating state of an internal combustion engine.

【0002】[0002]

【従来の技術】この種の従来の装置としては種々提供さ
れており、その一つとして本出願人が先に出願した特願
平4−11591号に記載されたものがある。
2. Description of the Related Art Various conventional devices of this kind have been provided, and one of them is described in Japanese Patent Application No. 4-11591 previously filed by the present applicant.

【0003】図13〜図15に基づいて概略を説明すれ
ば、この吸排気弁駆動制御装置は、多気筒機関のクラン
ク軸からスプロケットを介して回転力が伝達される中空
状の駆動軸1と、該駆動軸1の外周同軸上に相対回転自
在に設けられたカムシャフト2と、各気筒毎に分割され
た該カムシャフト2の分割端部間に設けられた制御機構
3とを備えている。
The outline will be described with reference to FIGS. 13 to 15. This intake / exhaust valve drive control device has a hollow drive shaft 1 to which a rotational force is transmitted from a crankshaft of a multi-cylinder engine via a sprocket. A camshaft 2 is provided coaxially with the outer periphery of the drive shaft 1 so as to be relatively rotatable, and a control mechanism 3 is provided between divided ends of the camshaft 2 divided for each cylinder. .

【0004】前記駆動軸1は、機関前後方向に沿って延
設され、スプロケット側の図外の1番ジャーナルがシリ
ンダヘッド7の上端部に設けられたカム軸受に回転自在
に支持されている。
The drive shaft 1 extends along the longitudinal direction of the engine, and a first journal (not shown) on the sprocket side is rotatably supported by a cam bearing provided at the upper end of the cylinder head 7.

【0005】前記各カムシャフト2は、夫々外周に1気
筒当たり2つの吸気弁4,4をバルブリフター4a,4
aを介してバルブスプリング5のばね力に抗して開作動
させる2個のカム6,6を一体に有していると共に、シ
リンダヘッド7上の一対のカム軸受8,9によって回転
自在に支持されている。
Each of the camshafts 2 has two intake valves 4 and 4 per cylinder on the outer periphery thereof and valve lifters 4a and 4 respectively.
It has two cams 6 and 6 which are opened against the spring force of the valve spring 5 via a, and is rotatably supported by a pair of cam bearings 8 and 9 on the cylinder head 7. Has been done.

【0006】前記制御機構3は、図13〜図15に示す
ように、各カムシャフト2の一端部に一体に設けられた
円環状の第1フランジ部10と、駆動軸1の所定外周位
置に連結ピン11によりスリーブ12を介して固定され
て、前記第1フランジ部10に対向する円環状の第2フ
ランジ部13と、両フランジ部10,13間に介装され
て駆動軸1の軸心Xから略径方向へ揺動自在に設けられ
た略円環状のディスクハウジング14と、該ディスクハ
ウジング14の内周に有する大径な支持孔14a内にプ
レーンベアリング15を介して回転自在に保持された円
環状のディスク16とを備えている。また、前記ディス
クハウジング14は、直径方向の一端部がシリンダヘッ
ド7の上端部に固定された図外の支軸によって回転自在
に支持されていると共に、他端部が駆動機構により揺動
するようになっている。更に、第1,第2フランジ部1
0,13の外周部には、互いに180°位置に細長い係
合溝17,18が半径方向に沿って形成されている。一
方、ディスク16の両側面には、互いに反対方向に突出
して前記各係合溝17,18に係合するピン19,20
が突設されている。
As shown in FIGS. 13 to 15, the control mechanism 3 has an annular first flange portion 10 integrally provided at one end portion of each camshaft 2 and a predetermined outer peripheral position of the drive shaft 1. An annular second flange portion 13 which is fixed by a connecting pin 11 via a sleeve 12 and faces the first flange portion 10, and an axial center of the drive shaft 1 which is interposed between the flange portions 10 and 13. It is rotatably held via a plain bearing 15 in a substantially annular disc housing 14 provided so as to be swingable in a substantially radial direction from X and a large diameter support hole 14a provided in the inner periphery of the disc housing 14. And an annular disc 16 having a circular shape. The disc housing 14 has one end in the diametrical direction rotatably supported by a support shaft (not shown) fixed to the upper end of the cylinder head 7, and the other end pivoted by a drive mechanism. It has become. Further, the first and second flange portions 1
Elongated engaging grooves 17 and 18 are formed in the outer peripheral portions of 0 and 13 at positions of 180 ° with respect to each other in the radial direction. On the other hand, on both side surfaces of the disk 16, pins 19 and 20 projecting in opposite directions and engaging with the engaging grooves 17 and 18, respectively.
Is projected.

【0007】そして、例えば機関の高回転時には、ディ
スクハウジング14が揺動せずに、ディスク16の中心
が駆動軸1の軸心Xに合致する一方、機関の低回転時に
は、図外の駆動機構によりディスクハウジング14が揺
動し、ディスク16を駆動軸1の軸心Xに対して偏心動
させる。
Then, for example, when the engine rotates at high speed, the disk housing 14 does not swing and the center of the disk 16 coincides with the axis X of the drive shaft 1. On the other hand, when the engine rotates at low speed, a drive mechanism (not shown) is used. As a result, the disc housing 14 swings, and the disc 16 is eccentrically moved with respect to the axis X of the drive shaft 1.

【0008】即ち、例えば機関高回転時には、ディスク
16の中心が駆動軸1の軸心Xに合致して、駆動軸1と
カムシャフト2との回転位相差が生じない。したがっ
て、駆動軸1の回転に伴い制御機構3を介してカムシャ
フト2が駆動軸1と同期回転し、カム6,6による弁の
作動角が図16Bの実線で示すように大きくなり、開弁
時期が早くなる共に、閉弁時期が遅くなるため、吸気慣
性力を利用した吸気充填効率が向上する。
That is, for example, at the time of high engine speed rotation, the center of the disk 16 coincides with the axis X of the drive shaft 1 and the rotational phase difference between the drive shaft 1 and the camshaft 2 does not occur. Therefore, as the drive shaft 1 rotates, the cam shaft 2 rotates synchronously with the drive shaft 1 via the control mechanism 3, and the operating angle of the valve by the cams 6 and 6 increases as shown by the solid line in FIG. Since the valve closing timing is delayed as the timing is advanced, the intake charging efficiency using the intake inertial force is improved.

【0009】一方、低回転域では、駆動機構によりディ
スクハウジング14を介してディスク16の中心が駆動
軸1の軸心Xから偏心可能に制御されるため、各ピン1
9,20が各係合溝17,18の内周面に沿って径方向
に摺動し、一方側ピン20が駆動軸1の軸心Xに接近す
る場合は、他方側ピン19は軸心Xから離れる関係にな
る。したがって、この場合は、ディスク16は、駆動軸
1に対して角速度が大きくなり、ディスク16に対し、
カムシャフト2の角速度も大きくなる。このため、カム
シャフト2は、駆動軸1に対して2重に増速された状態
になる。したがって、駆動軸1とカムシャフト2の回転
位相差が図16Aに示すように変化し、カムシャフト2
の角速度が相対的に大きい場合は、駆動軸1に対する回
転位相は両者1,2が等速になるまで進み、やがてカム
シャフト2の角速度が相対的に小さくなると、回転位相
は両者1,2が等速になるまで遅れる。そして、図16
Aで示すように回転位相差の最大,最小点の途中に同位
相点Pが存在し、同図Aの回転位相の変化では、弁の作
動角が図16Bの破線で示すようにP点よりも前の開弁
時期が遅れ、P点より後の閉弁時期が進み、全体に小さ
く制御される。したがって、吸排気弁のバルブオーバラ
ップが小さくなり、燃焼室の残留ガスが減少し、安定し
た燃焼により燃費の向上が図れる。また、早い閉弁時期
制御により吸気充填効率が向上し、低速トルクを高める
ことができる。
On the other hand, in the low rotation range, the center of the disk 16 is controlled by the drive mechanism via the disk housing 14 so as to be eccentric from the axis X of the drive shaft 1.
When the pins 9 and 20 slide in the radial direction along the inner peripheral surfaces of the engagement grooves 17 and 18, and the pin 20 on one side approaches the axis X of the drive shaft 1, the pin 19 on the other side has an axis center. It becomes a relationship away from X. Therefore, in this case, the disc 16 has a large angular velocity with respect to the drive shaft 1, and
The angular velocity of the camshaft 2 also increases. Therefore, the camshaft 2 is in a state in which the speed is doubled with respect to the drive shaft 1. Therefore, the rotational phase difference between the drive shaft 1 and the camshaft 2 changes as shown in FIG.
When the angular velocity of is relatively large, the rotational phase with respect to the drive shaft 1 advances until both 1 and 2 become uniform velocity, and when the angular velocity of the camshaft 2 becomes relatively small, the rotational phase becomes Delay until the speed becomes constant. And in FIG.
As shown by A, the in-phase point P exists in the middle of the maximum and minimum points of the rotational phase difference, and in the change of the rotational phase of FIG. A, the operating angle of the valve is from point P as shown by the broken line in FIG. 16B. Also, the valve opening timing before is delayed, the valve closing timing after point P is advanced, and the overall control is made small. Therefore, the valve overlap of the intake and exhaust valves is reduced, the residual gas in the combustion chamber is reduced, and stable combustion improves fuel efficiency. Further, the intake valve charging efficiency is improved by the early valve closing timing control, and the low speed torque can be increased.

【0010】[0010]

【発明が解決しようとする課題】然し乍ら、先願に係る
装置にあっては、前述のように機関低回転域において
は、環状ディスク16の偏心制御によって吸気弁4の作
動角を小さく制御して、開弁時期は略同一として閉弁時
期を十分に早くなるようにして燃費の向上を図るように
なっているものの、各係合溝11,18が、図14及び
図15に示すように各フランジ部10,13の中心Xを
通る半径方向線F1,F2に沿って形成されているた
め、駆動軸1に対する環状ディスク16の偏心量も前記
係合溝11,18の長さに自ずと制約されてしまい、さ
らに大きな偏心量を得ることが困難である。この結果、
駆動軸1とカムシャフト2の回転位相差も前述にように
所定範囲に制限され、したがって、カムシャフト2の角
速度及びその変化量も制限的なものとなってしまう。し
たがって、機関運転状態に応じたバルブタイミング制御
精度を十分に向上させることが困難になる。
However, in the device according to the prior application, the operating angle of the intake valve 4 is controlled to be small by the eccentric control of the annular disc 16 in the low engine speed region as described above. Although the valve opening timings are substantially the same and the valve closing timings are set sufficiently early to improve the fuel consumption, the engagement grooves 11 and 18 are formed as shown in FIGS. 14 and 15, respectively. Since the flanges 10 and 13 are formed along the radial lines F1 and F2 passing through the centers X of the flanges 10 and 13, the eccentric amount of the annular disk 16 with respect to the drive shaft 1 is naturally restricted by the length of the engaging grooves 11 and 18. It is difficult to obtain a larger amount of eccentricity. As a result,
The rotational phase difference between the drive shaft 1 and the camshaft 2 is also limited to the predetermined range as described above, and therefore the angular velocity of the camshaft 2 and its change amount are also limited. Therefore, it becomes difficult to sufficiently improve the valve timing control accuracy according to the engine operating state.

【0011】[0011]

【課題を解決するための手段】本発明は、前記先願に係
る装置の実情に鑑みて案出されたもので、請求項1の発
明は、機関により回転駆動する駆動軸と、該駆動軸の外
周に相対回転自在に設けられて、外周に吸排気弁を開作
動させるカムを一体に有するカムシャフトと、該カムシ
ャフトの一端部に固定された第1フランジ部と、駆動軸
の所定部位に固定されて、第1フランジ部と対向する第
2フランジ部と、前記両フランジ部間に介装されて、駆
動軸の軸心に対して偏心動可能な環状ディスクと、該環
状ディスクの両側部に互いに反対方向に突設されて、前
記両フランジ部の外周側に夫々形成された細長い各係合
溝内に摺動自在に係入したピンと、前記環状ディスクを
機関運転状態に応じて偏心動させる駆動機構とを備えた
吸排気弁駆動制御装置において、前記各係合溝を、各フ
ランジ部の中心側から回転方向の前方位置へ傾斜状に形
成したことを特徴としている。
The present invention has been devised in view of the actual situation of the device according to the above-mentioned prior application, and the invention of claim 1 is a drive shaft which is rotationally driven by an engine, and the drive shaft. A camshaft which is provided on the outer periphery of the cam so as to be rotatable relative to the outer periphery of the camshaft and integrally has a cam for opening and closing the intake and exhaust valves; a first flange portion fixed to one end of the camshaft; and a predetermined portion of the drive shaft. A second flange portion that is fixed to the first flange portion and that faces the first flange portion; an annular disc that is interposed between the flange portions and is eccentrically movable with respect to the axis of the drive shaft; and both sides of the annular disc. Of the annular disc and the pin that are slidably engaged in the respective elongated engaging grooves formed on the outer peripheral sides of the flange portions, respectively. Intake and exhaust valve drive control with a drive mechanism for moving the heart In location, each of said engaging groove, and characterized in that it is formed in an inclined shape to the forward position in the rotational direction from the center side of the flange portions.

【0012】請求項2の発明によれば、前記各係合溝
を、円弧状に形成したことを特徴としている。
According to the invention of claim 2, each of the engaging grooves is formed in an arc shape.

【0013】[0013]

【作用】請求項1の発明によれば、例えば機関低回転域
においては、駆動軸の一回転毎に各フランジ部の各係合
溝内をディスクの各ピンが往復摺動して、該ディスクを
駆動軸の軸心に対して偏心動させるが、この際各係合溝
が各フランジ部の回転方向の前方位置へ傾斜状に形成さ
れているため、各ピンは各係合溝内での偏心方向への移
動速度が上昇し、カムによる吸排気弁の開弁位置付近で
各ピンの位置が最大進角状態になる。このため、駆動軸
とカムシャフトとの回転位相差が零になる時期が早くな
り、つまり、回転位相差が生じる時期が早くなって、駆
動軸に対するカムシャフトの角速度が先願に比較して上
昇すると共に、その変化量も大きくなる。これによっ
て、弁作動角を小さく制御した際の、環状ディスクの駆
動軸に対する偏心量を大きくすることなく、弁の作動角
の変換率を大きくすることが可能になる。
According to the first aspect of the present invention, for example, in the low engine speed range, each pin of the disk reciprocally slides in each engagement groove of each flange portion for each rotation of the drive shaft, and the disk is reciprocated. Is eccentrically moved with respect to the axis of the drive shaft. At this time, since each engagement groove is formed in an inclined shape to the front position in the rotational direction of each flange portion, each pin is The moving speed in the eccentric direction increases, and the position of each pin reaches the maximum advanced angle near the valve opening position of the intake / exhaust valve by the cam. Therefore, the time when the rotational phase difference between the drive shaft and the camshaft becomes zero becomes earlier, that is, the time when the rotational phase difference occurs becomes earlier, and the angular velocity of the camshaft with respect to the drive shaft rises compared to the previous application. As it does, the amount of change also increases. This makes it possible to increase the conversion rate of the valve operating angle without increasing the amount of eccentricity of the annular disk with respect to the drive shaft when the valve operating angle is controlled to be small.

【0014】また、請求項2の発明によれば、係合溝を
円弧状に形成したことにより、駆動軸に対するカムシャ
フトの回転位相差特性を直線的にすることが可能にな
り、これによって偏心時におけるカムのリフト波形特性
がリフト側の急激な立上りが防止されて、該リフト側と
ダウン側を左右対称形とすることができ、吸気弁等の不
整運動の発生を十分に抑制できる。
Further, according to the second aspect of the invention, since the engagement groove is formed in an arc shape, it is possible to make the rotational phase difference characteristic of the camshaft relative to the drive shaft linear, and thereby, the eccentricity. When the lift waveform characteristic of the cam at the time is prevented from abruptly rising on the lift side, the lift side and the down side can be made bilaterally symmetrical, and the occurrence of irregular movement of the intake valve or the like can be sufficiently suppressed.

【0015】[0015]

【実施例】図1〜図6は請求項1の発明に係る吸排気弁
駆動制御装置を4気筒の内燃機関の吸気側に適用した一
実施例を示し、図中21は機関のクランク軸からスプロ
ケットを介して回転力が伝達される駆動軸、22は該駆
動軸21の外周に相対回転可能に配置され、かつ駆動軸
21の中心Xと同軸上に設けられた複数のカムシャフト
であって、前記駆動軸21は、機関前後方向に延設され
ていると共に、軽量化等の要請から内部中空状に形成さ
れている。
1 to 6 show an embodiment in which the intake / exhaust valve drive control device according to the invention of claim 1 is applied to the intake side of a four-cylinder internal combustion engine. In FIG. A drive shaft 22 to which a rotational force is transmitted via a sprocket is a plurality of cam shafts which are arranged on the outer periphery of the drive shaft 21 so as to be rotatable relative to each other and coaxial with the center X of the drive shaft 21. The drive shaft 21 extends in the front-rear direction of the engine and is formed in an inner hollow shape in order to reduce the weight.

【0016】前記カムシャフト22は、長手方向の所定
位置で各気筒毎に軸直角方向から4分割されており、内
部軸方向に形成された挿通孔22a内に駆動軸21が挿
通している一方、図外のシリンダヘッド上端部に有する
カム軸受52,53に回転自在に支持されている。ま
た、図2に示すように外周の所定位置に1気筒当たり2
つの吸気弁23をバルブスプリング24のばね力に抗し
てバルブリフター25を介して開作動させる複数のカム
26…が一体に設けられている。
The camshaft 22 is divided into four parts in the longitudinal direction at a predetermined position in each cylinder from the direction perpendicular to the axis, and the drive shaft 21 is inserted into an insertion hole 22a formed in the internal axial direction. It is rotatably supported by cam bearings 52, 53 provided at the upper end of the cylinder head (not shown). In addition, as shown in FIG.
A plurality of cams 26 that open the intake valves 23 against the spring force of the valve springs 24 via the valve lifters 25 are integrally provided.

【0017】また、各カムシャフト22の一方側の分割
端部に第1フランジ部27が一体に固定されており、こ
の第1フランジ部27は、図4にも示すように外周面の
一部に先端縁が傾斜状の略台形状の膨出部27bを有し
ていると共に、中心側から外側に向けて回転方向(矢印
方向)の前方位置方向へ傾斜した細長い直線状の第1係
合溝30が形成されている。即ち、この第1係合溝30
は、第1フランジ部27の中心から半径方向に沿ってで
はなく、中心から回転方向の後方位置に偏倚した内周面
の所定部位から回転方向の前方に位置する前記膨出部2
7bの先端縁まで切欠形成されて、全体が回転方向へ傾
斜状に形成されている。つまり、カム26のリフト初期
(吸気弁23開き始め)位置で駆動軸21に対して進角
する方向へ傾斜状に形成されている。尚、前記第1フラ
ンジ部位27の外面円周方向に、後述の環状ディスク2
9一側面に摺接する突起面27aが一体に設けられてい
る。
Further, a first flange portion 27 is integrally fixed to one divided end portion of each cam shaft 22, and the first flange portion 27 is part of the outer peripheral surface as shown in FIG. Has a substantially trapezoidal bulge 27b with a slanted tip edge, and slender linear first engagement that is slanted from the center side to the outside in the forward position direction of the rotation direction (arrow direction) The groove 30 is formed. That is, the first engaging groove 30
The bulging portion 2 is located not in the radial direction from the center of the first flange portion 27 but in the rotational direction forward from a predetermined portion of the inner peripheral surface deviated from the center to the rearward position in the rotational direction.
A notch is formed up to the tip edge of 7b, and the whole is formed in an inclined shape in the rotation direction. That is, the cam 26 is formed in an inclined shape in a direction that advances the drive shaft 21 at the initial lift position (when the intake valve 23 starts to open). In addition, in the circumferential direction of the outer surface of the first flange portion 27, an annular disc 2 described later is formed.
9. A projecting surface 27a that is in sliding contact with one side surface is integrally provided.

【0018】また、カムシャフト22の第1フランジ部
27と、該第1フランジ部27に対向する他方のカムシ
ャフト22端部との間に、スリーブ28と環状ディスク
29が配置されている。
A sleeve 28 and an annular disc 29 are arranged between the first flange portion 27 of the camshaft 22 and the end portion of the other camshaft 22 facing the first flange portion 27.

【0019】前記スリーブ28は、小径な一端部がカム
シャフト22の前記他方側の分割端部内に回転自在に挿
入している共に、略中央位置に直径方向に貫通した連結
軸31を介して駆動軸21に連結固定されている。ま
た、スリーブ28の他端部には、前記第1フランジ部2
7と対向する第2フランジ部32が一体に設けられてい
る。この第2フランジ部32は、図5に示すように第1
フランジ部27と同様に外周面の一部に略台形状の膨出
部32bを有していると共に、外周側から回転方向(矢
印方向)の前方位置方向へ傾斜した細長い直線状の第2
係合溝33が形成されている。この第2係合溝33は、
第1係合溝30と反対側の位置に対称に形成されてい
る。つまり、回転方向の後方位置に存する膨出部32b
の先端から第2フランジ部32の中心側の回転方向の前
方位置方向へ傾斜状に形成されている。尚、第2フラン
ジ部32の外面には、環状ディスク29の他側面に摺接
する突起面32が一体に設けられている。
One end of the sleeve 28 having a small diameter is rotatably inserted into the other end of the camshaft 22 on the other side, and is driven through a connecting shaft 31 penetrating diametrically at a substantially central position. It is connected and fixed to the shaft 21. In addition, at the other end of the sleeve 28, the first flange portion 2
A second flange portion 32 that faces 7 is integrally provided. As shown in FIG. 5, the second flange portion 32 has a first
Similar to the flange portion 27, it has a substantially trapezoidal bulge 32b on a part of the outer peripheral surface, and has a slender linear second inclined from the outer peripheral side to the front position direction in the rotation direction (arrow direction).
An engagement groove 33 is formed. The second engagement groove 33 is
It is formed symmetrically at a position opposite to the first engagement groove 30. That is, the bulging portion 32b located at the rear position in the rotation direction.
Is formed in an inclined shape from the tip to the front position direction in the rotation direction on the center side of the second flange portion 32. A protrusion surface 32, which is in sliding contact with the other side surface of the annular disk 29, is integrally provided on the outer surface of the second flange portion 32.

【0020】前記環状ディスク29は、略ドーナツ板状
を呈し、内径がカムシャフト22の内径と略同径に形成
されて、駆動軸21の外周面との間に環状の隙間部Sが
形成されていると共に、小巾の外周部29aが環状ベア
リング34を介してディスクハウジング35の内周面に
回転自在に支持されている。また、直径線上の対向位置
に貫通形成された保持孔29b,29cには、各係合溝
30,33に係入する一対のピン36,37が設けられ
ている。この各ピン36,37は、互いにカムシャフト
軸方向へ逆向きに突出しており、基部が保持孔29b,
29c内に回転自在に支持されていると共に、先端部の
両側縁に図4及び図5に示すように前記係合溝30,3
3の対向内面30a,30b、33a,33bと当接す
る2面巾状の平面部36a,36b、37a,37bが
形成されている。
The annular disc 29 has a substantially toroidal plate shape, an inner diameter of which is substantially the same as the inner diameter of the camshaft 22, and an annular gap S is formed between the annular disc 29 and the outer peripheral surface of the drive shaft 21. In addition, the outer peripheral portion 29a having a small width is rotatably supported on the inner peripheral surface of the disk housing 35 via the annular bearing 34. In addition, a pair of pins 36 and 37 that engage with the engagement grooves 30 and 33 are provided in the holding holes 29b and 29c that are formed through the opposing positions on the diameter line. The pins 36 and 37 project in the opposite directions to each other in the axial direction of the camshaft, and the bases of the pins 36 and 37 have holding holes 29b and 29b.
29c is rotatably supported and the engaging grooves 30, 3 are formed on both side edges of the tip portion as shown in FIGS.
A flat surface portion 36a, 36b, 37a, 37b having a width across flats is formed so as to come into contact with the facing inner surfaces 30a, 30b, 33a, 33b of No. 3.

【0021】前記ディスクハウジング35は、図1〜図
3に示すように略円環状を呈し、外周の一端部に有する
ボス部35a及び該ボス部35aを貫通した枢支ピン3
8を支点として図2中上下に揺動自在に設けられている
一方、該ボス部35aと反対側の外周面にレバー部35
bが半径方向に沿って突設されている。また、このディ
スクハウジング35は、レバー部35bを介して駆動機
構39により揺動するようになっている。
As shown in FIGS. 1 to 3, the disk housing 35 has a substantially annular shape, and has a boss portion 35a at one end of the outer periphery and a pivot pin 3 penetrating the boss portion 35a.
8 is provided so as to be vertically swingable in FIG. 2, and the lever portion 35 is provided on the outer peripheral surface opposite to the boss portion 35a.
b is projected along the radial direction. The disc housing 35 is swung by a drive mechanism 39 via a lever portion 35b.

【0022】前記駆動機構39は、図2及び図6に示す
ようにシリンダヘッドの所定部位に対向して形成された
第1,第2シリンダ40,41と、該各シリンダ40,
41内から出没自在に設けられて各先端縁で前記レバー
部35aの円弧状先端を上下方向から挾持する油圧ピス
トン42及びプランジャ43と、前記第1シリンダ40
内の受圧室40aに油圧を給排して油圧ピストン42を
進退動させる油圧回路44とを備えている。
As shown in FIGS. 2 and 6, the drive mechanism 39 includes first and second cylinders 40 and 41 formed facing a predetermined portion of the cylinder head, and the respective cylinders 40 and 41.
41, a hydraulic piston 42 and a plunger 43, which are provided so as to be retractable from within 41 and hold the arcuate tip end of the lever portion 35a from above and below at each tip edge, and the first cylinder 40.
And a hydraulic circuit 44 for moving the hydraulic piston 42 forward and backward by supplying and discharging hydraulic pressure to and from the pressure receiving chamber 40a.

【0023】前記第2シリンダ41内に設けられたプラ
ンジャ43は、略有底円筒状に形成され、第2シリンダ
41内に弾装されたコイルスプリング45のばね力で進
出方向(レバー部方向)に付勢されている。
The plunger 43 provided in the second cylinder 41 is formed in a substantially cylindrical shape having a bottom, and the spring force of the coil spring 45 elastically mounted in the second cylinder 41 causes the plunger 43 to advance (toward the lever portion). Is urged by.

【0024】前記油圧回路44は、一端部がオイルパン
46内に、他端部が受圧室40aに夫々連通した油通路
47と、該油通路47のオイルパン46側に設けられた
オイルポンプ48と、該オイルポンプ48の下流側に設
けられた3ポート2位置型の電磁切換弁49とから主と
して構成されている。前記電磁切換弁49は、機関回転
数や吸入空気量等の信号に基づいて現在の機関運転状態
を検出するコントローラ50からのON−OFF信号に
よって流路を切り換え作動し、ON信号によって油通路
47全体を連通する一方、OFF信号によって油通路4
7とドレン通路51を連通するようになっている。
The hydraulic circuit 44 has an oil passage 47 having one end communicating with the inside of the oil pan 46 and the other end communicating with the pressure receiving chamber 40a, and an oil pump 48 provided on the oil pan 46 side of the oil passage 47. And a 3-port 2-position electromagnetic switching valve 49 provided on the downstream side of the oil pump 48. The electromagnetic switching valve 49 switches the flow passage by an ON-OFF signal from the controller 50 that detects the current engine operating state based on signals such as the engine speed and the intake air amount, and the oil passage 47 is activated by the ON signal. While communicating with the whole, the oil passage 4 by the OFF signal
7 and the drain passage 51 are communicated with each other.

【0025】以下、本実施例の作用について説明する。The operation of this embodiment will be described below.

【0026】機関高回転時には、斯かる運転状態を検出
したコントローラ50から電磁切換弁49にON信号が
出力されると、オイルポンプ48から油通路47に圧送
された作動油はそのまま受圧室40aに供給される。し
たがって、該受圧室40aの内圧上昇に伴い油圧ピスト
ン42が、図2,図6の実線で示すようにコイルスプリ
ング45のばね力に抗してレバー部35bを押し上げる
ので、ディスクハウジング35つまり環状ディスク29
の回転中心Yと駆動軸21の中心Xが合致する。この場
合は、環状ディスク29と駆動軸21との間に回転位相
は生じず、またカムシャフト22の中心と環状ディスク
29の中心Yも合致しているため、両者22,29間の
回転位相差も生じない。したがって、駆動軸21の回転
に伴い、連結軸31を介してスリーブ28が同期回転す
ると共に、第2フランジ部32側の係合溝33とピン3
7,環状ディスク29,ピン36,第1フランジ部27
側の係合溝30を介してカムシャフト22も同期回転す
る。したがって、吸気弁23は、図7Bの一点鎖線で示
すように弁作動角が大きくなって、閉弁時期が十分に遅
くなる。この結果、吸気充填効率が向上して高出力トル
クが得られる。
At the time of high engine speed, when an ON signal is output from the controller 50 which has detected such an operating state to the electromagnetic switching valve 49, the hydraulic oil pumped from the oil pump 48 to the oil passage 47 is directly sent to the pressure receiving chamber 40a. Supplied. Therefore, as the internal pressure of the pressure receiving chamber 40a rises, the hydraulic piston 42 pushes up the lever portion 35b against the spring force of the coil spring 45 as shown by the solid line in FIGS. 29
The rotation center Y of the drive shaft 21 and the center X of the drive shaft 21 coincide with each other. In this case, no rotational phase is generated between the annular disc 29 and the drive shaft 21, and the center of the camshaft 22 and the center Y of the annular disc 29 are also aligned, so the rotational phase difference between the two 22 and 29 is the same. Does not occur. Therefore, as the drive shaft 21 rotates, the sleeve 28 rotates synchronously via the connecting shaft 31, and the engagement groove 33 and the pin 3 on the second flange portion 32 side.
7, annular disc 29, pin 36, first flange portion 27
The camshaft 22 also rotates synchronously via the side engagement groove 30. Therefore, the intake valve 23 has a large valve operating angle as shown by the alternate long and short dash line in FIG. 7B, and the valve closing timing is sufficiently delayed. As a result, intake charging efficiency is improved and high output torque is obtained.

【0027】一方、機関低回転時には、コントローラ5
0から電磁切換弁49にOFF信号が出力されて、油通
路47の上流側を遮断すると共に、油通路47の下流側
とドレン通路51を連通する。このため、受圧室40a
内の作動油は、油通路47を逆流してドレン通路51か
らオイルパン46内に戻され、したがって、受圧室40
aの内圧低下に伴い油圧ピストン42がバルブスプリン
グ24及びコイルスプリング45のばね力でプランジャ
43を介して後退移動する。これにより、ディスクハウ
ジング35は、図2,図6の一点鎖線で示すようにプラ
ンジャ43により押し下げられて枢支ピン38を支点と
して下方へ揺動し、環状ディスク29の中心Yが駆動軸
21の中心Xと偏心する。したがって、第2フランジ部
32の係止溝33とピン37並びに第1フランジ部27
の係止溝30とピン36との摺動位置が駆動軸21の1
回転毎に往復移動し、環状ディスク29の角速度が変化
して不等角速度回転になる。
On the other hand, when the engine speed is low, the controller 5
An OFF signal is output from 0 to the electromagnetic switching valve 49 to shut off the upstream side of the oil passage 47 and connect the downstream side of the oil passage 47 and the drain passage 51. Therefore, the pressure receiving chamber 40a
The hydraulic oil inside flows back through the oil passage 47 and is returned from the drain passage 51 into the oil pan 46.
The hydraulic piston 42 moves backward through the plunger 43 by the spring force of the valve spring 24 and the coil spring 45 as the internal pressure of a decreases. As a result, the disc housing 35 is pushed down by the plunger 43 as shown by the alternate long and short dash line in FIGS. 2 and 6, and swings downward with the pivot pin 38 as the fulcrum, and the center Y of the annular disc 29 is located on the drive shaft 21. Eccentric with center X. Therefore, the locking groove 33 of the second flange portion 32, the pin 37, and the first flange portion 27.
The sliding position between the locking groove 30 and the pin 36 of the drive shaft 21 is 1
It reciprocates with each rotation, and the angular velocity of the annular disk 29 changes, resulting in unequal angular velocity rotation.

【0028】即ち、一方のピン37が係合溝33内を摺
動して駆動軸21の中心Xから離れ、他方のピン36が
係合溝30内を摺動して中心Xに接近すると、環状ディ
スク29は駆動軸21に対して角速度が大きくなり、カ
ムシャフト22の角速度も大きくなる。したがって、カ
ムシャフト22は、駆動軸21に対して2重に増速され
た状態になる。この結果、カムシャフト22及びカム2
6と駆動軸21との回転位相差は、図7Aに示すように
変化する。したがって、吸気弁23は、そのバルブリフ
ト特性が図7Bの実線で示すようにバルブリフトは一定
のまま弁作動角(バルブタイミング)が小さくなり、閉
弁時期が十分に早くなる。このため、吸気充填効率が向
上して低速トルクが向上する。
That is, when one pin 37 slides in the engagement groove 33 and moves away from the center X of the drive shaft 21, and the other pin 36 slides in the engagement groove 30 and approaches the center X, The annular disc 29 has a large angular velocity with respect to the drive shaft 21, and the angular velocity of the camshaft 22 also increases. Therefore, the camshaft 22 is in a state in which the speed is doubled with respect to the drive shaft 21. As a result, the cam shaft 22 and the cam 2
The rotation phase difference between 6 and the drive shaft 21 changes as shown in FIG. 7A. Therefore, as shown by the solid line in FIG. 7B, the intake valve 23 has a small valve operating angle (valve timing) while the valve lift is constant, and the valve closing timing is sufficiently advanced. Therefore, the intake charging efficiency is improved and the low speed torque is improved.

【0029】そして、斯かる環状ディスク29の偏心制
御時においては、前述のように各係合溝30,33が各
フランジ部27,32の回転方向へ相対的に傾斜状に形
成されているため、各ピン36,37は図8のNで示す
ように各係合溝30,33内での偏心方向への移動速度
が先願の場合Mに比較し十分に上昇し、カム26,26
による吸気弁23,23の開弁位置付近(N)での各ピ
ン36,37の位置が最大進角(θ2)状態になる。こ
のため、駆動軸21とカムシャフト22との回転位相差
が零になる時期が早くなり、換言すれば、両者21,2
2の回転位相差の生じる時期が早くなると共に、そのN
位置での回転位相差も十分に大きくなる(θ2)。した
がって、駆動軸21に対するカムシャフト22の角速度
が、前記先願に係るものよりも上昇すると共に、その変
化量も増加する。これによって、図7Bに示すように斯
かる弁作動角の小制御時のカムリフト中心角Qを、進角
側(矢印方向)にずらさなくてもよくなり、したがっ
て、図9に示すように環状ディスク29の偏心量との相
対関係で吸気弁23の作動角の変化率(α−β/α)を
先願(破線)に比較して大きくすることが可能になる。
During the eccentricity control of the annular disc 29, the engaging grooves 30, 33 are formed in a relatively inclined shape in the rotational direction of the flange portions 27, 32 as described above. As shown by N in FIG. 8, the moving speeds of the pins 36 and 37 in the eccentric direction in the engaging grooves 30 and 33 are sufficiently increased as compared with M in the case of the prior application, and the cams 26 and 26 are
The positions of the pins 36 and 37 near the valve opening positions (N) of the intake valves 23 and 23 due to are in the maximum advance (θ2) state. For this reason, the time when the rotational phase difference between the drive shaft 21 and the camshaft 22 becomes zero becomes earlier, in other words, the two 21, 21
When the rotational phase difference of 2 occurs earlier, the N
The rotational phase difference at the position also becomes sufficiently large (θ2). Therefore, the angular velocity of the camshaft 22 with respect to the drive shaft 21 increases more than that of the prior application, and the amount of change thereof also increases. As a result, as shown in FIG. 7B, it is not necessary to shift the cam lift central angle Q in the small control of the valve operating angle to the advance side (the direction of the arrow). Therefore, as shown in FIG. It is possible to increase the rate of change (α−β / α) of the operating angle of the intake valve 23 in comparison with the eccentricity amount of 29 as compared with the previous application (broken line).

【0030】要するに、環状ディスク29の偏心動によ
る弁作動角の進角効果と、角係合溝30,33の傾斜形
状による各ピン36,37の移動進角効果の両方の効果
によって、環状ディスク29の偏心量を大きくすること
なく、角速度の上昇及びその変化量を増加することが可
能となり、したがって、弁の作動角の変換率を先願のも
のよりも大きくすることができるのである。
In summary, both the effect of advancing the valve operating angle due to the eccentric movement of the annular disc 29 and the effect of advancing the movement of the pins 36 and 37 due to the inclined shapes of the angular engaging grooves 30 and 33 are provided. It is possible to increase the angular velocity and increase the amount of change without increasing the eccentricity of the valve 29. Therefore, the conversion rate of the valve operating angle can be made larger than that of the prior application.

【0031】この結果、吸気弁23の開弁時期は同心状
態と略同一であるが、閉弁時期をさらに進角することが
可能となり、バルブタイミング制御精度を一層向上させ
ることができる。
As a result, the valve opening timing of the intake valve 23 is substantially the same as the concentric state, but the valve closing timing can be further advanced, and the valve timing control accuracy can be further improved.

【0032】一方、逆に弁の作動角変換率を、先願と同
一に設定した場合には、その分環状ディスク26の偏心
量を小さくすることができるので、係合溝30,33に
対するピン36,37の摺動量をさらに減少できる。し
たがって、フリクションが低減して環状ディスク26や
駆動軸21等の機械的負荷を小さくすることができる。
On the other hand, conversely, when the valve operating angle conversion rate is set to be the same as in the prior application, the eccentric amount of the annular disk 26 can be reduced by that amount, so that the pin with respect to the engaging grooves 30 and 33 can be reduced. The sliding amount of 36 and 37 can be further reduced. Therefore, the friction is reduced and the mechanical load on the annular disk 26, the drive shaft 21 and the like can be reduced.

【0033】図10及び図11は請求項2の発明に係る
実施例を示し、各ピン36,37を円柱状に形成すると
共に、各フランジ部27,32の傾斜状の各係合溝3
0,33を回転方向に沿って円弧状に形成したものであ
る。
FIGS. 10 and 11 show an embodiment according to the invention of claim 2, in which the pins 36 and 37 are formed in a cylindrical shape and the flange-like engaging grooves 3 of the flange portions 27 and 32 are formed.
0 and 33 are formed in an arc shape along the rotation direction.

【0034】したがって、前記実施例と同様な作用効果
が得られることは勿論のこと、偏心制御時において、ピ
ン36,37が係合溝30,33の円弧面36a,36
b、37a,37bに沿って転動しながら環状ディスク
26を偏心させるため、図12に示すように駆動軸21
に対するカムシャフト22の回転位相差を直線的な特性
とすることが可能になる。これによって、環状ディスク
26の偏心時におけるカムリフト特性がリフト側の急激
な立上りが防止されて、該リフト側ダウン側が左右対称
形状になる。したがって、吸気弁23のジャンピングや
バウンド等の不整運動の発生を十分に抑制できる。斯か
る作用効果は、特に、低回転域から高回転域に切り換わ
った際に発生し易くなる不整運動の抑制に有効となる。
Therefore, it is of course possible to obtain the same effect as that of the above-mentioned embodiment, and the pins 36 and 37 are arcuate surfaces 36a and 36 of the engaging grooves 30 and 33 during the eccentricity control.
In order to make the annular disc 26 eccentric while rolling along b, 37a, 37b, as shown in FIG.
It is possible to make the rotational phase difference of the camshaft 22 with respect to the linear characteristic. As a result, the cam lift characteristic of the annular disc 26 when it is eccentric is prevented from abruptly rising on the lift side, and the lift side down side has a bilaterally symmetrical shape. Therefore, it is possible to sufficiently suppress the occurrence of irregular motion such as jumping or bouncing of the intake valve 23. Such action and effect are particularly effective in suppressing irregular movements that are likely to occur when the low-speed range is switched to the high-speed range.

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、各係合溝を回転方向の前方位置方向へ傾斜状に
形成したため、駆動軸に対するカムシャフトの角速度が
先願に比較して上昇すると共に、その変化量も大きくな
る。これによって、環状ディスクの駆動軸に対する偏心
量を大きくすることなく弁の作動角の変換率を大きくす
ることが可能になる。この結果、バルブタイミング制御
精度が向上し、例えば低回転域における燃焼効率をさら
に向上させることが可能になる。
As is apparent from the above description, according to the present invention, since each engaging groove is formed in a slanted shape in the front position direction of the rotation direction, the angular velocity of the cam shaft with respect to the drive shaft is compared with that of the previous application. As it rises, the amount of change also increases. This makes it possible to increase the conversion rate of the valve operating angle without increasing the amount of eccentricity of the annular disk with respect to the drive shaft. As a result, the valve timing control accuracy is improved, and it is possible to further improve the combustion efficiency, for example, in the low rotation speed range.

【0036】また、請求項2の発明によれば、駆動軸と
カムシャフトの回転位相差を直線的な特性とすることが
可能になる。このため、カムリフト波形が左右対称形に
なり、弁のジャンピング等の不整運動を抑制できる。
According to the second aspect of the invention, it is possible to make the rotational phase difference between the drive shaft and the cam shaft a linear characteristic. Therefore, the cam lift waveform becomes bilaterally symmetrical, and irregular movement such as jumping of the valve can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明に係る実施例の要部を示す一部
破断図。
FIG. 1 is a partially cutaway view showing a main part of an embodiment according to the invention of claim 1.

【図2】図1のA矢視図。FIG. 2 is a view on arrow A in FIG.

【図3】本実施例の要部を示す平面図。FIG. 3 is a plan view showing a main part of this embodiment.

【図4】図3のB−B線断面図。FIG. 4 is a sectional view taken along line BB of FIG.

【図5】図3のC−C線断面図。5 is a cross-sectional view taken along line CC of FIG.

【図6】本実施例の駆動手段を示す概略図。FIG. 6 is a schematic view showing a driving means of this embodiment.

【図7】Aは駆動軸とカムシャフトとの回転位相差の特
性図、Bは本実施例のカムによるバルブリフト特性図。
7A is a characteristic diagram of a rotational phase difference between a drive shaft and a camshaft, and B is a valve lift characteristic diagram of a cam according to the present embodiment.

【図8】本実施例における同心時と偏心時の係合溝位置
を示す説明図。
FIG. 8 is an explanatory view showing the positions of the engagement grooves at the time of concentricity and at the time of eccentricity in this embodiment.

【図9】本実施例の作動変換率を示す特性図。FIG. 9 is a characteristic diagram showing the operation conversion rate of the present embodiment.

【図10】請求項2の発明の実施例を示す図3のB−B
線断面図。
FIG. 10 is a BB of FIG. 3 showing an embodiment of the invention of claim 2;
FIG.

【図11】図3のC−C線断面図。11 is a cross-sectional view taken along line CC of FIG.

【図12】本実施例の駆動軸とカムシャフトとの回転位
相差の特性図。
FIG. 12 is a characteristic diagram of the rotational phase difference between the drive shaft and the cam shaft of this embodiment.

【図13】先願の吸排気弁駆動制御装置の断面図。FIG. 13 is a sectional view of the intake / exhaust valve drive control device of the prior application.

【図14】図13のD−D線断面図。14 is a cross-sectional view taken along the line DD of FIG.

【図15】図13のE−E線断面図。FIG. 15 is a sectional view taken along line EE of FIG.

【図16】Aは先願の装置における駆動軸とカムシャフ
トとの回転位相差の特性図、Bは本装置のバルブリフト
特性図。
16A is a characteristic diagram of a rotational phase difference between a drive shaft and a camshaft in the device of the prior application, and B is a valve lift characteristic diagram of the device.

【符号の説明】[Explanation of symbols]

21…駆動軸 22…カムシャフト 27…第1フランジ部 29…環状ディスク 30,33…係合溝 32…第2フランジ部 35…ディスクハウジング 36,37…ピン 39…駆動機構 21 ... Drive shaft 22 ... Cam shaft 27 ... 1st flange part 29 ... Annular disk 30, 33 ... Engagement groove 32 ... 2nd flange part 35 ... Disk housing 36, 37 ... Pin 39 ... Drive mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関により回転駆動する駆動軸と、該駆
動軸の外周に相対回転自在に設けられて、外周に吸排気
弁を開作動させるカムを一体に有するカムシャフトと、
該カムシャフトの一端部に固定された第1フランジ部
と、駆動軸の所定部位に固定されて、第1フランジ部と
対向する第2フランジ部と、前記両フランジ部間に介装
されて、駆動軸の軸心に対して偏心動可能な環状ディス
クと、該環状ディスクの両側部に互いに反対方向に突設
されて、前記両フランジ部の外周側に夫々形成された細
長い各係合溝内に摺動自在に係入したピンと、前記環状
ディスクを機関運転状態に応じて偏心動させる駆動機構
とを備えた吸排気弁駆動制御装置において、 前記各係合溝を、各フランジ部の中心側から回転方向の
前方位置へ傾斜状に形成したことを特徴とする内燃機関
の吸排気弁駆動制御装置。
1. A drive shaft rotatably driven by an engine, and a cam shaft integrally provided on the outer periphery of the drive shaft so as to be rotatable relative to the drive shaft, the cam shaft integrally opening and closing an intake / exhaust valve.
A first flange portion fixed to one end portion of the camshaft, a second flange portion fixed to a predetermined portion of the drive shaft and facing the first flange portion, and interposed between the both flange portions, An annular disc that can be eccentrically moved with respect to the axis of the drive shaft, and elongated engagement grooves formed on the outer peripheral sides of the flange portions that project from opposite sides of the annular disc in opposite directions. In an intake / exhaust valve drive control device comprising a pin slidably engaged with the drive shaft and a drive mechanism for eccentrically moving the annular disc in accordance with an engine operating state, The intake / exhaust valve drive control device for an internal combustion engine, wherein the intake / exhaust valve drive control device is formed so as to be inclined from the front to the front in the rotational direction.
【請求項2】 前記各係合溝を、円弧状に形成したこと
を特徴とする請求項1記載の内燃機関の吸排気弁駆動制
御装置。
2. The intake / exhaust valve drive control device for an internal combustion engine according to claim 1, wherein each of the engagement grooves is formed in an arc shape.
JP18501293A 1993-07-27 1993-07-27 Intake/exhaust valve drive control device of internal combustion engine Pending JPH0734829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18501293A JPH0734829A (en) 1993-07-27 1993-07-27 Intake/exhaust valve drive control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18501293A JPH0734829A (en) 1993-07-27 1993-07-27 Intake/exhaust valve drive control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0734829A true JPH0734829A (en) 1995-02-03

Family

ID=16163232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18501293A Pending JPH0734829A (en) 1993-07-27 1993-07-27 Intake/exhaust valve drive control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0734829A (en)

Similar Documents

Publication Publication Date Title
US7299775B2 (en) Variable valve operating device
JPH05202718A (en) Intake and exhaust valve driving control device for internal combustion engine
JP3355225B2 (en) Intake and exhaust valve drive control device for internal combustion engine
WO2007013460A1 (en) Variable valve gear of internal combustion engine
JP3094762B2 (en) Variable valve train for internal combustion engine
JPH0734829A (en) Intake/exhaust valve drive control device of internal combustion engine
JP2573228B2 (en) Valve timing adjustment device for internal combustion engine
JP3355211B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3386236B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3933229B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2601060Y2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3143272B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH09242520A (en) Intake and exhaust valve drive control device for internal combustion engine
JP3355850B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3347860B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0667808U (en) Intake and exhaust valve drive control device for internal combustion engine
JP3283905B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0734828A (en) Intake/exhaust valve drive control device of internal combustion engine
JPH0742516A (en) Intake/exhaust valve driving control device of internal combustion engine
JP3445421B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH0610630A (en) Intake and exhaust valve driving controller of internal combustion engine
JP3385809B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH08158827A (en) Intake/exhaust valve driving control device for internal combustion engine
JPH10252430A (en) Intake/exhaust valve driving control device for internal combustion engine
JPH0734823A (en) Intake/exhaust valve drive control device of internal combustion engine