JPH07233150A - Production of nicotinic acid - Google Patents

Production of nicotinic acid

Info

Publication number
JPH07233150A
JPH07233150A JP6026603A JP2660394A JPH07233150A JP H07233150 A JPH07233150 A JP H07233150A JP 6026603 A JP6026603 A JP 6026603A JP 2660394 A JP2660394 A JP 2660394A JP H07233150 A JPH07233150 A JP H07233150A
Authority
JP
Japan
Prior art keywords
nicotinic acid
picoline
separated
unreacted
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6026603A
Other languages
Japanese (ja)
Inventor
Yasunobu Asamidori
康信 朝緑
Isao Hashiba
功 橋場
Shinichiro Takigawa
進一朗 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP6026603A priority Critical patent/JPH07233150A/en
Priority to TW084101454A priority patent/TW266205B/zh
Priority to CN95100904A priority patent/CN1112921A/en
Publication of JPH07233150A publication Critical patent/JPH07233150A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for producing nicotinic acid by which beta-picoline is oxidized in the liquid phase without using an organic carboxylic acid having strong corrosiveness as a reactional medium. CONSTITUTION:This method for producing nicotinic acid is to oxidize beta-picoline in the liquid phase at a conversion rate of the beta-picoline into the nicotinic acid within 80% without using a solvent, separate nicotinic acid from the unreacted beta-picoline and an oxidation intermediate and recirculate the separated unreacted beta-picoline and oxidation intermediate as reactional raw materials in a method for oxidizing the beta-picoline in the presence of a catalyst comprising a metallic salt selected from cobalt, manganese and cerium and a bromine compound in the liquid phase with a gas containing oxygen and obtaining the nicotinic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は医薬品、農薬、飼料及び
有機化合物の中間体として有用なニコチン酸の製造方法
に関するものである。さらに詳しくは、β−ピコリンの
液相酸化によるニコチン酸の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing nicotinic acid which is useful as an intermediate for pharmaceuticals, agricultural chemicals, feeds and organic compounds. More specifically, it relates to a method for producing nicotinic acid by liquid phase oxidation of β-picoline.

【0002】[0002]

【従来の技術】β−ピコリンから液相酸化によりニコチ
ン酸を得る方法としては、マンガン、コバルト等の重金
属化物及び臭素化合物の存在下、酢酸等の有機カルボン
酸中で150℃以上、加圧下(数十atm以上)で行う
方法(特公昭34−9868号公報)、或いはジルコニ
ウム化合物、臭素化合物ならびに可溶性のコバルト塩、
マンガン塩から成る触媒の存在下、酢酸等の有機カルボ
ン酸中で150℃以上、加圧下(数十atm以上)で行
う方法(特公昭50−17068号公報)等が知られて
いる。
2. Description of the Related Art As a method for obtaining nicotinic acid from β-picoline by liquid phase oxidation, in the presence of a heavy metal compound such as manganese or cobalt and a bromine compound, in an organic carboxylic acid such as acetic acid at 150 ° C. or more under pressure ( Tens atm or more) (Japanese Patent Publication No. 34-9868), or zirconium compounds, bromine compounds and soluble cobalt salts,
A method (Japanese Patent Publication No. 50-17068) is known, which is carried out in an organic carboxylic acid such as acetic acid in the presence of a catalyst containing a manganese salt at 150 ° C. or higher and under pressure (tens of atm or more).

【0003】[0003]

【発明が解決しようとする課題】従来のβ−ピコリンか
ら液相酸化によりニコチン酸を得る方法では、上述した
ように、酢酸等の有機カルボン酸中で、150℃以上、
数十atm以上の圧力で行われる。高温、加圧下で酢酸
等の有機カルボン酸を使用する為に、反応媒体は強い腐
食性を有する。そのため反応に使用する反応器の材質は
極めて高価なチタンでなければならない。
In the conventional method for obtaining nicotinic acid from β-picoline by liquid phase oxidation, as described above, in an organic carboxylic acid such as acetic acid, 150 ° C or higher,
It is performed at a pressure of several tens atm or more. Since an organic carboxylic acid such as acetic acid is used under high temperature and pressure, the reaction medium has strong corrosiveness. Therefore, the material of the reactor used for the reaction must be extremely expensive titanium.

【0004】また溶媒として使用される有機カルボン酸
は、一般的には酢酸が使用されるが、経済性から見て酢
酸を再使用しなければならない。更に、液相酸化では水
が生成し、酢酸中に水が多くなると反応が遅く成るなど
の問題があるので、酢酸の再使用にあたり水を分離する
必要がある。酢酸と水は沸点が近くその分離には数十段
の精留塔が必要となり、設備費及びエネルギー費用が高
くなり、また、その腐食性も問題となる。
As the organic carboxylic acid used as the solvent, acetic acid is generally used, but from the economical aspect, acetic acid must be reused. Further, since liquid phase oxidation produces water and there is a problem that the reaction becomes slow when the amount of water in acetic acid is large, it is necessary to separate water when reusing acetic acid. The boiling points of acetic acid and water are close to each other, and a rectification column of several tens of stages is required for the separation, resulting in high equipment cost and energy cost, and its corrosive property is also a problem.

【0005】本発明者らは上述の従来技術の問題点を解
決すべく鋭意研究し本発明を完成するに至った。本発明
の目的は、強い腐食性を有する有機カルボン酸を反応溶
媒として用いず、無溶媒でβ−ピコリンを液相酸化する
ニコチン酸の製造方法の提供にある。
The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art and have completed the present invention. An object of the present invention is to provide a method for producing nicotinic acid in which β-picoline is liquid-phase oxidized without using an organic carboxylic acid having strong corrosiveness as a reaction solvent.

【0006】[0006]

【課題を解決するための手段】即ち、本発明はβ−ピコ
リンをコバルト、マンガン、セリウムから選ばれる金属
塩と臭素化合物よりなる触媒を使用して、酸素含有ガス
で液相酸化し、ニコチン酸を得る方法において、β−ピ
コリンのニコチン酸への転化率を80%以内に無溶媒で
液相酸化した後、ニコチン酸と未反応β−ピコリン及び
酸化中間体を分離し、未反応β−ピコリン及び酸化中間
体を再び反応原料として循環させることを特徴とするニ
コチン酸の製造方法に関する。
Means for Solving the Problems That is, according to the present invention, β-picoline is subjected to liquid-phase oxidation with an oxygen-containing gas using a catalyst consisting of a metal salt selected from cobalt, manganese, and cerium and a bromine compound to give nicotinic acid. In the method for obtaining the compound (1), liquid-phase oxidation of β-picoline to nicotinic acid within 80% without solvent is performed, and then nicotinic acid and unreacted β-picoline and an oxidation intermediate are separated, and unreacted β-picoline is separated. And a method for producing nicotinic acid, characterized in that the oxidation intermediate is circulated again as a reaction raw material.

【0007】以下、本発明を詳細に説明する。コバルト
金属塩としては、蟻酸コバルト、酢酸コバルト、オクチ
ル酸コバルト、ナフテン酸コバルト等の脂肪酸コバルト
塩、コバルトアセチルアセトナート等のキレート化合
物、塩化コバルト、臭化コバルト、沃化コバルト、炭酸
コバルト等のコバルト塩が挙げられる。マンガン金属塩
としては、蟻酸マンガン、酢酸マンガン、オクチル酸マ
ンガン、ナフテン酸マンガン等の脂肪酸マンガン塩、マ
ンガンアセチルアセトナート等のキレート化合物、塩化
マンガン、臭化マンガン、沃化マンガン、炭酸マンガン
等のマンガン塩が挙げられる。
The present invention will be described in detail below. Examples of the cobalt metal salt include fatty acid cobalt salts such as cobalt formate, cobalt acetate, cobalt octylate and cobalt naphthenate, chelate compounds such as cobalt acetylacetonate, cobalt such as cobalt chloride, cobalt bromide, cobalt iodide and cobalt carbonate. Examples include salt. Examples of the manganese metal salt include manganese formate, manganese acetate, manganese octylate, and manganese naphthenate, fatty acid manganese salts, chelate compounds such as manganese acetylacetonate, and manganese such as manganese chloride, manganese bromide, manganese iodide, and manganese carbonate. Examples include salt.

【0008】セリウム金属塩としては、蟻酸セリウム、
酢酸セリウム、オクチル酸セリウム、ナフテン酸セリウ
ム等の脂肪酸セリウム塩、セリウムアセチルアセトナー
ト等のキレート化合物、塩化セリウム、臭化セリウム、
沃化セリウム、炭酸セリウム等のセリウム塩が挙げられ
る。コバルト、マンガン、セリウムから選ばれる金属塩
の使用量には特に制限はないが、βーピコリンに対し
て、0.01〜20モル%、好ましくは2〜10モル%
が好ましい。
Cerium metal salts include cerium formate,
Fatty acid cerium salts such as cerium acetate, cerium octylate, and cerium naphthenate, chelate compounds such as cerium acetylacetonate, cerium chloride, cerium bromide,
Examples thereof include cerium salts such as cerium iodide and cerium carbonate. The amount of the metal salt selected from cobalt, manganese and cerium is not particularly limited, but is 0.01 to 20 mol%, preferably 2 to 10 mol% with respect to β-picoline.
Is preferred.

【0009】臭素化合物としては、特に制限ないが、例
えば臭化アンモニウム、臭化ナトリウム、臭化カリウ
ム、臭素、臭化水素等が挙げられる。臭素化合物の使用
量には特に制限はないが、βーピコリンに対して、0.
1〜20モル%、好ましくは1〜10モル%の範囲が良
い。反応圧力は系内が液相として存在しうるに充分な圧
力で良く、常圧〜400気圧、好ましくは10〜100
気圧の範囲が良い。
The bromine compound is not particularly limited, but examples thereof include ammonium bromide, sodium bromide, potassium bromide, bromine and hydrogen bromide. Although the amount of the bromine compound used is not particularly limited, it can be adjusted to 0.
The range is 1 to 20 mol%, preferably 1 to 10 mol%. The reaction pressure may be a pressure sufficient to allow the system to exist as a liquid phase, and may be normal pressure to 400 atm, preferably 10 to 100.
Good pressure range.

【0010】酸素含有ガスとしては、純酸素、酸素と他
の不活性ガスの混合物、例えば空気等が挙げられる。酸
素分圧としては常圧〜80気圧、好ましくは2〜50気
圧が好ましい。反応温度は、特に制限ないが、150〜
250℃、好ましくは170〜220℃の範囲が良い。
反応は回分でも連続でも可能である。
Examples of the oxygen-containing gas include pure oxygen, a mixture of oxygen and another inert gas, such as air. The oxygen partial pressure is preferably atmospheric pressure to 80 atm, preferably 2 to 50 atm. The reaction temperature is not particularly limited, but is 150-
The temperature is preferably 250 ° C, preferably 170 to 220 ° C.
The reaction can be carried out batchwise or continuously.

【0011】β−ピコリンは酸化されニコチン酸となる
と固体となるので、あまり転化率を高くすることは、固
体が析出するので反応の後処理の上で問題がある。この
ことよりβ−ピコリンの転化率は通常10〜80%、好
ましくは20〜60%の範囲である。未反応のβ−ピコ
リンや酸化反応の中間体(以下、酸化中間体と呼ぶ)
は、生成したニコチン酸を分離後、反応系に再循環すれ
ば酢酸等の溶媒を使用しないで、効率良くニコチン酸を
得るとが出来る。酸化反応の中間体としては、ピリジン
メタノール、ニコチン酸とピリジンメタノールより生成
するエステル、ピリジンアルデヒド等の酸化途中の化合
物が検出され、他にも若干の未同定な化合物が存在す
る。
Since β-picoline becomes a solid when it is oxidized to nicotinic acid, a too high conversion rate causes a problem in post-treatment of the reaction because the solid is precipitated. Therefore, the conversion rate of β-picoline is usually 10 to 80%, preferably 20 to 60%. Unreacted β-picoline or oxidation reaction intermediate (hereinafter referred to as oxidation intermediate)
If the produced nicotinic acid is separated and then recycled to the reaction system, nicotinic acid can be efficiently obtained without using a solvent such as acetic acid. As an intermediate of the oxidation reaction, compounds in the process of oxidation such as pyridinemethanol, an ester formed from nicotinic acid and pyridinemethanol, and pyridinealdehyde are detected, and there are some other unidentified compounds.

【0012】β−ピコリンのニコチン酸への反応速度
は、触媒量、酸素分圧、酸素の供給方法、反応温度等に
より変化するが、転化率のコントロールは経時的に分析
することにより容易に行える。反応で生成したニコチン
酸、酸化中間体及び未反応のβ−ピコリンの分離法につ
いて以下に述べる。
The reaction rate of β-picoline to nicotinic acid varies depending on the amount of catalyst, oxygen partial pressure, oxygen supply method, reaction temperature, etc., but the conversion rate can be easily controlled by analyzing over time. . The method for separating nicotinic acid produced by the reaction, the oxidation intermediate and unreacted β-picoline will be described below.

【0013】液相酸化した反応液を冷却すると白色固体
が析出するので、これを分離してニコチン酸が得られ
る。冷却温度は特に限定しないが通常は室温以下であ
り、特に0〜15℃の範囲が好ましい。析出したニコチ
ン酸の分離方法は特に限定しないが、ろ過、遠心分離、
デカンテーション等の分離方法が適用される。これを有
機溶媒で洗浄し、乾燥すればニコチン酸の結晶が得られ
る。用いる有機溶媒として、トルエン、ベンゼン及びキ
シレン等が挙げられる。更に、前記有機溶媒に変えて原
料のβ−ピコリンで洗浄すると、有機溶媒の分離工程が
いらないので製法の簡略化という面で望ましい。
When the liquid phase-oxidized reaction solution is cooled, a white solid is deposited, which is separated to obtain nicotinic acid. The cooling temperature is not particularly limited, but is usually room temperature or lower, and particularly preferably in the range of 0 to 15 ° C. The method for separating the precipitated nicotinic acid is not particularly limited, but filtration, centrifugation,
A separation method such as decantation is applied. This is washed with an organic solvent and dried to obtain a nicotinic acid crystal. Examples of the organic solvent used include toluene, benzene and xylene. Further, it is desirable to wash with β-picoline as a raw material instead of the above organic solvent, since the step of separating the organic solvent is not required, and the manufacturing method is simplified.

【0014】析出したニコチン酸を分離したβ−ピコリ
ンは、ニコチン酸、酸化中間体及び生成水を含む。β−
ピコリンを蒸留分離して再循環しても良いが、酸化中間
体も酸化するとニコチン酸となるので、水だけを共沸蒸
留で分離した後に再循環するのが好ましい。酢酸と異な
りβ−ピコリンは沸点が143℃と高いので、水の分離
は極めて容易である。使用した触媒の大半はろ液側に回
るので、水を除去したろ液を再循環させる場合は、必要
により触媒のロス分を補充すれば良い。
The β-picoline from which the precipitated nicotinic acid has been separated contains nicotinic acid, an oxidation intermediate and produced water. β-
Although picoline may be separated by distillation and recycled, the oxidation intermediate also becomes nicotinic acid when oxidized, so it is preferable to recycle after separating only water by azeotropic distillation. Unlike acetic acid, β-picoline has a high boiling point of 143 ° C., so that separation of water is extremely easy. Since most of the used catalyst turns to the filtrate side, when recirculating the filtrate from which water has been removed, the loss of the catalyst may be supplemented if necessary.

【0015】別の分離方法として以下の方法がある。β
ーピコリンは、水への溶解度が低いので、生成物にアル
カリ水溶液またはアルカリ土類水溶液を加え、ニコチン
酸を水溶性のアルカリ塩又はアルカリ土類塩として水層
に分離できる。アルカリ金属としてはナトリウム、カリ
ウム、アルカリ土類金属としてはカルシウム、マグネシ
ウム、バリウム等が使用できる。
As another separation method, there is the following method. β
Since picoline has a low solubility in water, it is possible to separate nicotinic acid into a water layer as a water-soluble alkali salt or alkaline earth salt by adding an alkaline aqueous solution or an alkaline earth aqueous solution to the product. Sodium and potassium can be used as the alkali metal, and calcium, magnesium, barium and the like can be used as the alkaline earth metal.

【0016】常温では水層とβ−ピコリンの比重の差が
小さく分液しにくいので、非水溶性の有機溶媒を加えて
分液した後、単離精製を行う。非水溶性の有機溶媒とし
てはβ−ピコリンと30℃以上沸点の異なる有機溶媒例
えば、塩化メチレン、トルエン、酢酸エチル等の有機溶
媒が好ましい。非水溶性の有機溶媒を加えて分液した水
溶液は、水層に混じっている少量のβ−ピコリンや抽出
時に加えた有機溶媒を共沸で除去する為、水の一部を留
出させた後、冷却する。そして、該冷却した水溶液に炭
酸ガスを導入し、触媒として用いた金属化合物を炭酸塩
として析出させ、該析出物を分離した後、ろ液をpH5
〜6にして析出する固体を分離してニコチン酸が得られ
る。pHの調整方法は酸を加えて行う。酸としては特に
限定しないが塩酸が通常用いられる。析出物の分離方法
は特に限定しないが、通常行われる手法、例えばろ過、
デカンテーション、遠心分離等が適用される。
At room temperature, the difference in specific gravity between the aqueous layer and β-picoline is small and it is difficult to perform liquid separation. Therefore, a water-insoluble organic solvent is added and liquid separation is performed, followed by isolation and purification. As the water-insoluble organic solvent, β-picoline and an organic solvent having a boiling point of 30 ° C. or higher, for example, an organic solvent such as methylene chloride, toluene and ethyl acetate are preferable. An aqueous solution obtained by adding a water-insoluble organic solvent and separating the solution was subjected to azeotropic removal of a small amount of β-picoline mixed in the aqueous layer and the organic solvent added at the time of extraction. Then, cool. Then, carbon dioxide gas was introduced into the cooled aqueous solution to precipitate the metal compound used as the catalyst as carbonate, and the precipitate was separated, and then the filtrate was adjusted to pH 5
The solid that precipitates to ~ 6 is separated to give nicotinic acid. The pH is adjusted by adding an acid. The acid is not particularly limited, but hydrochloric acid is usually used. The method for separating the precipitate is not particularly limited, but a commonly used method such as filtration,
Decantation, centrifugation, etc. are applied.

【0017】ニコチン酸をアルカリ抽出した後の有機層
は、水洗後、抽出溶媒を蒸留で分離した後、反応に再循
環させる。尚、得られたニコチン酸をβ−ピコリンで洗
浄し、乾燥後、精製ニコチン酸を得ることができ、この
洗浄液は原料として使用できる。以上述べたニコチン酸
の分離方法で、ニコチン酸をアルカリ塩またはアルカリ
土類塩として抽出する方法は、生成したニコチン酸のほ
ぼ100%を回収する事が出来る。冷却し、ニコチン酸
を析出させ分離する方法では、反応で生成するニコチン
酸の70〜90%の範囲で単離される。
The organic layer after alkali extraction of nicotinic acid is washed with water, the extraction solvent is separated by distillation, and then recycled to the reaction. The obtained nicotinic acid is washed with β-picoline and dried to obtain purified nicotinic acid, and this washing liquid can be used as a raw material. In the method of separating nicotinic acid described above, by extracting nicotinic acid as an alkali salt or an alkaline earth salt, almost 100% of the produced nicotinic acid can be recovered. In the method of cooling and precipitating and separating nicotinic acid, nicotinic acid produced in the reaction is isolated in the range of 70 to 90%.

【0018】再循環させる際の反応は、所定量のβ−ピ
コリンを加え、更に必要な分の触媒を追加して液相酸化
を行う。そして再び、以上述べた方法を繰り返して行う
ことにより、ニコチン酸を、効率良く得ることが出来
る。本発明方法で得られたニコチン酸について、より高
い純度が求められる場合は、再結晶やカラム等による一
般的な精製法により精製することは可能である。以下、
実施例により本発明を更に具体的に説明する。
The reaction at the time of recirculation is carried out by adding a predetermined amount of β-picoline and further adding a necessary amount of catalyst to carry out liquid phase oxidation. Then, by repeating the above-mentioned method again, nicotinic acid can be efficiently obtained. When higher purity is required for the nicotinic acid obtained by the method of the present invention, it can be purified by a general purification method such as recrystallization or column. Less than,
The present invention will be described in more detail by way of examples.

【0019】[0019]

【実施例】【Example】

実施例1 酢酸コバルト4水塩0.48g、酢酸マンガン4水塩
0.12g、47%、臭化水素水0.66g、β−ピコ
リン60gをオートクレーブに仕込み、空気で100a
tmとしたのち210℃で、3時間反応させた。
Example 1 0.48 g of cobalt acetate tetrahydrate, 0.12 g of manganese acetate tetrahydrate, 47%, 0.66 g of hydrogen bromide water, and 60 g of β-picoline were charged into an autoclave, and air was supplied to 100 a.
After setting to tm, it was reacted at 210 ° C. for 3 hours.

【0020】反応後、オートクレーブを冷却し、脱圧
後、内容物を取り出し、5℃に冷却し析出した白色結晶
をろ過し、更にトルエンで該結晶を洗浄後、乾燥して1
5gのニコチン酸を得た。得られたニコチン酸と、ろ液
の両方を分析したところβ−ピコリンの転化率は32%
で、β−ピコリンのニコチン酸への転化率は19%であ
った。一方、生成したニコチン酸を分離したろ液にβ−
ピコリン20gと酢酸コバルト4水塩0.16g、酢酸
マンガン4水塩0.4g、47%臭化水素水0.6gを
加え、オートクレーブに仕込み、空気で100気圧とし
た後、210℃で、3時間反応させた。
After the reaction, the autoclave was cooled and depressurized, the contents were taken out, cooled to 5 ° C., the precipitated white crystals were filtered, and the crystals were washed with toluene and dried to obtain 1
5 g of nicotinic acid was obtained. When both the obtained nicotinic acid and the filtrate were analyzed, the conversion rate of β-picoline was 32%.
The conversion rate of β-picoline to nicotinic acid was 19%. On the other hand, β-
20 g of picoline, 0.16 g of cobalt acetate tetrahydrate, 0.4 g of manganese acetate tetrahydrate and 0.6 g of 47% hydrogen bromide water were added and charged into an autoclave. Reacted for hours.

【0021】反応後、オートクレーブより反応液を抜き
出し、5℃に冷却して析出した白色結晶をろ過し、更
に、20gのβ−ピコリンで洗浄後乾燥して16.5g
のニコチン酸を得た。得られたニコチン酸と、ろ液の両
方を分析したところβ−ピコリンの転化率は34%で、
β−ピコリンのニコチン酸への転化率は20.8%であ
った。 実施例2 酢酸コバルト4水塩0.48g、酢酸マンガン4水塩
0.12g、47%臭化水素水0.66g、β−ピコリ
ン60gをオートクレーブに仕込み、空気で100at
mとしたのち210℃で、2時間反応させた。
After the reaction, the reaction solution was taken out from the autoclave, cooled to 5 ° C., the precipitated white crystals were filtered, washed with 20 g of β-picoline and dried to give 16.5 g.
Nicotinic acid was obtained. When both the obtained nicotinic acid and the filtrate were analyzed, the conversion rate of β-picoline was 34%,
The conversion rate of β-picoline to nicotinic acid was 20.8%. Example 2 0.48 g of cobalt acetate tetrahydrate, 0.12 g of manganese acetate tetrahydrate, 0.66 g of 47% hydrogen bromide water, and 60 g of β-picoline were charged in an autoclave, and air was added at 100 at.
After setting m, the reaction was carried out at 210 ° C. for 2 hours.

【0022】反応後、オートクレーブを冷却し、脱圧
後、反応生成物を取り出し、この反応生成物を水50g
と水酸化ナトリウム5gよりなる溶液に加え、更に塩化
メチレン50gを加えて良く攪拌した後、水層を分離し
た後、水層中に混在する少量のβ−ピコリンと塩化メチ
レンを分離する為、水の一部を留去した後、冷却した。
このβ−ピコリンと塩化メチレンを分離した水層に、ド
ライアイスを加えて触媒に用いた金属酸化物を炭酸塩と
して析出させた。この析出物をろ別し、得られたろ液を
塩酸にてpH6にし、ニコチン酸を析出させ、ろ別し
た。分離したニコチン酸を水で洗浄し、乾燥して、2
3.5gの固体を得た。β−ピコリンの転化率は32%
でニコチン酸の収率は29.6%であった。
After the reaction, the autoclave was cooled and depressurized, the reaction product was taken out, and the reaction product was added with 50 g of water.
And 5 g of sodium hydroxide, and 50 g of methylene chloride are added and stirred well. After separating the aqueous layer, a small amount of β-picoline and methylene chloride mixed in the aqueous layer are separated. After part of it was distilled off, it was cooled.
Dry ice was added to the aqueous layer from which β-picoline and methylene chloride were separated to precipitate the metal oxide used as a catalyst as a carbonate. The precipitate was filtered off, the obtained filtrate was adjusted to pH 6 with hydrochloric acid to precipitate nicotinic acid, and then filtered. The separated nicotinic acid is washed with water, dried and
3.5 g of solid was obtained. Conversion rate of β-picoline is 32%
The yield of nicotinic acid was 29.6%.

【0023】一方、生成したニコチン酸を分離した塩化
メチレン溶液を水で洗浄した後、精留塔により塩化メチ
レンを留去し、更にβ−ピコリンの一部を水と共沸分離
した後、ボトムを反応に再使用した。即ち、得られたボ
トムに更に、β−ピコリン20g、酢酸コバルト4水塩
0.48g、酢酸マンガン4水塩0.12g47%臭化
水素水0.66gを加えてオートクレーブに仕込み、空
気で100atmとしたのち210℃で、3時間反応さ
せた。
On the other hand, the methylene chloride solution from which the produced nicotinic acid has been separated is washed with water, the methylene chloride is distilled off by a rectification column, and a part of β-picoline is azeotropically separated from water, and then the bottom is removed. Was reused in the reaction. That is, 20 g of β-picoline, 0.48 g of cobalt acetate tetrahydrate, 0.12 g of manganese acetate tetrahydrate and 0.66 g of 47% hydrogen bromide water were further added to the obtained bottom, and the mixture was charged into an autoclave to 100 atm by air. After that, it was reacted at 210 ° C. for 3 hours.

【0024】反応後、オートクレーブを冷却し、脱圧
後、内容物を取り出し、5℃に冷却し析出した白色結晶
をろ過し、更にβ−ピコリンで洗浄して、乾燥して25
gの結晶を得た。
After the reaction, the autoclave was cooled and depressurized, the contents were taken out, cooled to 5 ° C., the precipitated white crystals were filtered, washed with β-picoline, and dried to 25
g crystals were obtained.

【0025】[0025]

【発明の効果】本発明は、酢酸を溶媒として用いないの
で、反応装置に高価なチタンを使用せず、汎用なステン
レス等が使用でき、酢酸回収も要らない。従って装置費
が酢酸を用いる場合に比して格段に安くなる。
According to the present invention, since acetic acid is not used as a solvent, expensive titanium is not used in the reaction apparatus, general-purpose stainless steel or the like can be used, and acetic acid recovery is not required. Therefore, the equipment cost is much lower than that when acetic acid is used.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 β−ピコリンをコバルト、マンガン及び
セリウムから選ばれる金属塩と臭素化合物よりなる触媒
を使用して、酸素含有ガスで液相酸化し、ニコチン酸を
得る方法において、β−ピコリンのニコチン酸への転化
率を80%以内に無溶媒で液相酸化した後、生成したニ
コチン酸と未反応β−ピコリン及び酸化中間体を分離
し、未反応β−ピコリン及び酸化中間体を再び反応原料
として循環させることを特徴とするニコチン酸の製造方
法。
1. A method of liquid-phase oxidizing β-picoline with an oxygen-containing gas using a catalyst comprising a metal salt selected from cobalt, manganese, and cerium and a bromine compound to obtain nicotinic acid. After liquid-phase oxidation without conversion to nicotinic acid within 80% without solvent, the produced nicotinic acid and unreacted β-picoline and oxidized intermediate are separated, and unreacted β-picoline and oxidized intermediate are reacted again. A method for producing nicotinic acid, which comprises circulating as a raw material.
【請求項2】 ニコチン酸と未反応β−ピコリン及び酸
化中間体の分離法が、液相酸化した反応液を冷却し、析
出したニコチン酸を分離し、分離したニコチン酸を有機
溶媒で洗浄し、該洗浄液と分離後の回収液を併せ、有機
溶媒と未反応β−ピコリン及び酸化中間体を分離した
後、更に、分離した未反応β−ピコリン及び酸化中間体
に含まれる水を分離して、再び反応原料とする方法であ
る請求項1記載のニコチン酸の製造方法。
2. A method for separating nicotinic acid from unreacted β-picoline and an oxidation intermediate is such that a liquid-phase-oxidized reaction solution is cooled, precipitated nicotinic acid is separated, and the separated nicotinic acid is washed with an organic solvent. The washing solution and the recovered solution after the separation are combined to separate the organic solvent and the unreacted β-picoline and the oxidation intermediate, and further the water contained in the separated unreacted β-picoline and the oxidation intermediate is separated. The method for producing nicotinic acid according to claim 1, which is a method of using the reaction raw material again.
【請求項3】 ニコチン酸と未反応β−ピコリン及び酸
化中間体の分離法が、液相酸化した反応液を冷却し、析
出したニコチン酸を分離し、分離したニコチン酸をβ−
ピコリンで洗浄し、該洗浄液と分離後の回収液を併せ、
更に、この併せたβ−ピコリン及び酸化中間体に含まれ
る水を分離して、再び反応原料とする方法である請求項
1記載のニコチン酸の製造方法。
3. A method of separating nicotinic acid from unreacted β-picoline and an oxidation intermediate is such that a liquid-phase-oxidized reaction liquid is cooled, precipitated nicotinic acid is separated, and separated nicotinic acid is separated into β-
Wash with picoline, combine the washing solution and the recovered solution after separation,
The method for producing nicotinic acid according to claim 1, which is a method in which the water contained in the combined β-picoline and the oxidation intermediate is separated and used as a reaction raw material again.
【請求項4】 ニコチン酸と未反応β−ピコリン及び酸
化中間体を分離法が、液相酸化した反応液にアルカリ金
属又はアルカリ土類金属の水溶液を加え、水溶性ニコチ
ン酸の金属塩とし、更に非水溶性の有機溶媒を加え攪拌
後、有機層と水層を分離し、水層に炭酸ガスを導入し、
触媒の金属化合物を炭酸塩として析出させ、該析出物を
分離し、この分離液を酸で中和しニコチン酸を得、分離
した有機層は水で洗浄後、有機層中の未反応のβ−ピコ
リン及び酸化中間体を蒸留で回収し、再び反応原料とす
る方法である請求項1記載のニコチン酸の製造方法。
4. A method for separating nicotinic acid from unreacted β-picoline and an oxidized intermediate is to add a water solution of an alkali metal or an alkaline earth metal to a liquid phase-oxidized reaction solution to obtain a water-soluble nicotinic acid metal salt, After further adding a water-insoluble organic solvent and stirring, the organic layer and the aqueous layer are separated, and carbon dioxide gas is introduced into the aqueous layer.
The metal compound of the catalyst is precipitated as carbonate, the precipitate is separated, the separated liquid is neutralized with acid to obtain nicotinic acid, and the separated organic layer is washed with water, and the unreacted β in the organic layer is removed. -The method for producing nicotinic acid according to claim 1, which is a method in which picoline and an oxidized intermediate are recovered by distillation and used again as a reaction raw material.
【請求項5】 非水溶性の有機溶媒がβ−ピコリンより
沸点が30℃以上高い溶媒である請求項4記載のニコチ
ン酸の製造方法。
5. The method for producing nicotinic acid according to claim 4, wherein the water-insoluble organic solvent is a solvent having a boiling point higher than that of β-picoline by 30 ° C. or more.
JP6026603A 1994-02-24 1994-02-24 Production of nicotinic acid Pending JPH07233150A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6026603A JPH07233150A (en) 1994-02-24 1994-02-24 Production of nicotinic acid
TW084101454A TW266205B (en) 1994-02-24 1995-02-17
CN95100904A CN1112921A (en) 1994-02-24 1995-02-24 Preparation of niacin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026603A JPH07233150A (en) 1994-02-24 1994-02-24 Production of nicotinic acid

Publications (1)

Publication Number Publication Date
JPH07233150A true JPH07233150A (en) 1995-09-05

Family

ID=12198098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026603A Pending JPH07233150A (en) 1994-02-24 1994-02-24 Production of nicotinic acid

Country Status (3)

Country Link
JP (1) JPH07233150A (en)
CN (1) CN1112921A (en)
TW (1) TW266205B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041457A1 (en) * 2004-10-01 2006-04-20 Invista Technologies S.À.R.L. Process for producing heteroaromatic carboxylic acids
US7560566B2 (en) 2004-10-01 2009-07-14 Invista North America S.A.R.L. Process for producing heteroaromatic carboxylic acids
EP2428505A2 (en) 2010-09-13 2012-03-14 Jubilant Life Sciences Limited Process For Producing Pyridine Carbocyxlic Acids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041457A1 (en) * 2004-10-01 2006-04-20 Invista Technologies S.À.R.L. Process for producing heteroaromatic carboxylic acids
JP2008514696A (en) * 2004-10-01 2008-05-08 インヴィスタ テクノロジー エスアエルエル Process for producing heterocyclic aromatic carboxylic acids
US7560566B2 (en) 2004-10-01 2009-07-14 Invista North America S.A.R.L. Process for producing heteroaromatic carboxylic acids
EP2428505A2 (en) 2010-09-13 2012-03-14 Jubilant Life Sciences Limited Process For Producing Pyridine Carbocyxlic Acids
US8575350B2 (en) 2010-09-13 2013-11-05 Jubilant Life Sciences Ltd Process for producing pyridine carboxylic acids

Also Published As

Publication number Publication date
CN1112921A (en) 1995-12-06
TW266205B (en) 1995-12-21

Similar Documents

Publication Publication Date Title
US4286101A (en) Process for preparing terephthalic acid
US6686482B2 (en) Process for preparing piperonal
US5095135A (en) Process for the preparation of high-purity naphthalenecarboxylic acid esters
US5336779A (en) Method of producing formylimidazoles
EP0666108B1 (en) Process for recovering and re-using cobalt and tungsten from reaction liquors
JPH07233150A (en) Production of nicotinic acid
JP2001039913A (en) Purification of binaphthol
JPS61106535A (en) Recovery of benzoic acid
JPH0564940B2 (en)
JPH03275638A (en) Production of 3,3',5,5'-tetramethyl-4,4'-biphenol
US5840970A (en) Process for the purification of naphthalenedicarboxylic acid
JP4439964B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
US3829432A (en) Process for the oxidation of quinoline
JP2664467B2 (en) Purification method of biphenyldicarboxylic acid
JP2000095728A (en) Production of sorbic acid
EP0082344B1 (en) Process for preparing beta-hydroxy-beta-methylglutaric acid
US6395903B1 (en) Process for the preparation of 2,3-pyridinedicarboxylic acids
JPH07188175A (en) Production of quinaldinic acid
JP2005187414A (en) Method for producing 2-methyl-1,4-naphthoquinone
JP3831005B2 (en) Process for producing benzopyridine having a carboxyl group
JP3841886B2 (en) Process for producing 1,2-indanediols
JPS6293249A (en) Production of 2,6-di 2-hydroxy-2-propyl naphthalene
JPS622576B2 (en)
JPH03279347A (en) Method for purifying 4,4'-diphenyldicarboxylic acid
JPH01121237A (en) Production of aromatic carboxylic acid