JPH07232954A - Saline resistant concrete and desalinized sand - Google Patents

Saline resistant concrete and desalinized sand

Info

Publication number
JPH07232954A
JPH07232954A JP5974594A JP5974594A JPH07232954A JP H07232954 A JPH07232954 A JP H07232954A JP 5974594 A JP5974594 A JP 5974594A JP 5974594 A JP5974594 A JP 5974594A JP H07232954 A JPH07232954 A JP H07232954A
Authority
JP
Japan
Prior art keywords
resin
sand
mixed
sea sand
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5974594A
Other languages
Japanese (ja)
Inventor
Tomoji Tanaka
友爾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5974594A priority Critical patent/JPH07232954A/en
Publication of JPH07232954A publication Critical patent/JPH07232954A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • C04B41/5015Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance

Abstract

PURPOSE:To produce a concrete formed body excellent in durability, etc., while effectively utilizing sea sand by applying a specified pretreatment to sea sand to form a coated sea sand increased in resistance to saline soln., mixing the coated sea sand with cement, a fibrous material, ballast, etc., and curing the mixture. CONSTITUTION:In the production of concrete formed body, the sea sand is mixed with a water soluble substance such as a synthetic resin having hydrating property, sodium alginate, seaweed certain protein, case in, gelatin, montan wax, chitosan, CMC and starch and dried. Then, the dried substance is treated with a polyvinyl low cyclized resin soln. to form a cured film on the surface of the sand, then the cement, triethanolamine, the fibrous material, the ballast, etc., are mixed to the result, and moreover, acetone, formalin, urotropin are mixed and allowed to react to form a low polyvinyl ketone, and urea, melamine, etc., are added at need. The resultant material is injected into a metallic mold or wood mold in which a reinforcing bar, steelwork, lightweight net shape treated previously with resin are combined and inserted, and then cured to obtain a concrete formed article.

Description

【発明の詳細な説明】 この発明は、国内の河川の砂が少なくなり、建築ブーム
でコンクリートの需要が多くなった為、コンクリート成
型に多量の海砂を使用する事になり、その為、この海砂
に含まれた塩分が鉄筋、鉄骨を浸蝕して溶解した鉄筋の
容積膨張による切裂が生じ、コンクリーシの耐久性を1
0年以上も短縮する欠点を改善する事を目的として開発
されたものである。即ち、海砂の塩分付着物を除去する
には、多量の水洗いが必要であり、その為の装置が必要
であり、これらを解決する為、本発明はアルギン酸ソー
ダーに防錆剤の入った水液で海砂を浸漬して脱水したも
のを、ポリビニールアルコールにベンツアルデヒドや他
のアルデヒド又はケトンを混合した、低環化樹脂液に浸
漬して脱水し、天日乾燥した海砂を作る時は、海砂の表
面を環化樹脂がアルギン酸ソーダー膜を硬化せしめて、
硬い皮膜を形成し、放置するに従って環化度の高い皮膜
を形成する。次に、セメントは、PH値が12以上のア
ルカリ性であるから、このセメントを触媒としてアセト
ン、フォルマリン、ウルトラピンを混合したものを塾成
して、前記、皮膜のある海砂を砂利やプラスチックス屑
繊維と混合して、必要に応じてフェノール、尿素、メラ
ミン、ポリエチレン、酢酸ビニール、ポリビニールアル
コール、アニリン、水を添加して余剰のフォルマリン水
を反応せしめる。又、寒気の時には、生糸屑をカルシウ
ムに溶解したセラシンカルシウム液やキトサン液を添加
する時は、氷結を防ぐ効果がある。この様なセメント混
合物を金型やプラスチック型に入れて必要に応じて表面
を樹脂加工した鉄筋や鉄骨を入れて硬化せしめたもの
に、重亜燐酸ソーダーの液を含浸せしめたものを水洗い
して乾燥せしめたものは、従来20年で切裂するコンク
リート成型物を40年以上に上昇する事が出来る特徴が
ある。更に、鉄筋、鉄骨の表面に硝子紙を合成ゴムやラ
テックスで塗着したものに前記皮膜を形成したものは、
硝子繊維から溶出する硅酸イオンによって鉄イオンの溶
出を防ぐ効果がある。特に、ポリビニールアルコール硅
酸水和液を塗布したものは良い結果を得る。ここに示
す。ポリビニールケトンは、環化樹脂を形成し、セメン
シ砂や他の共雑物と接着性を発揮し、耐水効果を発揮す
る。特に、セメントの様な強アルカリ性に於ける触媒効
果と硬化を急速に促進するので、耐水性が強くなる。
又、発泡スチールや他の発泡樹脂を添加混合する時は、
アセトンに溶解し複雑な接着性を発揮するが、ポリビニ
ールケトンの縮合物の形成の阻害ともなるので、前処理
した皮膜形成によってこの溶解を防ぐ事も出来るがプラ
スチックを入れると可燃性となるので、30%以上の添
加は問題が残る。又、このアセトン、フォルマリン液の
アルデビト濃度を高めるにはウルトラピンやパラアルデ
ヒドが添加され、余剰のアルデヒドが存在する方法が一
般使用に適している。この余剰の処理としては、疎水系
のPET屑やポリアミド屑を溶解したフェノール液、塩
化アルミニウムを触媒として重合したスチロールモノマ
ー液やポリエチレン粉を分散させたものが使用される
時、フェノールとフォルマリンが樹脂化し、又、尿素や
メラミン、アニリン、ポリビニールアルコールも縮合し
て樹脂化し、結着力を高めるが、この樹脂も完全硬化し
て縮合するとセメンシ本来の結合に預かるOH基と縮合
物とが別個の鍵で結合する結果となり、OH基に基ずく
水分の出入れは部分的に阻害される結果、鉄筋、鉄骨の
腐蝕を阻止する結果となり、更に、前処理した皮膜形成
の鉄筋、鉄骨は腐蝕性が阻害されているので、鉄イオン
の溶解速度は遅延する結果となる。 【図3】 又、海砂中の塩分はポリビニールアルコールの環化樹脂
によって、砂表面の塩分共に皮膜化されるが、この樹脂
にもセメントの結合性が必要なOH基のある樹脂面が必
要であり、その為にも低環化樹脂がより効果的である。
この様にしたものを剥離性の金型やプラスチック型に注
入した生コンクリートを放置して硬化せしめた後、この
型から取り出し、水洗いして、乾燥したものを、0.1
%以下の重亜燐酸ソーダーで処理して、過剰の遊離カル
シウムを反応せしめて燐酸カルシウム結合を行わしめる
時は、白色のシミが失われるばかりでなく老化を防ぐ効
果がある。キトサンを溶解する溶媒としては、フェノー
ル液を使用したものでもよい。トリエタノールアミン
は、アルカリ度の調整用に添加するが、ウルトラピンの
添加も同様の効果がある。鉄筋や鉄骨は表面加工として
アルミナイズしたものが使用されるが、安価なコーティ
ング剤としてメチル繊維素やエチル繊維素が使用される
が、メチル繊維素は水に溶解したものを使用するのでよ
り安価であり、100℃で硬化するのでコバルトやカル
シウムイオンの存在下で、鉄筋や鉄骨を加熱したものを
浸漬すると、簡単に硬い皮膜が形成されるので操作が簡
単であり、この表面を更に、ポリビニール環化樹脂液で
コーティングする時は、耐水性が強化されOH基が残留
するのでコンクリートとの結合性は充分に出来るので便
利である。又、フェノール樹脂や尿素メラミン樹脂やア
ニリン樹脂を形成せしめる時は、縮合作用によって硬化
すると収縮が激しくなるが、ポリビニールベンツアルデ
ヒド樹脂を添加したものは弾性が生ずるので収縮性は少
ない。又、コンクリートの硬化物を重亜燐酸ソーダー水
の入ったポリエステル樹脂乳化液やポリエチレン酢酸ビ
ニールの乳化液に浸漬したものを引上げて乾燥せしめた
ものは、曲げ強度圧縮強度が20%以上向上する。又、
無水塩化アルミニウムを触媒としてスチレンモノマーに
投入し撹拌し、冷却しながら反応せしめる時は、塩化ア
ルミニウムの付加した低縮合のポリスチロールが出来
る。これに、予めトルエンやキシレンやシンナーで溶解
したポリスチロールの産廃物を入れると、溶解した塩化
アルミのスチロール接着剤が出来る。これをボリビニー
ルケトン液に入れると、アセトンによく溶解するから接
合性の強化物が得られる。又、安価な脱塩として、海砂
を塩化クロームアクリル酸に浸積して乾燥したものも使
用される。又、ラテックスを添加する時は、アンモニア
水やメタノールアミン水で急激な収縮を防ぐと良い。
又、アセトンにアクリルゴムを溶解しフェノールを入れ
てアルデヒドで混合樹脂をセメント内に作る事も出来る
が、フェノールにポリアミド66を加熱融解したものを
アセトンに溶解して、アルデヒドを加えて縮合せしめた
ものはより複雑な縮合をする。又、セメントに砂を混合
する時は、ジルコニウム、ハフニウム砂20〜60%の
ものを10〜20%添加したコンクリートは縮合性が良
く、耐地震性が強くなり、橋梁や基礎コンクリートに適
している。これは、硅酸縮合をより疎水系とし、ヒビ割
れが少ない。この様に、この発明は、コンクリートの海
砂の塩分がどうしても簡単な水洗いによって脱塩水出来
ないのでコンクリート中に樹脂原料を混合する事によっ
て反応せしめて、水分の移動性を阻害する事によって鉄
筋類の金属の腐蝕を防ぎ、又、鉄筋自体も耐水皮膜を形
成する事によって、鉄イオンの溶解に伴う膨張性を止め
る処理を施す事によって、コンクリートのヒビ割れやコ
ンクリートの耐水強度を増大せしめる事は、そのコンク
リーシの寿命を拡大し、20年以上の耐水性の増加を計
る事が出来、特に雪の多い地方で除雪様に散布する塩化
カルシウムに対して、より多くの鉄筋の腐蝕を促進する
欠点を改善し、耐水強度のを20%も向上する効果があ
り、重亜燐酸アルカリの表面処理によってコンクリート
の締まりを増大するので、芒硝や石膏の生成による風化
が抑制されるばかりりでなく、酸性雨水性に対しても耐
酸が改善されるから産業上有用な発明である。この発明
の実施要領を図面で説明すると、次の如くである。 【図1】はコンクリート加工の工程図を示し、図に於い
て弗化アルミニウム、弗化カルシウム、金属アルミニウ
ム浴槽(1)中に鉄筋、鉄骨を篭(2)に入れてレール
(4)に吊り下げた篭(2)をリフト(5)で上下吊り
降ろして、浴槽(1)中に浸漬し(30分間)て表面に
アルミ鉄合金の皮膜形成を確認して引上げ表面を掃取
り、アルミナイズする。次に、アルギニン酸ソーダー水
やメチル繊維素水のCMC、CMS水に硬化剤と防錆剤
を入れた水液中に加温した鉄筋鉄骨(A)を入れて浸漬
した鉄筋鉄骨をベルトコンベアー(8)で乾燥炉(7)
に入れて30〜100℃で加温して、送風して乾燥す
る。次にポリビニールアルコールアルデヒド低環化樹脂
液に浸漬し5分〜10分で引上げて乾燥室(10)に入
れて乾燥して仕上る。メチル繊維素水の場合は、鉄筋鉄
骨を70〜100℃として、メチル繊維素液中浸漬する
と、1分くらいの浸漬で皮膜を形成する。この下塗りの
皮膜は、この他、CMC、CMSでも同様に行われ、
又、ゼラチンカゼイン、セラシン、キトサンも同様に行
われる、二次的にポリビニールアルコールの環化樹脂で
硬質の皮膜を形成せしめる 次に出来た皮膜付き鉄筋鉄骨(A’)を、予め組み込ん
で成型し、コンクリートの型枠(11)に予め入れて、
次に、混合した生コンクリート(12)をこの型枠(1
1)中にポンプ(9a)によりゴムホース(9a’)に
よって注入する。この生コンクリート(12)は、ベル
トコンベアー(13a)(14a)によってセメント、
防塩砂、砂利、廃コンクリート砕石等を搬送して混合ミ
キサー(12a)中に導入し、ホッパー(15a)(1
6a)(17a)(18a)からポリビニールアルコー
ルアルデヒドの低環化樹脂水を導入して混合し、ミキサ
ーの底部弁(11a)から混合した生コンクリート(1
2)を型枠(11)中にポンプ(9a)を通じて圧入す
る。この型枠(11)を2〜3日放置して型枠(11)
を取り外して硬化したコンクリート(12b)を重亜燐
酸ソーダー液又は、硅酸アルカリ水に浸漬して引上げ、
水槽(20)中に入れて水洗いして仕上て、脱水乾燥す
る。 【図2】は、本環化樹脂製造の工程図を示し、オートク
レーブ(1c)中にパイプ(2c)から水を入れてホッ
パー(3c)からポリビニールアルコール重合度500
の樹脂を水に対し20%になるように投入し、放置して
撹拌機(4c)によって撹拌し、加熱器(5c)からオ
ートクレーブを加熱して70〜90℃で溶解して粘液を
作る。これを、出口(6c)からポンプ(7)からオー
トクレーブ(8c)に溶解したポリビニールアルコール
液を移して冷却し、10〜30℃で撹拌し、ホッパー
(10c)から10%のアルデヒドを入れて反応せし
め、約20分間撹拌し、他の添加物を入れて更に、15
分間撹拌して低環化樹脂液を作る。オートクレーブ(8
c)の出来た混合樹脂液は、出口(11c)からポンプ
(12c)によって取り出して 【図1】のホッパー(15a)に導入して、セメント砂
中に導入する。含塩砂は、ミキサー(13c)中にポン
プ(14c)によって導入され、撹拌機(15c)で撹
拌されたものは、脱水ドレナー(16c)に蓄積され、
炉別した樹脂液(17c)はポンプ(18c)で脱塩透
析機(19c)で脱塩して、ホッパー(20c)に戻さ
れて本樹脂の溶解水に再利用され、オートクレーブ(2
1c)に樹脂共に導入される。このオートクレーブ(2
1)は、アルギニン酸ソーダーやメチル繊維素を添加し
水道水パイプ(22c)から水を入れて、ホッパー(2
0c)にアルギニン酸ソーダーやメチル繊維素添加物を
入れてオートクレーブ(21c)中で溶解して、ポンプ
(23)からオートクレーブ(24c)に導入してミキ
サー(13c)に入れて砂と樹脂液を入れて撹拌して二
次硬質皮膜を作り、ドレナー(16c)で脱水して、天
日乾燥して防塩砂を作る。簡略な方法としては、メチル
繊維素エーテル化度2のものを水に溶解し、コバルト液
を入れ、キトサンを入れて溶解した樹脂液を作り、これ
に天日で加熱した海砂をミキサー(13c)に入れて混
和してドレナー(16c)で脱水し天日乾燥する。海砂
が70℃に達する時は、メチル繊維素水は砂表面でゲル
化し硬化剤の硫酸コバルト液の1%液で硬化するのでポ
リビニールアルコールアルデヒド低環化樹脂液でデッピ
ングして脱水して、防塩砂を作るが、この低環化樹脂を
セメントに混和した時には、この二次処理の必要はな
い。この脱塩における理想的方法は、例えば、アフリカ
や中近東地方の砂漠等の砂を利用する時は、液体アンモ
ニアや亜硫酸ガス液を低温−70℃以下に於いて圧縮し
た液体をオートクレーブに予め入れた含塩砂を漬して、
塩分のみを液体に溶出せしめて、脱液し、真空ポンプで
脱液を行って、含塩ガス液は他のオートクレーブ内の砂
よ抽出して、同様にポンプで脱液し、この脱液を冷凍機
に送って冷凍気化し、更に、熱交換から出たガスを水冷
して凝縮器で凝縮して圧縮ポンプで圧縮して液体ガスと
したものを再利用して循環し、抽出に再利用する。この
方法に於いては多量の脱塩が行われるが、この脱塩は熱
交換器に詰まらない為に吸収缶中を通過して塩析を行わ
しめる。砂漠の多いサウジアラビアでは、液化天然ガス
ヲ回収しているので、この天然ガスをアンモニアの凝縮
に使用する時は、コストが10%も更に易くなる。又、
この塩分溶解のアンモニア液を高圧タンクに送り、電解
して金属ナトリウムと塩素を回収する事が行われれば更
にコストは低下し生産の合理化が行われる。この方法
は、砂漠地帯が大都会に於ける立地条件が生産可否を握
る条件となるし、脱塩した砂の輸送には大都市が有利で
ある。亜硫酸ガスの回収も産油地帯で生産が有利であ
り、公害も少ないが設備の腐蝕がアンモニアガスより大
きい欠点がある。しかし、この装置の建設には膨大な費
用がかかるので二次的処理方法として将来実現されるも
のと確信している。又、鉄筋鉄骨処理もナイロンチュー
ブに包着された鉄筋や鉄骨が既に一部に使用されている
が、コンクリートとの結着性が無い欠点があり、地震に
対して強度が低下するが、OH基の残留する本低環化樹
脂では、水素結合によって接着性が強化される事は常識
である。しかし、このOH基の多い環化樹脂は軟質のも
のが多い為に硬化膜を形成せしめる事がありよりベター
である。又、セメントの強化は水素結合から始まる余剰
水分は、かえって強度を低下するので、ポリビニールケ
トン樹脂によって脱水を強化せしめた。そして、そのポ
リビニールの軟化をフェノール尿素メラミン、アニリ
ン、ポリエステル樹脂で強化せしめたものであり、生コ
ンクリートから硬化コンクリートに加工した時に、ジル
コニウケム水酸化物の網状結合が硅酸カルシウムや高ア
ルミナセメントの結合内で構成された耐震性を強化いる
と共に、コンクリート内の水分の移動が樹脂の添加で容
易となり脱水性が強化された後、閉鎖される為、強化さ
れた重亜燐酸塩の表面処理によって遊離のカルシウムを
燐酸カルシウムとして強アルカリの処理によって、コン
クリート表面のアクの噴出が防止され、鉄イオンによる
崩壊性を防ぐ。この様にしたコンクリート道路では、冬
期に解雪剤の塩化カルシウムを散布しても鉄筋、鉄骨の
腐蝕が防止され、ヒビ割れの心配の心配が予防されるか
ら寒冷地方の道路や橋梁に適したコンクリートが完成さ
れる。ジルコニウムは、高価なのでコンクリートセメン
トの10%くらいの添加で行っているが、チタン水酸化
物でも併用すれば強化に効果がある。この樹脂の配合例
を示すと次の如くである。メチル繊維素は5%水液に硫
酸コバルト0.05%液を添加したものが使用される
が、ポリビニールアルコールアルデヒド低環化樹脂を5
%液として調整し、浸漬すると硬化するのでコバルトの
添加は必要が無い。防錆液としては、ニトロプルシッド
とリン酸塩が添加されるが、鉄筋、鉄骨を銅皮着したも
のを使用する時は、ゴムのラテックス琉黄液で処理する
事も出来る。 【例1】 鉄筋用接着樹脂塗料下塗 アルギニン酸ソーダー5%水 100部 同鉄筋用下塗した鉄筋を 【例2】で処理する 【例2】 【ポリビニールアルコール 20部 水 300部 80℃で加熱し溶解した粘液に10〜30℃で【例3を
添加する 【例3】 ベンツアルデヒド 20部 フォルマリン 0〜10部 弗化樹脂粉 1部 そして、約20分間撹拌したものに 【例4】 尿素、メラミン、フェノール、アニリン、フルトラピン 0〜10部 を加えて溶解分散して硬化液を作り鉄筋の上塗料として
硬化膜を形成せしめる。 【例5】 セメント混合樹脂 セメント 100部 皮膜砂 200部 プラスチック残留粉弗化樹脂 10部 フッ素樹脂 1部 砂利 300部 ビニールケトン混合樹脂液 15部 水酸化ヂルコニウム又は水酸化チタニウム 10部 セメントに上記配合物を添加して、ミキサーで素練り
し、生コンクリートペーストを作り型枠に注入し硬化せ
しめる。 【例6】 皮膜砂下塗 メチル繊維素5%水液 100部 70℃海砂 300部 【例7】 皮膜砂下塗 アルギニン酸ソーダー2%水液 100部 70℃海砂 300部 【例6】 【例7】は、防塩加工の下塗塗料である。 【図3】は、塩水に浸漬した時に生ずるコンクリート中
の鉄イオン濃度と時間の関係を示したもので、(A’)
は従来の未処理鉄筋コンクリート、(A)はアルミナイ
ズしたコンクリート、(B)はアルミナイズした皮膜の
付いた鉄筋コンクリート、(C)はセメントビニールケ
トン混合樹脂セメント、(E)は(C)に水酸化ヂルコ
ニウムを入れた重亜燐酸処理のコンクリートである。こ
の特性から見られる様に、樹脂の入ったものがより鉄筋
の溶解が少ない事を示している。特に、圧縮強度は
(E)に於いて20%の増加を示した。この様に、個の
発明の特徴は、陸砂が段々と採取困難となっている為、
海砂を多く使用するので、これを使った鉄筋コンクリー
トは塩分の存在によって鉄を腐蝕して鉄塩を作る時は、
コンクリート内で膨化してコンクリートにヒビ割れを生
ずる欠点があったものを、鉄筋の表面処理に於いてアル
ミナイズシ、更に、アルギニン酸ソーダーやメチル繊維
素で皮膜を作り、その表面を強化するとポリビニールア
ルコールのアルデヒドによる低環化樹脂と弗化樹脂を塗
布して強化したものを、ビニールケトン樹脂や尿素メラ
ミン、フェノール樹脂やポリエステル、PET樹脂、ポ
リアミド樹脂、ゴム等を混合した生コンクリートを皮膜
した鉄筋を入れて、水酸化ヂルコニウム粉を入れて硬化
せしめたコンクリートを重亜燐酸塩水で後処理したもの
は、フクが滲み出る事がない強度なコンクリートが出来
るが、解雪剤の塩化カルシウムによるコンクリートの塩
害は生じない。又、塩害による耐久性の変化がないので
現在の海砂を使用するものより、20年も寿命が延長す
る耐寒性を増大する特徴があり又、多量の脱塩に液体ガ
スを使用する事によって農業の改善、砂漠の有効利用に
なる。
[Detailed Description of the Invention] This invention uses a large amount of sea sand for concrete molding because the sand in rivers in Japan has decreased and the demand for concrete in construction booms has increased. The salt contained in the sea sand erodes the reinforcing steel and the steel frame, causing a crack due to the volume expansion of the molten steel, which increases the durability of the concrecy.
It was developed with the aim of remedying the shortcomings of shortening it by more than zero years. That is, in order to remove salt deposits of sea sand, a large amount of water is required to be washed, and a device therefor is required, and in order to solve these, the present invention is a water solution containing a rust preventive agent in sodium alginate. When seawater sand is immersed in a liquid to dehydrate it, it is immersed in a low-cycling resin solution that is a mixture of benzaldehyde and other aldehydes or ketones in polyvinyl alcohol and dehydrated to make sun dried sea sand. The cyclized resin hardens the sodium alginate film on the surface of sea sand,
A hard film is formed, and a film having a high degree of cyclization is formed as it is left to stand. Next, since cement has an alkaline pH value of 12 or more, a mixture of acetone, formalin and ultrapin is used as a catalyst for the cement, and the sea sand with the film is gravel or plastic. Mix with waste fibers and add phenol, urea, melamine, polyethylene, vinyl acetate, polyvinyl alcohol, aniline, and water as needed to react excess formalin water. Also, in the case of cold air, when adding a celasin calcium solution in which raw silk scraps are dissolved in calcium or a chitosan solution, there is an effect of preventing freezing. Such cement mixture is put in a mold or plastic mold, and if necessary, a reinforcing bar or steel frame whose surface is resin-processed is cured and then impregnated with sodium diphosphite solution is washed with water. The dried one has the characteristic that it can rise to 40 years or more compared to a concrete molded product that has conventionally been split in 20 years. Further, the one in which the above-mentioned film is formed on the surface of the reinforcing bar or steel frame coated with glass paper with synthetic rubber or latex,
The silicate ions eluted from the glass fiber have the effect of preventing the elution of iron ions. In particular, the one coated with the polyvinyl alcohol hydrated silicate solution gives good results. Shown here. Polyvinyl ketone forms a cyclized resin, exhibits adhesiveness with cementite sand and other contaminants, and exhibits a water resistance effect. In particular, it accelerates the catalytic effect and hardening in the strong alkaline such as cement, so that the water resistance becomes strong.
Also, when adding and mixing foamed steel or other foamed resin,
Although it dissolves in acetone and exhibits complex adhesion, it also prevents the formation of condensation products of polyvinyl ketone, so it is possible to prevent this dissolution by forming a pretreated film, but it becomes flammable when plastic is added. , Addition of 30% or more remains a problem. Further, in order to increase the concentration of aldebit in the acetone or formalin solution, a method in which ultrapine or paraaldehyde is added and excess aldehyde is present is suitable for general use. As this excess treatment, when a phenol liquid in which hydrophobic PET scraps or polyamide scraps are dissolved, a styrene monomer liquid polymerized using aluminum chloride as a catalyst, or a dispersion of polyethylene powder is used, phenol and formalin are removed. It is made into a resin, and urea, melamine, aniline, and polyvinyl alcohol are also condensed to form a resin, which enhances the binding force. However, when this resin is completely cured and condensed, the OH group and the condensate that are entrusted to Semenshi's original bond are separated. As a result of binding with the key of OH group, the inflow and outflow of water based on OH group is partially inhibited, resulting in the inhibition of corrosion of rebar and steel frame. Furthermore, the pretreated film-forming rebar and steel frame are corroded. As a result, the dissolution rate of iron ions is delayed. [Fig. 3] Also, the salt content in sea sand is formed into a film together with the salt content on the sand surface by the cyclized resin of polyvinyl alcohol, and this resin also has a resin surface with an OH group that requires cement bonding. It is necessary and for that reason, the low cyclization resin is more effective.
The concrete thus prepared was poured into a peelable mold or a plastic mold and left to harden, followed by hardening. Then, the concrete was taken out from the mold, washed with water, and dried.
% Sodium diphosphite to react with excess free calcium to effect calcium phosphate binding, not only white spots are lost but also aging is prevented. A solvent using phenol liquid may be used as a solvent for dissolving chitosan. Triethanolamine is added for adjusting the alkalinity, but addition of ultrapin has the same effect. Aluminized steel is used as the surface treatment for reinforcing bars and steel frames, but methyl fibrin and ethyl fibrin are used as inexpensive coating agents, but methyl fibrin is cheaper because it is dissolved in water. Since it hardens at 100 ° C, when a heated rebar or steel frame is dipped in the presence of cobalt or calcium ions, a hard film is easily formed, so the operation is easy. When coating with a vinyl cyclized resin liquid, the water resistance is enhanced and the OH groups remain, so that it is convenient because the bondability with concrete can be sufficiently achieved. Further, when a phenol resin, a urea melamine resin or an aniline resin is formed, shrinkage becomes severe when it is hardened by a condensation action, but when a polyvinylbenzaldehyde resin is added, elasticity is generated and therefore the shrinkage is small. Further, when a hardened concrete is dipped in a polyester resin emulsion containing sodium biphosphite water or a polyethylene vinyl acetate emulsion and dried, the flexural strength and compression strength are improved by 20% or more. or,
When anhydrous aluminum chloride is used as a catalyst in a styrene monomer, and the mixture is stirred and allowed to react with cooling, a low-condensation polystyrene having aluminum chloride added is produced. By adding industrial waste of polystyrene dissolved in toluene, xylene, or thinner in advance, a molten aluminum chloride styrene adhesive can be formed. When this is added to a polyvinylketone solution, it dissolves well in acetone, so that a strengthened bond is obtained. Also, as an inexpensive desalting agent, sea sand immersed in chloroacrylic acid chloride and dried may be used. Further, when latex is added, it is preferable to prevent abrupt shrinkage with aqueous ammonia or aqueous methanolamine.
It is also possible to dissolve acrylic rubber in acetone and add phenol to make a mixed resin in the cement with aldehyde. However, a mixture of phenol 66 and polyamide 66 heated and melted was dissolved in acetone and the aldehyde was added and condensed. Things undergo more complex condensations. When sand is mixed with cement, concrete containing 20 to 60% zirconium and hafnium sand with 10 to 20% has good condensation properties and strong earthquake resistance, and is suitable for bridges and basic concrete. . This makes the silicic acid condensation more hydrophobic and has less cracking. Thus, the present invention is that the salt content of the concrete sea sand cannot be demineralized water by simple washing, so reacting by mixing the resin raw material into the concrete to inhibit the mobility of water and It is possible to increase the crack resistance of concrete and the water resistance strength of concrete by preventing the metal corrosion of the above and also by forming a water resistant film on the rebar itself to stop the expansivity associated with the dissolution of iron ions. , The life of the concrete can be extended and the water resistance can be increased for more than 20 years, and more corrosion of the rebar is promoted especially for calcium chloride sprayed like snow removal in snowy regions. It has the effects of improving defects and improving the water resistance strength by 20%, and because the surface treatment of alkali diphosphite increases the tightness of concrete, Glauber's salt Not Bakariri weathered by generation of gypsum is suppressed, it is industrially useful invention since oxidation is improved to acidic rain resistance. An embodiment of the present invention will be described below with reference to the drawings. [Fig. 1] shows a process diagram of concrete processing. In the figure, aluminum bars, calcium fluoride, and metal aluminum are placed in a basket (2) with reinforcing bars and steel frames suspended in rails (4) in a basket (2). The lowered basket (2) is hung up and down by the lift (5), immersed in the bath (1) (30 minutes), the aluminum iron alloy film formation is confirmed on the surface, the pulled surface is swept, and aluminized. To do. Next, the reinforced steel frame (A) heated and immersed in a water solution containing a hardening agent and a rust preventive agent in CMC or CMS water of sodium alginate water or methyl fiber raw water is immersed in a belt conveyor ( Drying oven (7) in 8)
And heat at 30 to 100 ° C. and blow to dry. Next, it is immersed in a polyvinyl alcohol aldehyde low-cyclization resin solution, pulled up in 5 to 10 minutes, placed in a drying chamber (10), dried and finished. In the case of methyl fiber base water, when the steel reinforcement is set to 70 to 100 ° C. and immersed in the methyl fiber base liquid, a film is formed by immersion for about 1 minute. In addition to this, the undercoat film is also applied to CMC and CMS,
Gelatin casein, celasin, and chitosan are also processed in the same manner. A hard coating is secondarily formed with a cyclized resin of polyvinyl alcohol. Next, a coated reinforced steel frame (A ') is incorporated and molded. And put it in the concrete formwork (11) beforehand,
Next, the mixed ready-mixed concrete (12) is mixed with this formwork (1
Inject into 1) by a rubber hose (9a ') by a pump (9a). The green concrete (12) is cemented by the belt conveyors (13a) (14a),
Salt-proof sand, gravel, waste concrete crushed stone, etc. are conveyed and introduced into the mixing mixer (12a), and the hopper (15a) (1
6a) (17a) (18a) was introduced and mixed with a low-cyclization resin water of polyvinyl alcohol aldehyde, and mixed from the bottom valve (11a) of the mixer.
2) is pressed into the mold (11) through the pump (9a). This formwork (11) is left for 2-3 days and the formwork (11)
Removed and hardened concrete (12b) was immersed in sodium hypophosphite solution or alkaline silicate water and pulled up,
It is put in a water tank (20), washed with water to finish, dehydrated and dried. [Fig. 2] shows a process diagram of the production of the present cyclized resin, in which water is introduced from a pipe (2c) into an autoclave (1c) and a polyvinyl alcohol polymerization degree of 500 is obtained from a hopper (3c).
20% of the resin is added to water, and the mixture is left to stir with a stirrer (4c). The autoclave is heated from the heater (5c) and melted at 70 to 90 ° C to form a mucus. The polyvinyl alcohol liquid dissolved in the autoclave (8c) was transferred from the outlet (6c) to the autoclave (8c) from the outlet (6c), cooled, stirred at 10 to 30 ° C, and charged with 10% aldehyde from the hopper (10c). Allow to react, stir for about 20 minutes, add other additives and
Stir for a minute to make a low cyclized resin solution. Autoclave (8
The mixed resin liquid obtained in c) is taken out from the outlet (11c) by the pump (12c), introduced into the hopper (15a) of FIG. 1, and introduced into the cement sand. The salt-containing sand was introduced into the mixer (13c) by the pump (14c), and what was stirred by the stirrer (15c) was accumulated in the dehydration drainer (16c),
The resin liquid (17c) separated by furnace is desalted by a desalination dialyzer (19c) by a pump (18c), returned to a hopper (20c) and reused as a water for dissolving this resin, and then an autoclave (2
1c) is introduced together with the resin. This autoclave (2
1) is the addition of sodium alginate and methyl fibrin, and water is added from the tap water pipe (22c), and the hopper (2
0c), add sodium arginate and methyl fiber additive, dissolve in autoclave (21c), introduce from pump (23) into autoclave (24c) and put into mixer (13c) to put sand and resin liquid. Put and stir to form a secondary hard film, dehydrate with a drainer (16c), and dry in the sun to make salt-proof sand. As a simple method, dissolve methyl fibrin etherification degree 2 in water, add cobalt solution, and add chitosan to make a dissolved resin solution. Add sea sand heated in the sun to the mixer (13c). ), Mix, dehydrate with a drainer (16c), and dry in the sun. When sea sand reaches 70 ° C, methyl fibrous water gels on the sand surface and hardens with a 1% solution of cobalt sulfate solution, which is a curing agent. , Make salt-proof sand, but this secondary treatment is not necessary when this low-cyclization resin is mixed with cement. The ideal method for this desalting is, for example, when sand such as deserts in Africa and the Middle East is used, liquid ammonia or sulfurous acid gas liquid compressed at a low temperature of −70 ° C. or less is placed in an autoclave in advance. Pickled salted sand,
Only the salt content is eluted into the liquid, the liquid is drained, the liquid is drained with a vacuum pump, the salt-containing gas liquid is extracted from the sand in another autoclave, and the liquid is drained with the pump in the same manner. It is sent to a freezer to be frozen and vaporized, and the gas emitted from heat exchange is cooled with water, condensed with a condenser, compressed with a compression pump, and reused as liquid gas for circulation and reuse for extraction. To do. In this method, a large amount of desalination is carried out, but since this desalination does not clog the heat exchanger, it is passed through the absorber and salting out is carried out. Saudi Arabia, which has a lot of deserts, collects liquefied natural gas, so when using this natural gas to condense ammonia, the cost is 10% easier. or,
If this salt-dissolved ammonia solution is sent to a high-pressure tank and electrolyzed to recover metallic sodium and chlorine, the cost will be further reduced and production will be rationalized. With this method, the location conditions in the big city of the desert region determine whether or not production is possible, and large cities are advantageous for transporting desalted sand. Recovery of sulfurous acid gas is also advantageous in the production of oil in the oil-producing area, and there is little pollution, but there is a drawback that equipment corrosion is greater than that of ammonia gas. However, the construction of this device is very expensive and we are confident that it will be realized in the future as a secondary treatment method. Also, in the reinforcing steel frame treatment, although reinforcing bars and steel frames wrapped in a nylon tube have already been used in part, there is a defect that they do not bond to concrete and their strength is reduced against earthquakes. It is common knowledge that in the present low-cyclization resin in which the group remains, the hydrogen bond enhances the adhesiveness. However, this cyclized resin having many OH groups is often soft because it often forms a cured film because it is soft. In addition, since cement strengthens excessive moisture that starts from hydrogen bonding, rather reduces the strength, the dehydration was strengthened with a polyvinyl ketone resin. And, the softening of the polyvinyl is reinforced with phenolurea melamine, aniline, and polyester resin, and when the raw concrete is processed into hardened concrete, the reticulated bond of zirconium chem hydroxide is calcium silicate or high alumina cement. While strengthening the earthquake resistance formed in the bond, the movement of water in the concrete is facilitated by the addition of resin, and after the dehydration is enhanced, it is closed, so by the surface treatment of the enhanced bisulfite The treatment of strong alkali with free calcium as calcium phosphate prevents spouting of concrete on the concrete surface and prevents disintegration by iron ions. The concrete road thus constructed is suitable for roads and bridges in the cold district because it prevents corrosion of reinforcing bars and steel frames even if sprinkling calcium chloride as a snow-melting agent in the winter and prevents fear of cracking. The concrete is completed. Since zirconium is expensive, it is added by about 10% of concrete cement, but if titanium hydroxide is also used together, it is effective in strengthening. An example of compounding this resin is as follows. Methyl fibrin is used by adding 0.05% cobalt sulfate solution to 5% water solution.
% Solution is prepared and hardened when immersed, so that it is not necessary to add cobalt. Nitroprusside and phosphate are added as the anticorrosive liquid, but when a reinforcing bar or steel frame with copper skin is used, it can be treated with rubber latex Ryukyu liquid. Example 1 Reinforcing bar adhesive resin paint base coat Sodium alginate 5% water 100 parts Treat the same base bar rebar base with [Example 2] [Example 2] [Polyvinyl alcohol 20 parts water 300 parts Heat at 80 ° C [Example 3] is added to the dissolved mucus at 10 to 30 ° C. [Example 3] Benzaldehyde 20 parts Formalin 0 to 10 parts Fluororesin powder 1 part Then, after stirring for about 20 minutes [Example 4] Urea, Melamine, phenol, aniline, and flutrapine 0-10 parts are added, dissolved and dispersed to prepare a hardening liquid, and a hardened film is formed as a paint on the reinforcing bar. [Example 5] Cement mixed resin cement 100 parts Coating sand 200 parts Plastic residual powder fluorinated resin 10 parts Fluorine resin 1 part Gravel 300 parts Vinylketone mixed resin liquid 15 parts Zirconium hydroxide or titanium hydroxide 10 parts Cement with the above mixture Is added and masticated with a mixer to prepare a green concrete paste, which is poured into a mold and hardened. Example 6 Membrane fibrin 5% water solution for coating sand 100 parts 70 ° C sea sand 300 parts [Example 7] Sodium alginate alginate 2% water solution for coating sand 100 parts 70 ° C sea sand 300 parts [Example 6] 7] is an undercoat paint for salt-proof treatment. FIG. 3 shows the relationship between iron ion concentration in concrete and time that occurs when immersed in salt water, (A ′)
Is conventional untreated reinforced concrete, (A) is aluminized concrete, (B) is reinforced concrete with aluminized film, (C) is cement vinyl ketone mixed resin cement, (E) is hydroxylated to (C). This is a concrete containing zirconia and treated with hypophosphorous acid. As can be seen from this characteristic, it is shown that the resin-containing material has less rebar melting. In particular, the compressive strength showed a 20% increase in (E). In this way, the characteristic of each invention is that it is difficult to collect land sand,
Since a lot of sea sand is used, when reinforced concrete using this corrodes iron due to the presence of salt to make iron salt,
If there is a defect that the concrete swells and cracks in the concrete, it is aluminized in the surface treatment of the reinforcing bar, and a film is made with sodium alginate or methyl fibrin Reinforcement coated with raw concrete mixed with vinyl ketone resin, urea melamine, phenol resin, polyester, PET resin, polyamide resin, rubber, etc., which is reinforced by applying a cyclization resin and a fluororesin with alcohol aldehyde. The concrete that has been hardened by adding zirconia hydroxide powder to it and post-treating it with biphosphite water gives strong concrete that does not exude fluff. No salt damage will occur. In addition, since there is no change in durability due to salt damage, it has the characteristic of increasing the cold resistance, which extends the service life by 20 years, compared to the one using current sea sand, and by using liquid gas for a large amount of desalination. It will improve agriculture and make effective use of the desert.

【図面の簡単な説明】 【図1】 コンクリート成型物の生産工程図 【図2】 防塩砂の生産工程図 【図3】 防塩防水コンクリートの特性[Brief description of drawings] [Figure 1] Production process diagram of concrete moldings [Figure 2] Production process diagram of salt-proof sand [Figure 3] Characteristics of salt-proof waterproof concrete

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24:24 20:12) 111:28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C04B 24:24 20:12) 111: 28

Claims (1)

【特許請求の範囲】 後文記載の如く、海砂を水和性合成樹脂やアルギニン酸
ソーダー、海草セラシン蛋白、カゼイン、ゼラチン、セ
ラシン、キトサン、CMC、澱粉等の水溶性物で混合し
て乾燥したものをポリビニール低環化樹脂液で処理して
砂表面に硬化膜を作り、これにセメント、トリエタノー
ルアミン繊維室砂利を混合して、更に、アセトン、フォ
ルマリン、ウルトラピンを混合して反応せしめ低ポリビ
ニールケトンを作り、これに尿素、メラミン、フェノー
ル、界面活性剤を必要に応じて添加し、予め樹脂加工し
た鉄筋、鉄骨、軽量型網を組合わせて入れた金型や木型
中に注入して硬化せしめたコンクリート成型品及びポリ
ビニール樹脂加工した防塩砂 付記 このセメントに本皮膜形成の海砂とプラスチック粉末、
金属ガラス、セラミックの砿鉱物繊維や粉を混合したビ
ニールケトン樹脂液に塩化カルシウム、塩化マグネシウ
ム、セラシン液に予め浸漬した繊維質を乾燥せしめたも
のを混入せしめた不燃性建材。
[Claims] As described later, sea sand is mixed with a water-soluble substance such as a hydratable synthetic resin, sodium alginate, seaweed celasin protein, casein, gelatin, celasin, chitosan, CMC, and starch, and dried. The cured product is treated with a polyvinyl low-cyclization resin solution to form a cured film on the sand surface, which is mixed with cement and triethanolamine fiber chamber gravel, and further mixed with acetone, formalin and ultrapin. A low-polyvinylketone made by reacting, to which urea, melamine, phenol, and a surfactant are added as required, and a metal mold or wooden mold containing a combination of pre-resin-processed rebar, steel frame, lightweight mesh Concrete molded product poured into the inside and hardened, and salt-proof sand processed with polyvinyl resin Appendix Note Sea sand and plastic powder forming this film on this cement,
A non-combustible building material made by mixing fibers of vinyl ketone resin mixed with mineral glass fibers and powder of ceramic glass, ceramics, and calcium chloride, magnesium chloride, and fibrous materials that have been previously dipped in a ceracin solution.
JP5974594A 1994-02-18 1994-02-18 Saline resistant concrete and desalinized sand Pending JPH07232954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5974594A JPH07232954A (en) 1994-02-18 1994-02-18 Saline resistant concrete and desalinized sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5974594A JPH07232954A (en) 1994-02-18 1994-02-18 Saline resistant concrete and desalinized sand

Publications (1)

Publication Number Publication Date
JPH07232954A true JPH07232954A (en) 1995-09-05

Family

ID=13122085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5974594A Pending JPH07232954A (en) 1994-02-18 1994-02-18 Saline resistant concrete and desalinized sand

Country Status (1)

Country Link
JP (1) JPH07232954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992595A1 (en) * 2007-05-10 2008-11-19 Lafarge Process to reduce the amount of Cr (VI) in a cement-containing composition and a composition comprising cement and coated metallic sulphate particles
CN108178609A (en) * 2018-02-09 2018-06-19 济南大学 The sea sand cladding slurries and intensifying method of a kind of curable chlorion
CN113501694A (en) * 2021-07-08 2021-10-15 抚州市正兴混凝土有限公司 Anti-cracking environment-friendly concrete
CN115490477A (en) * 2022-09-20 2022-12-20 海南省智慧环境投资控股有限公司 Sea sand mortar for building and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992595A1 (en) * 2007-05-10 2008-11-19 Lafarge Process to reduce the amount of Cr (VI) in a cement-containing composition and a composition comprising cement and coated metallic sulphate particles
WO2008152521A3 (en) * 2007-05-10 2009-02-26 Lafarge Sa Process to reduce the amount of cr (vi) in a cement-containing composition and a composition comprising cement and coated metallic sulphate particles
US8142564B2 (en) 2007-05-10 2012-03-27 Lafarge Process to reduce the amount of Cr (VI) in a cement-containing composition and a composition comprising cement and coated metallic sulphate particles
CN108178609A (en) * 2018-02-09 2018-06-19 济南大学 The sea sand cladding slurries and intensifying method of a kind of curable chlorion
CN113501694A (en) * 2021-07-08 2021-10-15 抚州市正兴混凝土有限公司 Anti-cracking environment-friendly concrete
CN115490477A (en) * 2022-09-20 2022-12-20 海南省智慧环境投资控股有限公司 Sea sand mortar for building and preparation method thereof
CN115490477B (en) * 2022-09-20 2023-08-01 海南省智慧环境投资控股有限公司 Marine sand mortar for building and preparation method thereof

Similar Documents

Publication Publication Date Title
Ohama Polymer-based admixtures
US4025352A (en) Manufacture of sulfur concrete
CN106917400B (en) A kind of antidetonation corrosion resistant pile for prestressed pipe and preparation method thereof
CN112897958A (en) Grid fabric reinforced cement-based composite material and preparation method thereof
KR101858036B1 (en) A waterproof coating composition for wet coating excellent in chemical resistance, comprising a ceramic-based network-structured resin mixture, and a method of applying the waterproof coating composition
CN114560656A (en) Double-scale toughened cement-based composite material and application thereof
KR101165785B1 (en) Mortar composition for repairing concrete structure and using method thereof
JPH07232954A (en) Saline resistant concrete and desalinized sand
KR20050075973A (en) Composition of reinforcement able rod for concrete buiding
KR100403076B1 (en) Repaired and Reinforced method and sheet material of concreat structure using sheet
JPS60204683A (en) Rust prevention of steel material in inorganic material
KR20130092929A (en) High strenth concrete and high strenth concrete construction method
KR102194451B1 (en) Method for constructing concrete surface's reinforcements
KR101770799B1 (en) Coatings and heat shield heat shield block manufacturing method using the same permeability block
KR100368880B1 (en) The method for lining of steel concrete pipe
KR102333359B1 (en) Fast hardening cement concrete composition for emergency maintenance
JP2003120041A (en) Repair method for concrete deteriorated by salt damage
KR20050123060A (en) Mixing system of self-compacting hybrid repair mortar and rehabilitation method of reinforcement concrete structures
KR102271043B1 (en) Bondability improving agent for rapid hardening repair and reinforcement mortar, Rapid hardening repair and reinforcement mortar using the same and Method of repair and reinforcement of concrete structure using the same
KR100816518B1 (en) Soluble epoxy osmotic waterproofing composition and repairing method of concrete structure using the same
FI104165B (en) A method for reducing surface cracking due to freezing and thawing in concrete, non-reinforcing concrete containing sodium fluorophosphate surface and use of sodium monofluorophosphate to reduce surface cracking of concrete
NL8001206A (en) CORROSION-INHIBITING CONCRETE PRODUCT.
GB1578984A (en) Corrosion-protection of metal reinforcements for concrete
JPS60122759A (en) Degradation prevention for concrete products and concrete structures
KR101168693B1 (en) Method for repairing structure using cement composition having polypropylene treated by oxyfluorination and glass powder