JPH07232700A - Cooling device for internal combustion engine for air craft - Google Patents

Cooling device for internal combustion engine for air craft

Info

Publication number
JPH07232700A
JPH07232700A JP2539394A JP2539394A JPH07232700A JP H07232700 A JPH07232700 A JP H07232700A JP 2539394 A JP2539394 A JP 2539394A JP 2539394 A JP2539394 A JP 2539394A JP H07232700 A JPH07232700 A JP H07232700A
Authority
JP
Japan
Prior art keywords
air
radiator
differential pressure
cooling
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2539394A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
雅博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2539394A priority Critical patent/JPH07232700A/en
Publication of JPH07232700A publication Critical patent/JPH07232700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

PURPOSE:To cause the automatic passage of a desired flow of cooling air matching with an engine output through a radiator. CONSTITUTION:A cooling device for an internal combustion engine for an aircraft comprises a cooling air passage 5 through which air is introduced from the outside of a machine body 1 to a radiator 4 and air after the passage of it through the radiator 4 is guided to the outside of the machine body 1; a cowl flap 6 disposed in the cooling air passage 5; a differential pressure detecting means 13 to detect an air differential pressure between a position situated right upper stream from the radiator 4 and a position situated right downstream therefrom; and an opening control means 10 to control the opening of the cowl flap 6 so that an air differential pressure detected by the differential pressure detecting means 13 is adjusted to a target value determined according to an engine output taking X atmospheric conditions during flying into consideration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機用内燃機関の冷
却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an aircraft internal combustion engine.

【0002】[0002]

【従来の技術】一般的な航空機用内燃機関の冷却装置
は、機体外部から空気をラジエータへ導き入れ、またラ
ジエータ通過後の空気を機体外部へ導き出す冷却空気通
路と、この冷却空気通路に設けられたカウルフラップと
を有し、操縦者が、手動でカウルフラップの開度を調整
することにより、冷却水温を所定範囲内に維持するよう
に機関出力に応じた所望流量の冷却空気をラジエータに
通過させるものである。近年、このような冷却空気流量
制御の自動化が望まれている。
2. Description of the Related Art A general aircraft internal combustion engine cooling device is provided in a cooling air passage for introducing air from the outside of the fuselage into a radiator and for introducing air after passing through the radiator to the outside of the fuselage. With a cowl flap, the operator manually adjusts the opening degree of the cowl flap to allow the radiator to pass a desired flow rate of cooling air according to the engine output so as to maintain the cooling water temperature within a predetermined range. It is what makes me. In recent years, automation of such cooling air flow rate control has been desired.

【0003】自動車用内燃機関の冷却装置として、実開
昭61−43929号公報には、ラジエータの背面をシ
ュラウドで覆い、このシュラウドに形成され二つの開口
部の一方にはファンが配置され、他方にはモータにより
開閉可能なシャッタが配置され、ラジエータ前面におけ
る車両走行時の走行風が所定流速以上となる時にのみ、
ファンを停止すると共にシャッタを自動的に開放するも
のが記載されている。
As a cooling device for an internal combustion engine for an automobile, Japanese Utility Model Laid-Open No. 61-43929 discloses a radiator in which the back surface of the radiator is covered with a shroud, and a fan is arranged in one of two openings formed in the shroud and the other. A shutter that can be opened and closed by a motor is arranged in the, and only when the running wind on the front of the radiator when the vehicle is running exceeds a predetermined flow velocity,
It is described that the fan is stopped and the shutter is automatically opened.

【0004】[0004]

【発明が解決しようとする課題】この自動車用内燃機関
の冷却装置は、ファンの消費電力を低減するために、ラ
ジエータ前面に設けられた流速センサにより検出される
走行風の流速が所定値以上となる時には、ラジエータを
通過する冷却空気が所定流量以上になると判断し、ファ
ンを停止すると共にシャッタを開放してこの走行風をラ
ジエータの冷却に利用するものである。従って、この冷
却空気流量制御を、そのまま航空機用内燃機関に適用し
ても、従来、手動で行われていた前述の冷却空気流量制
御を自動化することはできず、また、仮に、この自動車
用内燃機関に望まれる冷却空気流量制御を航空機用内燃
機関に実施する場合においても、航空機は飛行中の気圧
条件が変化するために、ラジエータ上流側の空気流速が
所定値を越えても所定流量以上の冷却空気がラジエータ
を通過することにはならない。さらに、ラジエータ前面
における空気流速は、その測定位置によって大きなばら
つきがあり、流速センサでは正確な冷却空気流量制御を
行うことができない。
In order to reduce the power consumption of the fan, this cooling device for an internal combustion engine for an automobile has a flow velocity of traveling wind detected by a flow velocity sensor provided in front of a radiator of a predetermined value or more. In such a case, it is determined that the cooling air passing through the radiator will exceed a predetermined flow rate, the fan is stopped and the shutter is opened, and this traveling wind is used for cooling the radiator. Therefore, even if this cooling air flow rate control is directly applied to the internal combustion engine for an aircraft, the above-mentioned cooling air flow rate control that has been manually performed in the past cannot be automated, and even if the internal combustion engine for an automobile is assumed to be used. Even when the cooling air flow rate control desired for the engine is carried out for the internal combustion engine for an aircraft, since the air pressure condition of the aircraft changes during the flight, even if the air velocity on the upstream side of the radiator exceeds the predetermined value, the air flow rate is higher than the predetermined flow rate. Cooling air will not pass through the radiator. Further, the air flow velocity on the front surface of the radiator varies greatly depending on its measurement position, and the flow velocity sensor cannot accurately control the cooling air flow rate.

【0005】従って、本発明の目的は、機関出力に応じ
た所望流量の冷却空気を自動的にラジエータに通過させ
ることができる航空機用内燃機関の冷却装置を提供する
ことである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cooling device for an internal combustion engine for an aircraft which can automatically pass a desired amount of cooling air according to the engine output to a radiator.

【0006】[0006]

【課題を解決するための手段】本発明による航空機内燃
機関の冷却装置は、機体外部から空気をラジエータへ導
き入れ、またラジエータ通過後の空気を機体外部へ導き
出す冷却空気通路と、前記冷却空気通路に設けられたカ
ウルフラップと、前記ラジエータの直上流側及び直下流
側の空気差圧を検出する差圧検出手段と、前記差圧検出
手段により検出される空気差圧が飛行中の大気条件を考
慮して機関出力に応じて決定される目標値となるように
前記カウルフラップの開度を制御する開度制御手段、と
を具備することを特徴とする。
A cooling device for an aircraft internal combustion engine according to the present invention comprises a cooling air passage for introducing air from the outside of the machine into a radiator and a passage of air after passing through the radiator to the outside of the machine, and the cooling air passage. The cowl flap provided in the, the differential pressure detection means for detecting the air differential pressure on the upstream side and the downstream side of the radiator, and the air differential pressure detected by the differential pressure detection means determines the atmospheric conditions during flight. An opening degree control means for controlling the opening degree of the cowl flap so that the target value is determined in consideration of the engine output.

【0007】[0007]

【作用】前述の航空機用内燃機関の冷却装置は、機体外
部から空気をラジエータへ導き入れ、またラジエータ通
過後の空気を機体外部へ導き出す冷却空気通路と、冷却
空気通路に設けられたカウルフラップとを有し、差圧検
出手段がラジエータの直上流側及び直下流側の空気差圧
を検出し、開度制御手段はこの空気差圧が飛行中の大気
条件を考慮して機関出力に応じて決定される目標値とな
るようにカウルフラップの開度を制御する。
The above-described cooling device for an internal combustion engine for an aircraft includes a cooling air passage that introduces air from the outside of the fuselage into the radiator and that introduces air that has passed through the radiator to the outside of the fuselage, and a cowl flap provided in the cooling air passage. The differential pressure detection means detects the air differential pressure on the upstream side and the downstream side of the radiator, and the opening control means determines the air differential pressure according to the engine output in consideration of atmospheric conditions during flight. The opening degree of the cowl flap is controlled so as to reach the determined target value.

【0008】[0008]

【実施例】図1は、本発明による航空機用内燃機関の冷
却装置を示す概略断面図である。同図において、1は機
体であり、2は機体1内部に配置された内燃機関、3
は、機体1外部に配置され、内燃機関1に連結されたプ
ロペラである。4は内燃機関2の冷却水を冷却するため
のラジエータであり、機体1前面に設けられた空気流入
口5aと機体1下面に設けられた空気流出口5bとを連
通する冷却空気通路5内に配置されている。空気流入口
5aは、飛行中でなくてもラジエータ4の冷却が可能な
ように、プロペラ3により後方へ送られる空気が流入す
る位置に設けられている。
1 is a schematic sectional view showing a cooling system for an internal combustion engine for an aircraft according to the present invention. In the figure, 1 is an airframe, 2 is an internal combustion engine disposed inside the airframe 1, 3
Is a propeller arranged outside the machine body 1 and connected to the internal combustion engine 1. Reference numeral 4 denotes a radiator for cooling the cooling water of the internal combustion engine 2, which is provided in a cooling air passage 5 that connects an air inlet 5a provided on the front surface of the machine body 1 and an air outlet 5b provided on the lower surface of the machine body 1. It is arranged. The air inlet 5a is provided at a position where the air sent to the rear by the propeller 3 flows in so that the radiator 4 can be cooled even during flight.

【0009】冷却空気通路5の空気流出口5bには、ス
テップモータ6a等により駆動されてその開度調整が可
能なカウルフラップ6が設けられている。また、冷却空
気通路5のラジエータ4の下流側には、送風機7aを有
し、ラジエータ4通過後の暖められた空気を利用してキ
ャビンを暖房するための暖房通路7が接続されている。
この暖房通路7は、送風機7a下流において、キャビン
回りに前述の空気を導くように形成された第1通路7b
と、機体1外部に通じる第2通路7cとに分岐し、この
分岐部には送風機7aと第1及び第2通路7b,7cの
いずれか一方との連通を可能にする切換弁7dが配置さ
れている。
The air outlet 5b of the cooling air passage 5 is provided with a cowl flap 6 which is driven by a step motor 6a or the like and whose opening can be adjusted. A cooling fan 7a is provided downstream of the radiator 4 in the cooling air passage 5, and a heating passage 7 is connected to heat the cabin by using the warmed air that has passed through the radiator 4.
The heating passage 7 is formed downstream of the blower 7a so as to guide the above-mentioned air around the cabin.
And a second passage 7c that communicates with the outside of the machine body 1, and a switching valve 7d that allows communication between the blower 7a and one of the first and second passages 7b and 7c is arranged at this branching portion. ing.

【0010】10は、カウルフラップ6の開度制御を担
当する制御装置であり、外気温を検出する外気温センサ
11と、外気圧を検出する外気圧センサ12と、冷却空
気通路5のラジエータ4直上流と直下流との間の空気差
圧を検出する差圧センサ13等の各センサが接続されて
いる。
Reference numeral 10 is a control device for controlling the opening degree of the cowl flap 6, which includes an outside air temperature sensor 11 for detecting the outside air temperature, an outside air pressure sensor 12 for detecting the outside air pressure, and a radiator 4 for the cooling air passage 5. Each sensor such as a differential pressure sensor 13 that detects an air differential pressure between immediately upstream and downstream is connected.

【0011】このように構成された航空機用内燃機関の
冷却装置は、図2に示すフローチャートに従ってカウル
フラップ6の開度制御を行う。このフローチャートは所
定時間毎に実行されるものである。まずステップ101
において、外気温センサ11により検出される外気温度
tを考慮して図3に示す第1マップから現在の機関出力
に対する必要冷却空気流量Qを決定する。必要冷却空気
流量Qとは、所望の冷却効果を発揮させるためにラジエ
ータ4を通過させる冷却空気の流量であり、第1マップ
において、機関出力が高ければ放熱量が大きく、その
分、必要冷却空気流量Qは多くなるように設定されてお
り、また外気温度tが低ければ、必要冷却空気流量Qが
少なくても意図するラジエータ4の冷却が可能となるた
めに、この必要冷却空気流量Qは外気温度t毎に設定さ
れている。
The cooling device for an internal combustion engine for an aircraft thus configured controls the opening degree of the cowl flap 6 according to the flow chart shown in FIG. This flowchart is executed every predetermined time. First, step 101
3, the required cooling air flow rate Q for the current engine output is determined from the first map shown in FIG. 3 in consideration of the outside air temperature t detected by the outside air temperature sensor 11. The required cooling air flow rate Q is a flow rate of the cooling air that passes through the radiator 4 in order to exert a desired cooling effect, and in the first map, the higher the engine output, the larger the heat radiation amount, and the required cooling air amount correspondingly. The flow rate Q is set to be large, and if the outside air temperature t is low, the desired cooling air flow rate Q can be cooled even if the required cooling air flow rate Q is small. It is set for each temperature t.

【0012】次にステップ102において、必要冷却空
気流量Qが、外気圧センサ12により検出される外気圧
pに基づく空気密度ρによって割られ、必要冷却空気流
速Vが算出されてステップ103に進み、図4に示す第
2マップからこの必要冷却空気流速Vを実現するための
冷却空気通路5におけるラジエータ4直上流と直下流の
目標空気差圧ΔPを決定する。この第2マップは、対数
表示の必要冷却空気速度Vと対数表示の目標空気差圧Δ
Pとの関係を示している。
Next, at step 102, the required cooling air flow rate Q is divided by the air density ρ based on the external pressure p detected by the external pressure sensor 12, the required cooling air flow velocity V is calculated, and the routine proceeds to step 103, From the second map shown in FIG. 4, the target air differential pressure ΔP immediately upstream and downstream of the radiator 4 in the cooling air passage 5 for realizing the required cooling air flow velocity V is determined. The second map is a logarithmic required cooling air velocity V and a logarithmic target air differential pressure Δ.
The relationship with P is shown.

【0013】次にステップ104において、この目標空
気差圧ΔPと、差圧センサ13により検出される実際の
空気差圧ΔP’との差Dが算出され、ステップ105に
おいて、この差Dが正である場合にはカウルフラップ6
の開度は現在より徐々に大きくされ、また差Dが負であ
る場合にはカウルフラップ6の開度は現在より徐々に小
さくされるように、次回の処理において新たな目標空気
差圧ΔPが決定されるまで、この差Dがゼロ近傍となる
ようにフィードバック制御される。
Next, at step 104, a difference D between this target air differential pressure ΔP and the actual air differential pressure ΔP 'detected by the differential pressure sensor 13 is calculated, and at step 105, this difference D is positive. Cowl flap 6 in some cases
Is gradually increased from the present, and when the difference D is negative, the opening of the cowl flap 6 is gradually reduced from the present so that a new target air differential pressure ΔP is set in the next process. Until it is determined, feedback control is performed so that this difference D is close to zero.

【0014】このように、カウルフラップ6は、冷却空
気通路5のラジエータ4直上流と直下流との間の実際の
空気差圧ΔP’が、目標空気差圧ΔPとなるように開度
制御されるために、機関放熱量及び外気温度tを考慮し
た現在必要な冷却空気流量だけをラジエータ4に自動的
に通過させることができ、冷却水温が異常に上昇して内
燃機関がオーバーヒートしたり、また異常に下降して凍
結することは防止され、常に所定範囲内に維持されて良
好な内燃機関冷却を実現することができる。
As described above, the opening degree of the cowl flap 6 is controlled so that the actual air differential pressure ΔP 'between the cooling air passage 5 immediately upstream and downstream of the radiator 4 becomes the target air differential pressure ΔP. Therefore, only the currently required cooling air flow rate in consideration of the engine heat radiation amount and the outside air temperature t can be automatically passed through the radiator 4, and the cooling water temperature rises abnormally to overheat the internal combustion engine. It is prevented from abnormally descending and freezing, and it is always maintained within a predetermined range, and good internal combustion engine cooling can be realized.

【0015】キャビンを暖房するためには、送風機7a
と第1通路7bとが連通されるように切換弁7dが切り
換えられ、所望のキャビン内温度が実現されるように負
荷制御されて送風機7aが駆動され、ラジエータ4通過
後の暖められた空気がキャビン回りに供給される。
To heat the cabin, a blower 7a is used.
And the first passage 7b are communicated with each other, the switching valve 7d is switched, the load is controlled so that the desired cabin temperature is realized, the blower 7a is driven, and the warmed air after passing through the radiator 4 is discharged. Supplied around the cabin.

【0016】送風機7aを駆動すると、ラジエータ4の
直下流の空気圧力は強制的に下げられるために、飛行速
度が遅くてカウルフラップ6を全開にしてもこの時の目
標空気差圧ΔPが達成されない時には、送風機7aを適
当に駆動すればよい。この時にキャビンの暖房が不要で
あれば、送風機7aと第2通路7cとが連通されるよう
に切換弁7dが切り換えられ、ラジエータ4通過後の暖
められた空気は機体1外部に排出される。
When the blower 7a is driven, the air pressure immediately downstream of the radiator 4 is forcibly reduced, so that the target air differential pressure ΔP at this time cannot be achieved even when the cowl flap 6 is fully opened because the flight speed is slow. At times, the blower 7a may be driven appropriately. At this time, if heating of the cabin is unnecessary, the switching valve 7d is switched so that the blower 7a and the second passage 7c are communicated with each other, and the warmed air after passing through the radiator 4 is discharged to the outside of the body 1.

【0017】前述の冷却空気流量制御は、測定位置によ
って大きくばらつく流速等とは異なり安定出力が得られ
る差圧が利用されるために、この制御を確実なものとす
ることができ、また必要以上の冷却空気が機体1内へ取
り込まれないために、飛行抵抗を最小限とすることがで
きる。
The above-mentioned cooling air flow rate control can make this control reliable because it uses a differential pressure that can provide a stable output, unlike a flow velocity that greatly varies depending on the measurement position, and is more than necessary. Since the cooling air of 1 is not taken into the airframe 1, the flight resistance can be minimized.

【0018】本実施例は、前述のフローチャートのステ
ップ104において、カウルフラップ6の開度は徐々に
増減されるフィードバック制御としたが、この制御を簡
素化するために、目標空気差圧ΔPと空気差圧ΔP’と
の差Dの大きさに応じて、現在の開度からの増減開度を
決定するようにしてもよい。
In the present embodiment, the feedback control in which the opening degree of the cowl flap 6 is gradually increased and decreased is performed in step 104 of the above-mentioned flow chart, but in order to simplify this control, the target air differential pressure ΔP and the air pressure The increase / decrease opening from the current opening may be determined according to the magnitude of the difference D from the differential pressure ΔP ′.

【0019】[0019]

【発明の効果】このように、本発明による航空機内燃機
関の冷却装置によれば、機体外部から空気をラジエータ
へ導き入れ、またラジエータ通過後の空気を機体外部へ
導き出す冷却空気通路と、冷却空気通路に設けられたカ
ウルフラップとを有し、差圧検出手段がラジエータの直
上流側及び直下流側の空気差圧を検出し、開度制御手段
はこの空気差圧が飛行中の大気条件を考慮して機関出力
に応じて決定される目標値となるようにカウルフラップ
の開度を制御するために、大気条件が変化する飛行中に
おいて、外気温度により変化する機関出力に応じた所望
流量の冷却空気を外気圧に基づき正確にラジエータに供
給することができ、機関冷却水温を所定範囲内に自動的
に維持することが可能となり、内燃機関のオーバーヒー
ト及び冷却水の凍結が防止されて内燃機関の良好な冷却
を実現することができる。
As described above, according to the cooling system for an aircraft internal combustion engine of the present invention, a cooling air passage for introducing air into the radiator from the outside of the machine body and for introducing air after passing through the radiator to the outside of the machine body, and cooling air. And a cowl flap provided in the passage, the differential pressure detection means detects the air differential pressure on the upstream side and the downstream side of the radiator, and the opening degree control means determines the atmospheric conditions during flight by this opening differential pressure means. In order to control the opening of the cowl flaps so that it becomes a target value that is determined according to the engine output in consideration of the desired flow rate according to the engine output that changes depending on the outside air temperature during the flight when the atmospheric conditions change. Cooling air can be accurately supplied to the radiator based on the outside air pressure, and it becomes possible to automatically maintain the engine cooling water temperature within a predetermined range, overheating of the internal combustion engine and freezing of cooling water. It is possible to achieve good cooling of the internal combustion engine but is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による航空機内燃機関の冷却装置を示す
概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a cooling device for an aircraft internal combustion engine according to the present invention.

【図2】カウルフラップの開度制御のためにフローチャ
ートである。
FIG. 2 is a flowchart for controlling the opening degree of a cowl flap.

【図3】図2のフローチャートに使用される第1マップ
である。
FIG. 3 is a first map used in the flowchart of FIG.

【図4】図2のフローチャートに使用される第2マップ
である。
FIG. 4 is a second map used in the flowchart of FIG.

【符号の説明】[Explanation of symbols]

1…機体 2…内燃機関 4…ラジエータ 5…冷却空気通路 6…カウルフラップ 1 ... Airframe 2 ... Internal combustion engine 4 ... Radiator 5 ... Cooling air passage 6 ... Cowl flap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機体外部から空気をラジエータへ導き入
れ、またラジエータ通過後の空気を機体外部へ導き出す
冷却空気通路と、前記冷却空気通路に設けられたカウル
フラップと、前記ラジエータの直上流側及び直下流側の
空気差圧を検出する差圧検出手段と、前記差圧検出手段
により検出される空気差圧が飛行中の大気条件を考慮し
て機関出力に応じて決定される目標値となるように前記
カウルフラップの開度を制御する開度制御手段、とを具
備することを特徴とする航空機内燃機関の冷却装置。
1. A cooling air passage for introducing air into the radiator from the outside of the machine body and for introducing air after passing through the radiator to the outside of the machine body, a cowl flap provided in the cooling air passage, and an upstream side of the radiator. The differential pressure detecting means for detecting the air differential pressure on the immediate downstream side, and the air differential pressure detected by the differential pressure detecting means become a target value determined according to the engine output in consideration of atmospheric conditions during flight. An opening control means for controlling the opening of the cowl flap as described above, and a cooling device for an aircraft internal combustion engine.
JP2539394A 1994-02-23 1994-02-23 Cooling device for internal combustion engine for air craft Pending JPH07232700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2539394A JPH07232700A (en) 1994-02-23 1994-02-23 Cooling device for internal combustion engine for air craft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2539394A JPH07232700A (en) 1994-02-23 1994-02-23 Cooling device for internal combustion engine for air craft

Publications (1)

Publication Number Publication Date
JPH07232700A true JPH07232700A (en) 1995-09-05

Family

ID=12164651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2539394A Pending JPH07232700A (en) 1994-02-23 1994-02-23 Cooling device for internal combustion engine for air craft

Country Status (1)

Country Link
JP (1) JPH07232700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009798A (en) * 2004-06-21 2006-01-12 Boeing Co:The Flow-rate controller, engine system, and flow-rate control method
WO2015138252A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator configuration for a flying wind turbine that passively controls airflow
WO2015138289A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator and duct configuration on an airborne wind turbine for maximum effectiveness
WO2020046012A1 (en) * 2018-08-31 2020-03-05 (주)두산 모빌리티 이노베이션 Air circulation adjustment structure of fuel cell power pack-integrated drone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009798A (en) * 2004-06-21 2006-01-12 Boeing Co:The Flow-rate controller, engine system, and flow-rate control method
WO2015138252A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator configuration for a flying wind turbine that passively controls airflow
WO2015138289A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator and duct configuration on an airborne wind turbine for maximum effectiveness
WO2020046012A1 (en) * 2018-08-31 2020-03-05 (주)두산 모빌리티 이노베이션 Air circulation adjustment structure of fuel cell power pack-integrated drone

Similar Documents

Publication Publication Date Title
US10946720B2 (en) Airflow control system
US4453591A (en) Air-conditioning apparatus for motor vehicles
CN110614913B (en) Front part of motor vehicle
JP3999818B2 (en) Apparatus and method for automatically controlling aircraft cabin temperature
US6679075B2 (en) Method for adjusting the recirculating air fraction of the inlet air delivered to a vehicle passenger compartment
US4523715A (en) Method and apparatus for air conditioner control
JPS6345022B2 (en)
US4488411A (en) Idle speed control apparatus
KR900003578B1 (en) Air mix door control apparatus for an air conditioner for automobile
US20040040326A1 (en) Cooling apparatus
JPH07232700A (en) Cooling device for internal combustion engine for air craft
JPH01229713A (en) Air conditioning control device for vehicle
EP3122636B1 (en) System and method for providing temperature control
JP2000094926A (en) Device for supplying air to vehicle compartment and method for adjusting rotational speed of blower motor in air supplier of vehicle
US20210146745A1 (en) Air conditioning device for vehicle
US4391407A (en) Vehicle cabin heater
US4566373A (en) Ventilation arrangement for automotive vehicle or the like
CN113942654A (en) Helicopter air inlet channel anti-icing and cabin heating comprehensive heat utilization system
US2523404A (en) Cooling air exit velocity control
CN208682561U (en) Vehicle
CN113500887A (en) Vehicle-mounted air conditioner and vehicle
JPH0988599A (en) Cooling water temperature control device for vehicle
JPH1179096A (en) Lift increasing device for aircraft
JPS6233969B2 (en)
JPS6013688Y2 (en) Car heater control device