JPH07231673A - Bridge circuit and inverter device - Google Patents

Bridge circuit and inverter device

Info

Publication number
JPH07231673A
JPH07231673A JP6021685A JP2168594A JPH07231673A JP H07231673 A JPH07231673 A JP H07231673A JP 6021685 A JP6021685 A JP 6021685A JP 2168594 A JP2168594 A JP 2168594A JP H07231673 A JPH07231673 A JP H07231673A
Authority
JP
Japan
Prior art keywords
series
diodes
voltage source
bridge circuit
side arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6021685A
Other languages
Japanese (ja)
Other versions
JP3150521B2 (en
Inventor
Sukeo Saitou
涼夫 齋藤
Junichi Aoki
淳一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02168594A priority Critical patent/JP3150521B2/en
Publication of JPH07231673A publication Critical patent/JPH07231673A/en
Application granted granted Critical
Publication of JP3150521B2 publication Critical patent/JP3150521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the voltage of a switch a divided voltage when outputting the potential on multiple levels by providing at least two or more clamp circuits consisting of a plurality of diodes connected in series, and clamping the potentials of the junctions of switch elements in series to the potentials of the junctions of power sources in series. CONSTITUTION:A DC power source consists of three power sources E1-E3 connected in series, and a positive arm and a negative arm consist of three pieces each of switch elements connected in series, where diodes are connected reversely in parallel, and a first clamp circuit consists of diodes D2.1-D2.4, and a second clamp circuit consists of diodes D1.1-D1.2. For example, when the switches S3a, S2a, S1a are turned on, the output voltage becomes V1, and an output current flows, when positive, to the course of S3a, S2a, and S1a, and, when negative, to the course of D1a, D2a, and D3a. This way, the four levels of the potentials V1 and V2 of the positive pole or negative pole of the DC power source or the potentials V2, V3, and V4 of the series junctions the power sources can be gotten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多レベル出力のインバ
ータ装置及びブリッジ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilevel output inverter device and a bridge circuit.

【0002】[0002]

【従来の技術】パルス幅変調(以下PWM)により直流
電力を交流電力に変換する際に、高調波成分を抑制する
インバータとして多レベル出力のインバータ装置が用い
られる。この種の従来のインバータ装置の主回路に用い
られる従来のブリッジ回路を図10に示す。
2. Description of the Related Art When converting DC power into AC power by pulse width modulation (hereinafter referred to as PWM), a multilevel output inverter device is used as an inverter that suppresses harmonic components. FIG. 10 shows a conventional bridge circuit used as a main circuit of a conventional inverter device of this type.

【0003】図10は1相分の構成を示したものであり、
1相当たり3レベルの出力電圧を発生することができ
る。同図において、E1 ,E2 は直流電圧源、S11〜S
14はスイッチ素子、D11〜D16はダイオード、OUTは
出力端子である。
FIG. 10 shows the structure for one phase.
Three levels of output voltage can be generated per phase. In the figure, E 1 and E 2 are DC voltage sources, and S 11 to S
14 is a switch element, D 11 to D 16 are diodes, and OUT is an output terminal.

【0004】このブリッジ回路の出力端子OUTの出力
電圧は、スイッチ素子S11とS12がオンし、スイッチ素
子S13とS14がオフの状態のとき電圧V1 となり、スイ
ッチ素子S12とS13がオンし、スイッチ素子S11とS14
がオフの状態のとき電圧V2となり、スイッチ素子S13
とS14がオンし、スイッチ素子S11とS12がオフの状態
のとき電圧V3 となり、3レベルの出力が得られる。こ
れらのスイッチ素子をPWM制御することにより図11に
示す出力電圧が得られる。
[0004] The output voltage of the output terminal OUT of the bridge circuit, the switch element S 11 and S 12 are turned on, next to voltages V 1 when the switch element S 13 and S 14 is in the off state, the switch element S 12 and S 13 is turned on, switching elements S 11 and S 14
When the switch is off, the voltage becomes V 2 and the switch element S 13
And S 14 are turned on and the switch elements S 11 and S 12 are turned off, the voltage becomes V 3 and three-level output is obtained. By performing PWM control of these switch elements, the output voltage shown in FIG. 11 can be obtained.

【0005】多レベル出力のインバータの別の主回路構
成(4レベル)の従来のブリッジ回路を図12に示す。同
図において、E1 ,E2 ,E3 は直流電圧源、S21〜S
26はスイッチ素子、D21〜D32はダイオード、OUTは
出力端子である。
FIG. 12 shows a conventional bridge circuit having another main circuit configuration (4 levels) of a multi-level output inverter. In the figure, E 1 , E 2 , and E 3 are DC voltage sources, and S 21 to S
26 is a switch element, D 21 to D 32 are diodes, and OUT is an output terminal.

【0006】このブリッジ回路の出力電圧は、スイッチ
素子S21〜S23がオンし、スイッチ素子S24〜S26がオ
フのとき電圧V1 となり、スイッチ素子S22〜S24がオ
ンし、スイッチ素子S21・S25・S26がオフのとき電圧
2 となり、スイッチ素子S23〜S25がオンし、スイッ
チ素子S21・S22・S26がオフのとき電圧V3 となり、
スイッチ素子S24〜S26がオンし、スイッチ素子S21
23がオフのとき電圧V4 となり、4レベルの出力が得
られる。
The output voltage of this bridge circuit becomes a voltage V 1 when the switch elements S 21 to S 23 are turned on and the switch elements S 24 to S 26 are turned off, and the switch elements S 22 to S 24 are turned on and the switch elements are turned on. When the elements S 21 , S 25, and S 26 are off, the voltage becomes V 2 , the switch elements S 23 to S 25 are turned on, and when the switch elements S 21 , S 22, and S 26 are off, the voltage becomes V 3 .
The switch elements S 24 to S 26 are turned on, and the switch elements S 21 to
When S 23 is off, the voltage becomes V 4 and a 4-level output is obtained.

【0007】このように、多レベルの電圧出力を得るた
めに、インバータの直流電源を複数の電圧源を直列接続
し、その接続点の電位をも出力するように各スイッチ素
子のオン・オフが制御される。
As described above, in order to obtain a multi-level voltage output, the DC power source of the inverter is connected in series with a plurality of voltage sources, and each switch element is turned on / off so that the potential at the connection point is also output. Controlled.

【0008】[0008]

【発明が解決しようとする課題】従来のブリッジ回路を
用いてインバータ装置の高圧大容量化を図る場合、電圧
分担のために素子を複数個直列に接続するか、あるいは
高圧大容量の素子を用いる必要がある。
In order to increase the high voltage and high capacity of the inverter device by using the conventional bridge circuit, a plurality of elements are connected in series for voltage sharing or a high voltage and large capacity element is used. There is a need.

【0009】しかし、多数の素子を直列接続すると各々
の素子間の負担のバランスが問題となる。一方、高圧大
容量の素子はスイッチング周波数を高くすることができ
ないので、出力波形改善のための高周波のPWM制御が
困難となる。
However, if a large number of elements are connected in series, the load balance between the elements becomes a problem. On the other hand, since a high-voltage, large-capacity element cannot increase the switching frequency, it is difficult to perform high-frequency PWM control for improving the output waveform.

【0010】また、直流電圧源の分割数を増やしても、
素子間の負担のバランスが十分に行えないという問題が
ある。本発明は上記問題を解消しようとしてなされたも
ので、直流電圧源の分割数を増やしても1個の素子には
分割された直流電圧源の1個分の電圧しかかからないよ
うにして、各々の素子にかかる負担を軽減し、出力レベ
ルの数を増やすことによりPWM制御を用いなくても、
あるいはPWM制御のスイッチング周波数を低くしても
容易に波形改善を行うことができ、容易に大容量化を図
ることのできるブリッジ回路及びインバータ装置を提供
することにある。
Further, even if the number of divisions of the DC voltage source is increased,
There is a problem that the load between the elements cannot be sufficiently balanced. The present invention has been made in order to solve the above problem. Even if the number of divisions of the DC voltage source is increased, one element is applied with the voltage of only one of the divided DC voltage sources. Even if you do not use PWM control by reducing the load on the element and increasing the number of output levels,
Another object of the present invention is to provide a bridge circuit and an inverter device that can easily improve the waveform even if the switching frequency of PWM control is lowered and can easily increase the capacity.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1に対応する発明として、ダイオードを逆
並列に接続したスイッチ素子を少なくとも3個以上直列
接続して成る正側アームと負側アームを直流電圧源の正
極と負極間に直列接続し、正側アームと負側アームの接
続点を中間点とし該中間点から交流電力を出力するブリ
ッジ回路において、前記スイッチ素子の直列数と同数の
電圧源を直列接続して前記直流電圧源とし、前記中間点
を起点とし、対称位置にある正側アームと負側アームの
それぞれのスイッチ素子の直列接続点間に、それぞれ直
列接続した複数のダイオードで成る少なくとも2個以上
のクランプ回路を設け、このクランプ回路によりスイッ
チ素子の直列接続点の電位を前記電圧源の直列接続点の
電位にクランプする。
(1) As an invention corresponding to claim 1, a positive side arm and a negative side arm formed by connecting at least three or more switch elements in which diodes are connected in antiparallel are connected in series between a positive electrode and a negative electrode of a DC voltage source. Then, in the bridge circuit that outputs AC power from the intermediate point at the connection point of the positive side arm and the negative side arm, the same number of voltage sources as the number of series of the switching elements are connected in series to form the DC voltage source. , At least two or more clamp circuits each composed of a plurality of diodes connected in series are provided between the series connection points of the switch elements of the positive side arm and the negative side arm, which are located at the intermediate point as a starting point, The clamp circuit clamps the potential at the series connection point of the switch element to the potential at the series connection point of the voltage source.

【0012】(2)請求項2に対応する発明として、更
に、前記直流電圧源の正極と負極に最も近い前記対称位
置にあるスイッチ素子の直列接続点間に接続される第1
のクランプ回路の直列接続された複数のダイオードの直
列接続点を前記電圧源の直列接続点にそれぞれ接続し、
中間に位置する電圧源の両端に接続される該第1のクラ
ンプ回路のダイオードを2個のダイオードの直列回路と
成し、前記直流電圧源の正極と負極に次に近い前記対称
位置にあるスイッチ素子の直列接続点間に接続される第
2のクランプ回路の直列接続された複数のダイオードの
直列接点を前記第1のクランプ回路の2個のダイオード
の直列接続点に接続する。
(2) As an invention corresponding to claim 2, a first connection between the series connection points of the switch elements at the symmetrical positions closest to the positive electrode and the negative electrode of the DC voltage source is further provided.
Connecting the series connection points of a plurality of series-connected diodes of the clamp circuit to the series connection point of the voltage source,
The switch of the first clamp circuit connected to both ends of the voltage source located in the middle is a series circuit of two diodes and is located at the symmetrical position next to the positive electrode and the negative electrode of the DC voltage source. The series contacts of the plurality of series-connected diodes of the second clamp circuit connected between the series connection points of the elements are connected to the series connection point of the two diodes of the first clamp circuit.

【0013】(3)請求項3に対応する発明として、更
に、前記直流電圧源の正極と負極に最も近い前記対称位
置にあるスイッチ素子の直列接続点間に接続される第1
のクランプ回路の直列接続された複数のダイオードの直
列接続点を前記電圧源の直列接続点にそれぞれ接続し、
中間に位置する電圧源の両端に接続される該第1のクラ
ンプ回路のダイオードを2個のダイオードの直列回路と
成し、前記直流電圧源の正極と負極に順次に近い前記対
称位置にあるスイッチ素子の直列接続点間に接続される
複数のクランプ回路の直列接続された複数のダイオード
の直列接続点を前記第1のクランプ回路及び前記複数の
クランプ回路の2個のダイオードの直列接続点に順次そ
れぞれ接続し、該2個のダイオードの直列接続点間に接
続される前記複数のクランプ回路のダイオードをそれぞ
れ2個のダイオードの直列回路で構成する。
(3) As an invention corresponding to claim 3, a first connection is provided between the series connection points of the switch elements at the symmetrical positions closest to the positive electrode and the negative electrode of the DC voltage source.
Connecting the series connection points of a plurality of series-connected diodes of the clamp circuit to the series connection point of the voltage source,
The switch of the first clamp circuit, which is connected to both ends of the voltage source located in the middle, is a series circuit of two diodes, and is located at the symmetrical position close to the positive electrode and the negative electrode of the DC voltage source. A series connection point of a plurality of diodes connected in series of a plurality of clamp circuits connected between the series connection points of the elements is sequentially connected to a series connection point of two diodes of the first clamp circuit and the plurality of clamp circuits. The diodes of the plurality of clamp circuits, which are connected to each other and are connected between the series connection points of the two diodes, are each configured by a series circuit of two diodes.

【0014】(4)請求項4に対応する発明として、更
に、前記正側アームと負側アームの直列接続されたスイ
ッチ素子の一部のスイッチ素子を並列接続し、通電容量
を増大する。
(4) As an invention corresponding to claim 4, further, a part of the switching elements of the positive side arm and the negative side arm, which are connected in series, are connected in parallel to increase the current carrying capacity.

【0015】(5)請求項5に対応する発明として、更
に、前記クランプ回路の直列接続されたダイオードの一
部のダイオードを並列接続し、通電容量を増大する。 (6)請求項6に対応する発明として、前記(1)項の
ものにおいて、前記正側アーム及び負側アームの直列接
続されたスイッチ素子の正側の全部か負側の全部、ある
いは正側アームと負側アームの連続して直列接続された
一部のスイッチ素子を導通させ、前記直流電圧源の正極
か負極の電位、あるいは前記直流電圧源の複数の電圧源
の直列接続点の電位を前記中間点に出力する。
(5) As an invention corresponding to claim 5, further, some of the diodes connected in series in the clamp circuit are connected in parallel to increase the current carrying capacity. (6) As an invention corresponding to claim 6, in the above-mentioned item (1), all the positive side or all the negative side or the positive side of the switch elements connected in series of the positive side arm and the negative side arm. A part of the switch elements connected in series to the arm and the negative side arm are made conductive, and the potential of the positive electrode or the negative electrode of the DC voltage source or the potential of the series connection point of the plurality of voltage sources of the DC voltage source is changed. Output to the intermediate point.

【0016】(7)請求項7に対応する発明として、前
記(1)項に記載のブリッジ回路を備え、このブリッジ
回路に用いる前記直流電圧源を電圧制御された複数の電
圧源の直列回路するインバータ装置とする。
(7) As an invention corresponding to claim 7, the bridge circuit according to claim (1) is provided, and the DC voltage source used in the bridge circuit is a series circuit of a plurality of voltage-controlled voltage sources. Use an inverter device.

【0017】(8)請求項8に対応する発明として、前
記(1)項に記載のブリッジ回路を少なくとも2回路以
上備え、単相あるいは多相の交流電力を出力するインバ
ータ装置とする。
(8) As an invention corresponding to claim 8, there is provided an inverter device which comprises at least two or more bridge circuits according to item (1) and outputs single-phase or multi-phase AC power.

【0018】[0018]

【作用】[Action]

(1)請求項1に対応する発明は、前記正側アームと負
側アームの直列接続された各スイッチ素子のオン・オフ
の組合せにより、前記中間点には少なくとも4種以上の
電位の出力が得られる。この場合、それぞれの電位の出
力状態において、オフ状態となっているスイッチ素子の
直列接続点電位は前記クランプ回路の直列接続されたダ
イオードの回路を介して前記電圧源の直列接続点電位に
クランプされ、オフ状態のスイッチ素子には前記電圧源
の1個分の電圧が印加される。
(1) In the invention corresponding to claim 1, at least four or more kinds of potentials are output at the intermediate point by a combination of ON / OFF of each switch element of the positive side arm and the negative side arm connected in series. can get. In this case, in the output state of each potential, the series connection point potential of the switch element in the off state is clamped to the series connection point potential of the voltage source through the series-connected diode circuit of the clamp circuit. The voltage of one of the voltage sources is applied to the switch element in the off state.

【0019】(2)請求項2に対応する発明は、オフ状
態となっているスイッチ素子の直列接続点電位を前記電
圧源の直列接続点電位にクランプするとき、前記第1の
クランプ回路の2個のダイオードの直列回路と前記第2
のクランプ回路のダイオードを介してクランプされる。
(2) In the invention according to claim 2, when the series connection point potential of the switch element in the off state is clamped to the series connection point potential of the voltage source, the second clamp circuit of the first clamp circuit is used. A series circuit of diodes and the second
It is clamped via the diode of the clamp circuit.

【0020】(3)請求項3に対応する発明は、オフ状
態となっているスイッチ素子の直列接続点電位を前記電
圧源の直列接続点電位にクランプするとき、前記第1の
クランプ回路の2個のダイオードの直列回路と前記複数
のクランプ回路の2個のダイオードの直列回路を介して
クランプされる。
(3) According to a third aspect of the invention, when the series connection point potential of the switch element in the OFF state is clamped to the series connection point potential of the voltage source, the second clamp circuit of the first clamp circuit is used. Clamping is performed via a series circuit of the diodes and a series circuit of the two diodes of the plurality of clamp circuits.

【0021】(4)請求項4に対応する発明は、一部の
スイッチ素子を並列接続することにより、スイッチ素子
の電力損失の平均化を行う。 (5)請求項5に対応する発明は、一部のダイオードを
並列接続することにより、ダイオードの電力損失の平均
化を行う。
(4) The invention according to claim 4 averages the power loss of the switch elements by connecting some of the switch elements in parallel. (5) The invention corresponding to claim 5 averages the power loss of the diodes by connecting some of the diodes in parallel.

【0022】(6)請求項6に対応する発明は、連続し
て直列接続された一部(正側アームあるいは負側アーム
の全直列素子数に等しい数)のスイッチ素子を導通する
ことにより前記中間点に複数の電圧源の任意の直列接続
点電位が出力される。
(6) The invention according to claim 6 is characterized in that a part (the number equal to the total number of series elements of the positive side arm or the negative side arm) of the switching elements connected in series is made conductive. An arbitrary series connection point potential of the plurality of voltage sources is output to the intermediate point.

【0023】(7)請求項7に対応する発明は、各電圧
源の電圧を電圧抑制により所定値に保ち、クランプ回路
を介して流れる電流による電圧変動を抑制する。 (8)請求項8に対応する発明は、各ブリッジ回路の中
性点にPWM制御により多レベルの電位を出力し、該中
性点間に単相あるいは多相の交流電力を出力する。
(7) The invention according to claim 7 maintains the voltage of each voltage source at a predetermined value by suppressing the voltage, and suppresses the voltage fluctuation due to the current flowing through the clamp circuit. (8) The invention according to claim 8 outputs multi-level potentials to the neutral point of each bridge circuit by PWM control, and outputs single-phase or multi-phase AC power between the neutral points.

【0024】[0024]

【実施例】本発明のブリッジ回路の第1実施例を図1に
示す。図1において、E1 〜E3 は直流電圧源、S1a
3a,S1b〜S3bはスイッチ素子、D1a〜D3a,D1b
3b,D1,1 〜D2,4 はダイオード、OUTは出力端
子、V1 〜V4 は直流電圧源の各端子の電位である。ま
た、出力電流Io が出力端子から負荷に向かって流れる
向き(矢印方向)を正とする。
FIG. 1 shows a first embodiment of the bridge circuit of the present invention. In FIG. 1, E 1 to E 3 are DC voltage sources, and S 1a to
S 3a , S 1b to S 3b are switching elements, and D 1a to D 3a , D 1b to
D 3b , D 1,1 to D 2,4 are diodes, OUT is an output terminal, and V 1 to V 4 are potentials of the terminals of the DC voltage source. Further, the direction (arrow direction) in which the output current I o flows from the output terminal toward the load is positive.

【0025】この第1実施例は、直流電圧源が3個の電
圧源E1 〜E3 の直列接続で成り、正側アームと負側ア
ームがダイオードを逆並列に接続したスイッチ素子を3
個直列接続して成り、第1のクランプ回路はダイオード
2,1 〜D2,4 で成り、第2のクランプ回路はダイオー
ドD1,1 ,D1,2 で成り、請求項1,2,6に対応した
発明の例である。
In the first embodiment, the DC voltage source is composed of three voltage sources E 1 to E 3 connected in series, and the positive side arm and the negative side arm each have a switch element in which diodes are connected in anti-parallel.
Made into individual series, the first clamp circuit comprises a diode D 2,1 to D 2, 4, the second clamp circuit comprises a diode D 1, 1, D 1, claim 2 , 6 is an example of the invention.

【0026】上記構成において、スイッチ素子S3a,S
2a,S1aがオンすると、出力電圧はV1 となり、出力電
流は、正の時、S3a・S2a・S1aの経路に、負の時、D
1a・D2a・D3aの経路に流れる。
In the above structure, the switch elements S 3a and S 3
When 2a and S 1a are turned on, the output voltage becomes V 1 , and when the output current is positive, it is in the path of S 3a / S 2a / S 1a , and when it is negative, it is D
It flows in the route of 1a / D 2a / D 3a .

【0027】スイッチ素子S2a,S1a,S1bがオンする
と、出力電圧はV2 となり、出力電流は、正の時、D
2,1 ・S2a・S1aの経路に、負の時、S1b・D1,2 ・D
2,2 の経路に流れる。
When the switch elements S 2a , S 1a and S 1b are turned on, the output voltage becomes V 2 and the output current is D when the output current is positive.
2,1・ S 2a・ S 1a , when negative, S 1b・ D 1,2・ D
It flows in the route of 2,2 .

【0028】スイッチ素子S1a,S1b,S2bがオンする
と、出力電圧はV3 となり、出力電流は、正の時、D
2,3 ・D1,1 ・S1aの経路に、負の時、S1b・S2b・D
2,4 の経路に流れる。
When the switch elements S 1a , S 1b and S 2b are turned on, the output voltage becomes V 3 and the output current is D when the output current is positive.
2,3・ D 1,1・ S 1a , when negative, S 1b・ S 2b・ D
It flows to the route of 2,4 .

【0029】スイッチ素子S1b,S2b,S3bがオンする
と、出力電圧はV4 となり、出力電流は、正の時、D3b
・D2b・D1bの経路に、負の時、S1b・S2b・S3bの経
路に流れる。
When the switch elements S 1b , S 2b and S 3b are turned on, the output voltage becomes V 4 and the output current is D 3b when the output current is positive.
The current flows through the path of D 2b and D 1b , and when negative, flows through the path of S 1b , S 2b and S 3b .

【0030】このようにして、直流電圧源の正極か負極
の電位V1 ,V4 、あるいは電圧源の直列接続点の電位
2 ,V3 の4レベルの出力が得られ、図2に示すよう
な出力電圧が得られる。
In this way, four-level outputs of the positive or negative potentials V 1 and V 4 of the DC voltage source or the potentials V 2 and V 3 of the series connection points of the voltage source are obtained, and shown in FIG. Such an output voltage can be obtained.

【0031】また、上記構成とすることにより、1個の
素子にかかる電圧を高くせずに、出力容量を大きくする
ことができ、PWMの変調周波数を高くすることなく出
力波形を改善することができる。
Further, with the above structure, the output capacitance can be increased without increasing the voltage applied to one element, and the output waveform can be improved without increasing the PWM modulation frequency. it can.

【0032】本発明のブリッジ回路の第2実施例を図3
に示す。図3において、E1 〜E4 は直流電圧源、S1a
〜S4a,S1b〜S4bはスイッチ素子、D1a〜D4a,D1b
〜D4b,D1,1 〜D3,6 はダイオード、OUTは出力端
子、V1 〜V5 は直流電圧源の各端子の電位である。
A second embodiment of the bridge circuit of the present invention is shown in FIG.
Shown in. In FIG. 3, E 1 to E 4 are DC voltage sources, S 1a
~S 4a, S 1b ~S 4b switch element, D 1a ~D 4a, D 1b
˜D 4b , D 1,1 ˜D 3,6 are diodes, OUT is an output terminal, and V 1 ˜V 5 are the potentials of the terminals of the DC voltage source.

【0033】この第2実施例は、直流電圧源が4個の電
圧源E1 〜E4 の直列接続で成り、正側アームと負側ア
ームがダイオードを逆並列に接続したスイッチ素子を4
個直列接続して成り、第1のクランプ回路はダイオード
3,1 〜D3,6 で成り、第2、第3の複数のクランプ回
路はダイオードD2,1 〜D2,4 ,D1,1 〜D2,2 で成
り、請求項1,3,6に対応した発明の例である。
In the second embodiment, the DC voltage source is formed by connecting four voltage sources E 1 to E 4 in series, and the positive side arm and the negative side arm are four switch elements each having a diode connected in antiparallel.
The first clamp circuit is composed of diodes D 3,1 to D 3,6 , and the second and third plurality of clamp circuits are composed of diodes D 2,1 to D 2,4 , D 1. , 1 to D 2,2 , which is an example of the invention corresponding to claims 1, 3, and 6.

【0034】上記構成において、スイッチ素子S4a,S
3a,S2a,S1aがオンすると、出力電圧はV1 となり、
出力電流は、正の時、S4a・S3a・S2a・S1aの経路
に、負の時、D1a・D2a・D3a・D4aの経路に流れる。
In the above structure, the switch elements S 4a and S 4a
When 3a , S 2a and S 1a are turned on, the output voltage becomes V 1 ,
The output current flows through the paths S 4a , S 3a , S 2a, and S 1a when positive, and flows through the paths D 1a , D 2a , D 3a, and D 4a when negative.

【0035】スイッチ素子S3a,S2a,S1a,S1bがオ
ンすると、出力電圧はV2 となり、出力電流は、正の
時、D3,1 ・S3a・S2a・S1aの経路に、負の時、S1b
・D1,2 ・D2,2 ・D3,2 の経路に流れる。
When the switch elements S 3a , S 2a , S 1a , and S 1b are turned on, the output voltage becomes V 2 , and when the output current is positive, the path of D 3,1 · S 3a · S 2a · S 1a When negative, S 1b
- flows through a path of D 1,2 · D 2,2 · D 3,2 .

【0036】スイッチ素子S2a,S1a,S1b,S2bがオ
ンすると、出力電圧はV3 となり、出力電流は、正の
時、D3,3 ・D2,1 ・S2a・S1aの経路に、負の時、S
1b・S2b・D2,4 ・D3,4 の経路に流れる。
When the switch elements S 2a , S 1a , S 1b and S 2b are turned on, the output voltage becomes V 3 , and when the output current is positive, D 3,3 · D 2,1 · S 2a · S 1a. On the path of, when negative, S
It flows to the route of 1b・ S 2b・ D 2,4・ D 3,4 .

【0037】スイッチ素子S1a,S1b,S2b,S3bがオ
ンすると、出力電圧はV4 となり、出力電流は、正の
時、D3,5 ,D2,3 ・D1,1 ・S1aの経路に、負の時、
1b・S2b・S3b・D3,6 の経路に流れる。
When the switch elements S 1a , S 1b , S 2b and S 3b are turned on, the output voltage becomes V 4 , and the output current is positive when D 3,5 , D 2,3.D 1,1. On the path of S 1a , when negative,
It flows in the route of S 1b , S 2b , S 3b , D 3,6 .

【0038】スイッチ素子S1b,S2b,S3b,S4bがオ
ンすると、出力電圧はV5 となり、出力電流は、正の
時、D4b,D3b・D2b・D1bの経路に、負の時、S1b
2b・S3b・D4bの経路に流れる。
The switching element S 1b, S 2b, S 3b , the S 4b is turned on, the output voltage V 5 and the output current, when positive, D 4b, the path of D 3b · D 2b · D 1b , When negative, S 1b
It flows through the route of S 2b , S 3b, and D 4b .

【0039】このようにして、直流電圧源の正極か負極
の電位V1 ,V5 あるいは各電圧源の直列接続点の電位
2 ,V3 ,V4 の5レベルの出力が得られ、図4に示
すような出力電圧が得られる。従って、更に、出力波形
の改善を行うことができる。
In this way, five-level outputs of the positive or negative potentials V 1 and V 5 of the DC voltage source or the potentials V 2 , V 3 and V 4 of the series connection points of the voltage sources are obtained. An output voltage as shown in 4 is obtained. Therefore, the output waveform can be further improved.

【0040】本発明のブリッジ回路の第3実施例を図5
に示す。この第3実施例は、正側アームと負側アームの
直列接続されたスイッチ素子の一部のスイッチ素子
1a,S2a,S1b,S2bが並列接続して成り、第1のク
ランプ回路の一部のダイオードD2,1 ,D2,4 が並列接
続して成り請求項1,2,4,5,6に対応した発明の
例である。
A third embodiment of the bridge circuit of the present invention is shown in FIG.
Shown in. In the third embodiment, a part of the switching elements of the positive side arm and the negative side arm connected in series is formed by connecting some switching elements S 1a , S 2a , S 1b and S 2b in parallel. Is an example of the invention corresponding to claims 1, 2, 4, 5, and 6, which are formed by connecting some of the diodes D 2,1 and D 2,4 in parallel.

【0041】ブリッジ回路の中央点から交流の負荷電流
o を供給する場合の波形例を図6、図7に示す。図6
は負荷の力率が悪い場合の例であり、スイッチ素子にお
いては出力端子に近い素子ほど通電量が多くなり、ダイ
オードにおいてはほぼ同等である。
6 and 7 show examples of waveforms when the AC load current I o is supplied from the center point of the bridge circuit. Figure 6
Is an example of a case where the power factor of the load is poor. In the switch element, the closer the element is to the output terminal, the larger the amount of electricity passed, and the diode is almost the same.

【0042】図7は負荷の力率が良い場合の例であり、
スイッチ素子においてはS2a,S1a,S1b,S2bが、ダ
イオードにおいてはD2,1 ,D2,4 が、他の素子と比較
して通電量が多いことがわかる。本実施例ではこの状態
を考慮し、各々の素子の通電容量により負担の大きい素
子を並列接続することにより、各素子で発生する電力損
失の平均化を行い、各素子の稼動率を向上させ、交流電
力の出力容量を増大させることができる。
FIG. 7 shows an example in which the load power factor is good,
It can be seen that S 2a , S 1a , S 1b , and S 2b in the switch element and D 2,1 and D 2,4 in the diode have a larger amount of energization than other elements. In this embodiment, in consideration of this state, by connecting in parallel the elements having a large load due to the energizing capacity of each element, the power loss generated in each element is averaged, and the operating rate of each element is improved, The output capacity of AC power can be increased.

【0043】本発明のインバータ装置の第1実施例を図
8に示す。図8において、トランス1により分割された
交流電源をサイリスタブリッジにより構成された各コン
バータ2により直流に変換し、各平滑コンデンサ3を介
して所定電圧に制御された直流電源とし、これらの直流
電源を直列接続して直流電圧源としたもので、請求項7
に対応した発明の例である。このように構成したインバ
ータ装置とすれば、図7のようにダイオードD2,1 〜D
2,4 に流れる電流が異なっていても平滑コンデンサの電
圧が変動しないようにコンバータ2が制御するので、直
流電源の電圧変動は抑えられ、出力波形が歪んだりある
いはダイオードに過電圧が印加されたりするのを防ぐこ
とができる。
FIG. 8 shows a first embodiment of the inverter device of the present invention. In FIG. 8, an AC power supply divided by a transformer 1 is converted into a DC power by each converter 2 configured by a thyristor bridge, and a DC power supply controlled to a predetermined voltage via each smoothing capacitor 3 is used. A DC voltage source connected in series to form a DC voltage source.
It is an example of the invention corresponding to. With the inverter device configured as described above, as shown in FIG. 7, the diodes D 2,1 to D
The converter 2 controls so that the voltage of the smoothing capacitor does not change even if the currents flowing in 2 and 4 are different, so the voltage fluctuation of the DC power supply is suppressed and the output waveform is distorted or an overvoltage is applied to the diode. Can be prevented.

【0044】本発明のインバータ装置の第2実施例を図
9に示す。図9において、11〜13は本発明によるブリッ
ジ回路であり、11のみ内部構成を示しているが12,13も
同じ構成とする。なお、11の内部構成は図1の構成と同
じもので示したが、図3、図5の構成としてもよく、こ
れに限定するものではない。
A second embodiment of the inverter device of the present invention is shown in FIG. In FIG. 9, 11 to 13 are bridge circuits according to the present invention, only 11 shows the internal structure, but 12 and 13 have the same structure. Although the internal configuration of 11 is the same as the configuration of FIG. 1, it may be the configuration of FIGS. 3 and 5 and is not limited to this.

【0045】この実施例は本発明のブリッジ回路を3回
路用い3相の交流電力を出力するもので請求項8に対応
する発明の例である。このようにして、単相あるいは多
相の多レベル出力のインバータ装置を容易に構築するこ
とができる。
In this embodiment, three bridge circuits of the present invention are used to output three-phase AC power, which is an example of the invention corresponding to claim 8. In this way, it is possible to easily construct a single-phase or multi-phase multi-level output inverter device.

【0046】[0046]

【発明の効果】【The invention's effect】

(1)請求項1に対応する発明によると、1個のスイッ
チ素子およびダイオードには分割された直流電圧源の1
個分の電圧しかかからないので、各々の素子にかかる負
担を軽減することができる。さらに、出力レベルの数が
増えるためにPWM制御を用いなくても、あるいは低い
変調周波数のPWM制御でも容易に波形改善を行うこと
ができる。したがって、スイッチング周波数を高くする
ことができない大容量半導体素子を用いることができ、
インバータ装置の大容量化を容易に行うことができるブ
リッジ回路が得られる。
(1) According to the invention corresponding to claim 1, one switching element and one diode are divided DC voltage sources.
Since only the voltage for each element is applied, the load on each element can be reduced. Furthermore, since the number of output levels increases, the waveform can be easily improved without using the PWM control or even with the PWM control with a low modulation frequency. Therefore, it is possible to use a large-capacity semiconductor element that cannot increase the switching frequency,
A bridge circuit that can easily increase the capacity of an inverter device can be obtained.

【0047】(2)請求項2に対応する発明によれば、
直流電圧源を3分割しスイッチ素子を3個直列にしたと
き、オフ状態の3個のスイッチ素子に3分割した電圧を
容易に配分することのできるブリッジ回路が得られる。
(2) According to the invention corresponding to claim 2,
When the DC voltage source is divided into three and three switch elements are connected in series, a bridge circuit that can easily distribute the divided voltage to the three switch elements in the OFF state can be obtained.

【0048】(3)請求項3に対応する発明によれば、
直流電圧源をN(N>=3)分割し、スイッチ素子をN
個直列にしたとき、オフ状態のN個のスイッチ素子にN
分割した電圧を容易に配分することのできるブリッジ回
路が得られる。
(3) According to the invention corresponding to claim 3,
Divide the DC voltage source into N (N> = 3) and switch elements to N
When they are connected in series, N switch elements are
A bridge circuit that can easily distribute the divided voltages is obtained.

【0049】(4)請求項4に対応する発明によれば、
直列接続されたスイッチ素子全体としての稼動率が向上
し、交流電力の出力容量を増大することのできるブリッ
ジ回路が得られる。
(4) According to the invention corresponding to claim 4,
It is possible to obtain a bridge circuit capable of improving the operating rate of the switching elements connected in series as a whole and increasing the output capacity of AC power.

【0050】(5)請求項5に対応する発明によれば、
直列接続されたダイオード全体としての稼動率が向上
し、交流電力の出力容量を増大することのできるブリッ
ジ回路が得られる。
(5) According to the invention corresponding to claim 5,
It is possible to obtain a bridge circuit capable of improving the operating rate of the diodes connected in series as a whole and increasing the output capacity of AC power.

【0051】(6)請求項6に対応する発明によれば、
直流電圧源をN(N>=3)分割し、スイッチ素子をN
個直列にしたとき、N分割した直流電圧源の任意の電位
を容易に出力することのできるブリッジ回路が得られ
る。
(6) According to the invention corresponding to claim 6,
Divide the DC voltage source into N (N> = 3) and switch elements to N
When connected in series, a bridge circuit capable of easily outputting an arbitrary potential of the N-divided DC voltage source can be obtained.

【0052】(7)請求項7に対応する発明によれば、
分割された各直流電圧源に流れる電流が異なっても、そ
の電圧が所定値に保たれるので波形歪の少ない交流電力
を出力する多レベル出力のインバータ装置が得られる。
(7) According to the invention corresponding to claim 7,
Even if the current flowing through each of the divided DC voltage sources is different, the voltage is maintained at a predetermined value, so that a multi-level output inverter device that outputs AC power with less waveform distortion can be obtained.

【0053】(8)請求項8に対応する発明によれば、
本発明のブリッジ回路を用いて、単相あるいは多相の交
流電力を出力する多レベル出力のインバータ装置が得ら
れる。
(8) According to the invention corresponding to claim 8,
By using the bridge circuit of the present invention, a multi-level output inverter device that outputs single-phase or multi-phase AC power can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるブリッジ回路の第1実施例の構成
図。
FIG. 1 is a configuration diagram of a first embodiment of a bridge circuit according to the present invention.

【図2】上記第1実施例の動作を説明するための波形
図。
FIG. 2 is a waveform diagram for explaining the operation of the first embodiment.

【図3】本発明によるブリッジ回路の第2実施例の構成
図。
FIG. 3 is a configuration diagram of a second embodiment of a bridge circuit according to the present invention.

【図4】上記第2実施例の動作を説明するための波形
図。
FIG. 4 is a waveform diagram for explaining the operation of the second embodiment.

【図5】本発明によるブリッジ回路の第3実施例の構成
図。
FIG. 5 is a configuration diagram of a third embodiment of a bridge circuit according to the present invention.

【図6】上記第3実施例の動作を説明するための波形図
で、負荷力率が悪い場合の各部電流波形を示す図。
FIG. 6 is a waveform diagram for explaining the operation of the third embodiment, showing the current waveform of each part when the load power factor is poor.

【図7】上記第3実施例の動作を説明するための波形図
で、負荷力率が良い場合の各部電流波形を示す図。
FIG. 7 is a waveform diagram for explaining the operation of the third embodiment, showing the current waveforms at various points when the load power factor is good.

【図8】本発明によるインバータ装置の第1実施例の構
成図。
FIG. 8 is a configuration diagram of a first embodiment of an inverter device according to the present invention.

【図9】本発明によるインバータ装置の第2実施例の構
成図。
FIG. 9 is a configuration diagram of a second embodiment of an inverter device according to the present invention.

【図10】多レベル出力のインバータ装置に用いる従来
のブリッジ回路の構成図。
FIG. 10 is a configuration diagram of a conventional bridge circuit used in a multi-level output inverter device.

【図11】上記従来のブリッジ回路の動作を説明するた
めの波形図。
FIG. 11 is a waveform diagram for explaining the operation of the conventional bridge circuit.

【図12】従来のブリッジ回路の別の構成図。FIG. 12 is another configuration diagram of a conventional bridge circuit.

【符号の説明】[Explanation of symbols]

1…トランス 2…コンバータ 3…平滑コンデンサ 11〜13…ブリッジ回路(本発明によるもの) D1a〜D4a,D1b〜D4b,D1,1 〜D3,6 …ダイオード D11〜D16,D21〜D32…ダイオード E1 〜E4 …直流電源 OUT…出力端子 OUT1〜OUT3…出力端子 S1a〜S4a,S1b〜S4b…スイッチ素子 S11〜S14,S21〜S26…スイッチ素子1 ... transformer 2 ... converter 3 ... smoothing capacitor 11 to 13 ... a bridge circuit (According to the Invention) D 1a ~D 4a, D 1b ~D 4b, D 1,1 ~D 3,6 ... diode D 11 to D 16 , D 21 ~D 32 ... diodes E 1 to E 4 ... DC power supply OUT ... output terminal OUT1 to OUT3 ... output terminal S 1a ~S 4a, S 1b ~S 4b ... switching element S 11 ~S 14, S 21 ~S 26 … Switch element

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ダイオードを逆並列に接続したスイッチ
素子を少なくとも3個以上直列接続して成る正側アーム
と負側アームを直流電圧源の正極と負極間に直列接続
し、正側アームと負側アームの接続点を中間点とし該中
間点から交流電力を出力するブリッジ回路において、前
記スイッチ素子の直列数と同数の電圧源を直列接続して
前記直流電圧源とし、前記中間点を起点とし、対称位置
にある正側アームと負側アームのそれぞれのスイッチ素
子の直列接続点間に、それぞれ直列接続した複数のダイ
オードで成る少なくとも2個以上のクランプ回路を設
け、このクランプ回路によりスイッチ素子の直列接続点
の電位を前記電圧源の直列接続点の電位にクランプする
ことを特徴とするブリッジ回路。
1. A positive side arm and a negative side arm formed by connecting at least three or more switching elements in which diodes are connected in antiparallel are connected in series between a positive electrode and a negative electrode of a DC voltage source, and a positive side arm and a negative side arm. In a bridge circuit that outputs AC power from the connection point of the side arm as an intermediate point, the same number of voltage sources as the switching elements in series are connected in series to form the DC voltage source, and the intermediate point is the starting point. , At least two or more clamp circuits composed of a plurality of diodes connected in series are provided between the series connection points of the switch elements of the positive side arm and the negative side arm at the symmetrical position, and the clamp circuit is provided with at least two clamp circuits. A bridge circuit, wherein a potential at a series connection point is clamped to a potential at a series connection point of the voltage source.
【請求項2】 請求項1に記載のブリッジ回路におい
て、前記直流電圧源の正極と負極に最も近い前記対称位
置にあるスイッチ素子の直列接続点間に接続される第1
のクランプ回路の直列接続された複数のダイオードの直
列接続点を前記電圧源の直列接続点にそれぞれ接続し、
中間に位置する電圧源の両端に接続される該第1のクラ
ンプ回路のダイオードを2個のダイオードの直列回路と
成し、前記直流電圧源の正極と負極に次に近い前記対称
位置にあるスイッチ素子の直列接続点間に接続される第
2のクランプ回路の直列接続された複数のダイオードの
直列接点を前記第1のクランプ回路の2個のダイオード
の直列接続点に接続する構成とすることを特徴とするブ
リッジ回路。
2. The bridge circuit according to claim 1, wherein a first connection is provided between the series connection points of the switch elements at the symmetrical positions closest to the positive electrode and the negative electrode of the DC voltage source.
Connecting the series connection points of a plurality of series-connected diodes of the clamp circuit to the series connection point of the voltage source,
The switch of the first clamp circuit connected to both ends of the voltage source located in the middle is a series circuit of two diodes and is located at the symmetrical position next to the positive electrode and the negative electrode of the DC voltage source. The series contact of the plurality of series-connected diodes of the second clamp circuit connected between the series connection points of the elements is connected to the series connection point of the two diodes of the first clamp circuit. A characteristic bridge circuit.
【請求項3】 請求項1に記載のブリッジ回路におい
て、前記直流電圧源の正極と負極に最も近い前記対称位
置にあるスイッチ素子の直列接続点間に接続される第1
のクランプ回路の直列接続された複数のダイオードの直
列接続点を前記電圧源の直列接続点にそれぞれ接続し、
中間に位置する電圧源の両端に接続される該第1のクラ
ンプ回路のダイオードを2個のダイオードの直列回路と
成し、前記直流電圧源の正極と負極に順次に近い前記対
称位置にあるスイッチ素子の直列接続点間に接続される
複数のクランプ回路の直列接続された複数のダイオード
の直列接続点を前記第1のクランプ回路及び前記複数の
クランプ回路の2個のダイオードの直列接続点に順次そ
れぞれ接続し、該2個のダイオードの直列接続点間に接
続される前記複数のクランプ回路のダイオードをそれぞ
れ2個のダイオードの直列回路で構成することを特徴と
するブリッジ回路。
3. The bridge circuit according to claim 1, wherein a first connection is provided between the series connection points of the switching elements located at the symmetrical positions closest to the positive electrode and the negative electrode of the DC voltage source.
Connecting the series connection points of a plurality of series-connected diodes of the clamp circuit to the series connection point of the voltage source,
The switch of the first clamp circuit, which is connected to both ends of the voltage source located in the middle, is a series circuit of two diodes and is located at the symmetrical position near the positive electrode and the negative electrode of the DC voltage source. A series connection point of a plurality of diodes connected in series of a plurality of clamp circuits connected between the series connection points of the elements is sequentially connected to a series connection point of two diodes of the first clamp circuit and the plurality of clamp circuits. A bridge circuit, characterized in that the diodes of the plurality of clamp circuits connected to each other and connected between the series connection points of the two diodes are each formed of a series circuit of two diodes.
【請求項4】 請求項1に記載のブリッジ回路におい
て、前記正側アームと負側アームの直列接続されたスイ
ッチ素子の一部のスイッチ素子を並列接続し、通電容量
を増大することを特徴とするブリッジ回路。
4. The bridge circuit according to claim 1, wherein a part of the switching elements of the positive side arm and the negative side arm, which are connected in series, are connected in parallel to increase the current-carrying capacity. Bridge circuit to do.
【請求項5】 請求項1に記載のブリッジ回路におい
て、前記クランプ回路の直列接続されたダイオードの一
部のダイオードを並列接続し、通電容量を増大すること
を特徴とするブリッジ回路。
5. The bridge circuit according to claim 1, wherein a part of the series-connected diodes of the clamp circuit are connected in parallel to increase the conduction capacity.
【請求項6】 請求項1に記載のブリッジ回路におい
て、前記正側アーム及び負側アームの直列接続されたス
イッチ素子の正側の全部か負側の全部、あるいは正側ア
ームと負側アームの連続して直列接続された一部のスイ
ッチ素子を導通させ、前記直流電圧源の正極か負極の電
位、あるいは前記直流電圧源の複数の電圧源の直列接続
点の電位を前記中間点に出力することを特徴とするブリ
ッジ回路。
6. The bridge circuit according to claim 1, wherein the positive side arm and the negative side arm are connected in series to all of the positive side or the negative side, or the positive side arm and the negative side arm. Conducting a part of the switching elements connected in series continuously, outputs the potential of the positive electrode or the negative electrode of the DC voltage source or the potential of the series connection point of the plurality of voltage sources of the DC voltage source to the intermediate point. A bridge circuit characterized by that.
【請求項7】 請求項1に記載のブリッジ回路を備え、
このブリッジ回路に用いる前記直流電圧源を電圧制御さ
れた複数の電圧源の直列回路とすることを特徴とするイ
ンバータ装置。
7. The bridge circuit according to claim 1, comprising:
An inverter device characterized in that the direct-current voltage source used in the bridge circuit is a series circuit of a plurality of voltage-controlled voltage sources.
【請求項8】 請求項1に記載のブリッジ回路を少なく
とも2回路以上備え、単相あるいは多相の交流電力を出
力することを特徴とするインバータ装置。
8. An inverter device comprising at least two bridge circuits according to claim 1 and outputting single-phase or multi-phase AC power.
JP02168594A 1994-02-21 1994-02-21 Bridge circuit and inverter device Expired - Lifetime JP3150521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02168594A JP3150521B2 (en) 1994-02-21 1994-02-21 Bridge circuit and inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02168594A JP3150521B2 (en) 1994-02-21 1994-02-21 Bridge circuit and inverter device

Publications (2)

Publication Number Publication Date
JPH07231673A true JPH07231673A (en) 1995-08-29
JP3150521B2 JP3150521B2 (en) 2001-03-26

Family

ID=12061930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02168594A Expired - Lifetime JP3150521B2 (en) 1994-02-21 1994-02-21 Bridge circuit and inverter device

Country Status (1)

Country Link
JP (1) JP3150521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204457A (en) * 2013-04-01 2014-10-27 東芝三菱電機産業システム株式会社 Power conversion device
JP2014204548A (en) * 2013-04-04 2014-10-27 東芝三菱電機産業システム株式会社 Electric power conversion system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204457A (en) * 2013-04-01 2014-10-27 東芝三菱電機産業システム株式会社 Power conversion device
JP2014204548A (en) * 2013-04-04 2014-10-27 東芝三菱電機産業システム株式会社 Electric power conversion system
US9843272B2 (en) 2013-04-04 2017-12-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter capable of outputting a plurality of different levels of voltages

Also Published As

Publication number Publication date
JP3150521B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
Ho et al. Single-phase modified quasi-Z-source cascaded hybrid five-level inverter
Nami et al. Five level cross connected cell for cascaded converters
Konstantinou et al. Comparison and evaluation of sub-module configurations in modular multilevel converters
US6337804B1 (en) Multilevel PWM voltage source inverter control at low output frequencies
AU2014393710B2 (en) Multi level inverter
JP5803683B2 (en) Multi-level power conversion circuit
US8288896B2 (en) 3N-4-level voltage inverter
US20180302003A1 (en) Power converter
US6879503B2 (en) Cutting electric power converter
Karasani et al. A modified switched-diode topology for cascaded multilevel inverters
JP2000166251A (en) Power conversion device
Katebi et al. Advanced three level active neutral point converter with fault tolerant capabilities
JP6647471B1 (en) 3-level power converter
JP3160792B2 (en) Power converter
EP3462594B1 (en) Five-level converter
US20210234475A1 (en) Scalable multi-level power converter
KR20230151479A (en) Generalized multilevel converter circuit topology with switched capacitors
JP3150521B2 (en) Bridge circuit and inverter device
Yalla et al. A new three-phase multipoint clamped 5L-HPFC with reduced PSD count and switch stress
Shahane et al. A hybrid MMC with SiC-based full-bridge and Si-based half-bridge sub-modules with novel voltage sorting scheme
US20230216428A1 (en) Four-Level Power Converter
Foti et al. Reduced switch count asymmetric 13-Level voltage source inverter
EP0481304A2 (en) A power circuit for impressed voltage inverters, with (2*n+1) voltage levels
Sayago et al. Comparison of medium voltage IGBT-based 3L-ANPC-VSCs
JPH0638507A (en) Power converter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term