JPH07231610A - Gas cooling method for largepower generator and mixed gas for cooling - Google Patents

Gas cooling method for largepower generator and mixed gas for cooling

Info

Publication number
JPH07231610A
JPH07231610A JP2074394A JP2074394A JPH07231610A JP H07231610 A JPH07231610 A JP H07231610A JP 2074394 A JP2074394 A JP 2074394A JP 2074394 A JP2074394 A JP 2074394A JP H07231610 A JPH07231610 A JP H07231610A
Authority
JP
Japan
Prior art keywords
gas
cooling
generator
mixed
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2074394A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
聡 渡辺
Toshio Minami
利生 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2074394A priority Critical patent/JPH07231610A/en
Publication of JPH07231610A publication Critical patent/JPH07231610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To obtain a gas cooling method in which a burning range is reduced while the characteristic of hydrogen gas is being utilized and whose safety is increased by a method wherein a mixed gas of hydrogen gas and helium gas is used as a cooling medium used to cool a large power generator. CONSTITUTION:A supply passage 2 and a discharge passage 3 for a cooling gas are connected to a turbine generator 1, the cooling-gas supply passage 2 and the cooling-gas discharge passage 3 are connected via a heat exchanger 4, and a closed-loop cooling-gas passage 5 is formed. Then, a mixed gas of hydrogen gas and helium gas is filled into the cooling-gas passage 5, the mixed gas is circulated as a cooling gas between the generator 1 and the heat exchanger 4, and the inside of the generator 1 is cooled. Thereby, it is possible to obtain the gas cooling method whose good cooling performance can be maintained while the characteristic of the hydrogen gas is being utilized, which reduces a burning range and whose safety can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電所などに設置され
ている大容量発電機の冷却方法及びその冷却に使用する
混合ガスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method for a large-capacity generator installed in a power plant or the like and a mixed gas used for cooling the same.

【0002】[0002]

【従来技術】従来、発電所に設置されている大容量ター
ビン発電機では、冷却効果や全負荷効率等の面から、水
素ガスを用いて冷却している。
2. Description of the Related Art Conventionally, in a large-capacity turbine generator installed in a power plant, hydrogen gas is used for cooling in terms of cooling effect and full load efficiency.

【0003】[0003]

【発明が解決しようとする課題】ところが、水素ガスの
燃焼範囲は4.1〜95%と範囲が広く、そのため、シ
ールを高精度にしなければならないうえ、ケーシングそ
の他の外郭部材も耐爆強度を持たせた構造にしなければ
ならないという問題が合った。本発明はこのような点に
着目してなされたもので、冷却性や全負荷効率が水素冷
却と同等でありながら、安全性に優れた冷却方法及びそ
の冷却方法に使用する混合ガスを提供することを目的と
する。
However, since the combustion range of hydrogen gas is as wide as 4.1 to 95%, the seal must be highly accurate and the casing and other outer members also have an explosion-proof strength. The problem of having to have a structure was met. The present invention has been made paying attention to such points, and provides a cooling method excellent in safety while having a cooling property and a full load efficiency equivalent to that of hydrogen cooling, and a mixed gas used in the cooling method. The purpose is to

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
めに本発明では、大容量発電機の冷却に使用する冷却媒
体を水素ガスとヘリウムガスの混合ガスにしたことを特
徴とし、特に、ヘリウムガスの混合率を5〜70 Vol%
にしたことを特徴としている。
In order to achieve the above object, the present invention is characterized in that the cooling medium used for cooling the large capacity generator is a mixed gas of hydrogen gas and helium gas, and particularly, Helium gas mixing rate is 5 to 70 Vol%
It is characterized by having done.

【0005】[0005]

【作用】本発明では、大容量発電機の冷却に水素ガスと
ヘリウムガスの混合ガスを使用するようにしているの
で、水素ガスの特性を生かしつつ、燃焼範囲を縮小して
安全性を高めることになる。
In the present invention, since the mixed gas of hydrogen gas and helium gas is used for cooling the large-capacity generator, the combustion range can be reduced and the safety can be improved while utilizing the characteristics of hydrogen gas. become.

【0006】[0006]

【実施例】図1は火力発電所等に設置されている大容量
タービン発電機の冷却系を示す概略図であり、タービン
発電機(1)に冷却用ガスの供給路(2)と排出路(3)とを
接続し、この冷却用ガス供給路(2)と冷却用ガス排出路
(3)とを熱交換器(4)を介して接続することにより、閉
ループの冷却ガス通路(5)が形成してある。
EXAMPLE FIG. 1 is a schematic view showing a cooling system of a large-capacity turbine generator installed in a thermal power plant, etc., in which a cooling gas supply passage (2) and an exhaust passage are provided to a turbine generator (1). (3) is connected to this cooling gas supply path (2) and cooling gas discharge path
By connecting (3) and (3) via the heat exchanger (4), a closed loop cooling gas passage (5) is formed.

【0007】そして、この冷却ガス通路(5)内に冷却用
ガスを充填し、この冷却用ガスを発電機(1)内と熱交換
器(4)との間で循環させて発電機(1)の内部を冷却する
ようになっている。
Then, the cooling gas passage (5) is filled with a cooling gas, and the cooling gas is circulated between the inside of the generator (1) and the heat exchanger (4) so that the generator (1 ) Is designed to cool the inside.

【0008】冷却用ガスとして、水素ガスとヘリウムガ
スとの混合ガスを使用している。図2は、25℃大気圧
での水素−ヘリウム−空気混合物の爆発限界を示すグラ
フで、このグラフによると水素ガスにヘリウムガスを混
合すると爆発範囲が狭くなる。そして、ヘリウムガスを
5 Vol%程度混合すると、その爆発限範囲は1割程度狭
くなり、ヘリウムガスを70 Vol%程度混合すると、そ
の爆発範囲は8割程度狭くなる。
A mixed gas of hydrogen gas and helium gas is used as a cooling gas. FIG. 2 is a graph showing the explosion limit of a hydrogen-helium-air mixture at 25 ° C. atmospheric pressure. According to this graph, when helium gas is mixed with hydrogen gas, the explosion range becomes narrow. When helium gas is mixed at about 5 Vol%, the explosion limit range is narrowed by about 10%, and when helium gas is mixed at about 70 Vol%, the explosion range is narrowed by about 80%.

【0009】一方、水素ガスにヘリウムガスを混合する
と、全体としての熱伝導率が低下する。図3はヘリウム
ガスの混合率を変化させた場合の熱伝導率の変化を示す
グラフで、このグラフによれば、ヘリウムガスを70 V
ol%混合させた場合には約11%程度熱伝導率が低下す
ることになる。また、図4はヘリウムガスの混合率を変
化させた場合のガス粘度の変化を示すグラフで、このグ
ラフによれば、ヘリウムガスを70 Vol%混合させた場
合には1.8倍程度粘度が高くなることになる。そし
て、熱伝導率やガス粘度は冷却用ガスの冷却性能に大き
く影響するものであるから、熱伝導率は高く、粘度は低
いほうが冷却性に優れたガスであるとされいてる。
On the other hand, when helium gas is mixed with hydrogen gas, the thermal conductivity as a whole is lowered. FIG. 3 is a graph showing the change in thermal conductivity when the mixing ratio of helium gas is changed. According to this graph, helium gas is 70 V
When ol% is mixed, the thermal conductivity is reduced by about 11%. FIG. 4 is a graph showing changes in gas viscosity when the mixing ratio of helium gas is changed. According to this graph, when helium gas is mixed at 70 Vol%, the viscosity is about 1.8 times. It will be high. Since the thermal conductivity and the gas viscosity have a great influence on the cooling performance of the cooling gas, the higher the thermal conductivity and the lower the viscosity, the better the cooling property.

【0010】したがって、ヘリウムガスの混合率は高い
ほど安全性は高まるが冷却性に劣り、ヘリウムガスの混
合率が低いほど冷却性は優れるが安全性が低下するか
ら、ヘリウムガスの混合率を5〜70%程度に設定する
と、爆発範囲の下限濃度は変わらないが爆発範囲の上限
濃度は10〜80%減少し、冷却性能をあまり低下させ
るがなくなる。
Therefore, the higher the mixing ratio of helium gas, the higher the safety but inferior cooling performance, and the lower the mixing ratio of helium gas, the better the cooling performance but the lower safety. Therefore, the mixing ratio of helium gas is 5%. When it is set to about 70%, the lower limit concentration of the explosion range does not change, but the upper limit concentration of the explosion range decreases by 10 to 80%, and the cooling performance is not lowered so much.

【0011】[0011]

【発明の効果】本発明では、大容量発電機の冷却に水素
ガスとヘリウムガスの混合ガスを使用するようにしてい
るので、水素ガスの特性を生かして良好な冷却性能を維
持しつつ、燃焼範囲を縮小して安全性を高めることがで
きる。
According to the present invention, since the mixed gas of hydrogen gas and helium gas is used for cooling the large capacity generator, combustion is performed while maintaining good cooling performance by utilizing the characteristics of hydrogen gas. The range can be reduced to increase safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】大容量タービン発電機の冷却系を示す概略図で
ある。
FIG. 1 is a schematic diagram showing a cooling system of a large capacity turbine generator.

【図2】水素ガス−ヘリウムガス−空気混合物の爆発限
界を示すグラフである。
FIG. 2 is a graph showing the explosion limit of a hydrogen gas-helium gas-air mixture.

【図3】水素ガスとヘリウムガスとの混合物の混合率に
よる熱伝導率の変化を示すグラフである。
FIG. 3 is a graph showing changes in thermal conductivity depending on the mixing ratio of a mixture of hydrogen gas and helium gas.

【図4】水素ガスとヘリウムガスとの混合物の混合率に
よるガスの粘度変化を示すグラフである。
FIG. 4 is a graph showing changes in gas viscosity depending on the mixing ratio of a mixture of hydrogen gas and helium gas.

【符号の説明】[Explanation of symbols]

1…タービン発電機、2…冷却用ガスの供給路、3…冷
却用ガスの排出路、4…熱交換器、5…冷却ガス通路。
DESCRIPTION OF SYMBOLS 1 ... Turbine generator, 2 ... Cooling gas supply path, 3 ... Cooling gas discharge path, 4 ... Heat exchanger, 5 ... Cooling gas path.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大容量発電機の冷却に使用する冷却媒体
として、水素ガスとヘリウムガスの混合ガスを使用する
大容量発電機のガス冷却方法。
1. A gas cooling method for a large-capacity generator using a mixed gas of hydrogen gas and helium gas as a cooling medium used for cooling the large-capacity generator.
【請求項2】 水素ガスとヘリウムガスとからなり、ヘ
リウムガスの混合率を5〜70 Vol%にした大容量発電
機の冷却用混合ガス。
2. A mixed gas for cooling a large-capacity generator, which comprises hydrogen gas and helium gas and has a helium gas mixing ratio of 5 to 70 Vol%.
JP2074394A 1994-02-18 1994-02-18 Gas cooling method for largepower generator and mixed gas for cooling Pending JPH07231610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074394A JPH07231610A (en) 1994-02-18 1994-02-18 Gas cooling method for largepower generator and mixed gas for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074394A JPH07231610A (en) 1994-02-18 1994-02-18 Gas cooling method for largepower generator and mixed gas for cooling

Publications (1)

Publication Number Publication Date
JPH07231610A true JPH07231610A (en) 1995-08-29

Family

ID=12035680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074394A Pending JPH07231610A (en) 1994-02-18 1994-02-18 Gas cooling method for largepower generator and mixed gas for cooling

Country Status (1)

Country Link
JP (1) JPH07231610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550113B2 (en) 2004-09-16 2009-06-23 Proton Energy Systems, Inc. System for maintaining hydrogen purity in electrical generators and method thereof
US7552622B2 (en) 2004-09-16 2009-06-30 Proton Energy Systems System for monitoring the health of electrical generators and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858307A (en) * 1971-11-05 1973-08-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858307A (en) * 1971-11-05 1973-08-16

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550113B2 (en) 2004-09-16 2009-06-23 Proton Energy Systems, Inc. System for maintaining hydrogen purity in electrical generators and method thereof
US7552622B2 (en) 2004-09-16 2009-06-30 Proton Energy Systems System for monitoring the health of electrical generators and method thereof
US7879613B2 (en) 2004-09-16 2011-02-01 Proton Energy Systems, Inc. System for maintaining hydrogen purity in electrical generators and method thereof
US7888124B2 (en) 2004-09-16 2011-02-15 Proton Energy Systems System for monitoring the health of electrical generators and method thereof

Similar Documents

Publication Publication Date Title
US2443841A (en) Process for power generation
JPH07231610A (en) Gas cooling method for largepower generator and mixed gas for cooling
Liebhafsky The fuel cell and the Carnot cycle
JPS59160032A (en) Gas turbine
GB382547A (en) Improvements in turbines for hot driving medium
GB1152686A (en) Gas Turbine Plant with Nuclear Reactor
US3440140A (en) Protection of zirconium alloy components against hydriding
Basov et al. High-power electroionization CO 2 and CO lasers for industrial applications
US3740313A (en) Burner-flame arrester for burning offgas from a boiling water reactorpower plant
Miller et al. Gas turbine design and superalloys
Mann et al. A Refrigeration System Incorporating a Low-Capacity, High-Speed, Gas-Bearing-Supported Expansion Turbine
JPS59231103A (en) Cooled blade of gas turbine
CN109215815B (en) High-temperature high-pressure helium cooling system for performance test of internal components of fusion reactor
Thomas et al. Increased Capabilities of the Langley Mach 7 Scramjet Test Facility
Whittaker et al. A system employing laser heating for the measurement of high-temperature thermal properties over a wide pressure range
Cheng et al. What produces the high densities observed in solar flare plasmas
RICE et al. Comparison of the HTTT reheat-gas-turbine combined cycle with the HTTT nonreheat gas-turbine combined cycle(High-Temperature Turbine Technology)
Bicanic et al. The effect of hydrogen addition to some HCN laser active mixtures on the CW output power at 337 μm
BOGOMOLOV Thermodynamics of a multistage air-cooled gas turbine
RU2097664C1 (en) Power heating and refrigerating plant
Bäuerle et al. The new grenoble 100 μK refrigerator
GB1062170A (en) Turbomachine cooling system
CN114999685A (en) Cooling method of high-temperature gas cooled reactor
Sugi CO2 EMISSION CONTROL IN THE ENERGY SECTO
Testor et al. Gain and generation of laser radiation in a N2O-N2/CO/-He mixture in a supersonic flow