JPH07231297A - Optical fiber polarized wave mode dispersion compensation equipment - Google Patents

Optical fiber polarized wave mode dispersion compensation equipment

Info

Publication number
JPH07231297A
JPH07231297A JP6020446A JP2044694A JPH07231297A JP H07231297 A JPH07231297 A JP H07231297A JP 6020446 A JP6020446 A JP 6020446A JP 2044694 A JP2044694 A JP 2044694A JP H07231297 A JPH07231297 A JP H07231297A
Authority
JP
Japan
Prior art keywords
circuit
signal
equalization
optical
mode dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6020446A
Other languages
Japanese (ja)
Other versions
JP3281162B2 (en
Inventor
Takeshi Koseki
健 小関
Hiroyuki Ibe
博之 井辺
Shiyaama Manitsushiyu
マニッシュ・シャーマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02044694A priority Critical patent/JP3281162B2/en
Publication of JPH07231297A publication Critical patent/JPH07231297A/en
Application granted granted Critical
Publication of JP3281162B2 publication Critical patent/JP3281162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To automatically obtain a state in which an equalization error signal is minimized by using a parameter control circuit to slightly change a parameter for a polarized wave mode dispersion equalization optical circuit thereby finding out the direction of decrease of the equalization error signal and repeating pameratemer control through a control loop. CONSTITUTION:A signal light (pulse signal) subject to polarized wave mode dispersion from an optical transmission line 1 is received by a photo detector 3 via an equalization (optical) circuit 2 and amplified by an AGC circuit 4 and it is identified by an identification circuit 6. The identified reception pulse signal is compared with a synchronization reception pulse signal before identification at a differential amplifier 9 to obtain a difference signal and it is rectified and integrated to generate the equalization error signal. Then a pulse control circuit 12 is used to change slightly a parameter (phik, thetak) of the polarized wave mode dispersion equalization circuit 2 thereby finding out a direction of a decreased equalization error signal and pulse control is repeated through the control loop to kick out the equalization error signal to be minimized automatically. Thus, PMD distortion is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超高速超長距離光伝
送システムにおいて、光ファイバの伝送帯域幅を制限す
る偏波モード分散特性を補償する光ファイバ偏波モード
分散補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber polarization mode dispersion compensator for compensating for polarization mode dispersion characteristics which limits the transmission bandwidth of an optical fiber in an ultra high speed ultra long distance optical transmission system.

【0002】[0002]

【従来の技術】周知のように、光増幅器による超高速超
長距離光伝送システムは、太平洋海底光ケーブルシステ
ムの構築などに向けて研究開発が盛んである。その中
で、本質的には未解決の課題として偏波モード分散(P
MD)補償法がある。特に、光増幅器の実用化に伴い、
従来問題とならなかった光ファイバの偏波モード分散に
よる伝送歪が、10000km級の非再生中継光伝送方
式の開発研究で深刻な課題になりつつある。
2. Description of the Related Art As is well known, research and development of an ultra-high-speed ultra-long-distance optical transmission system using an optical amplifier has been actively conducted for construction of a Pacific Ocean submarine optical cable system. Among them, the polarization mode dispersion (P
MD) There is a compensation method. Especially with the practical use of optical amplifiers,
Transmission distortion due to polarization mode dispersion of an optical fiber, which has not been a problem in the past, is becoming a serious problem in the research and development of a non-regenerative repeater optical transmission system of 10000 km class.

【0003】これへの対策は研究の緒についたばかり
で、実験室段階でのPMD補償法が一つ報告されている
にすぎない。この報告に記載されている補償法は、送信
端、受信端にそれぞれ偏波制御器を配置し、送信端の偏
波制御器を変化させる毎に受信端の偏波制御器を符号誤
り率が最小になるように制御するという操作を、送信
端、受信端で相互に連絡し合いながら繰り返すことで、
最小の符号誤り率を与える条件を求め続けるといった方
法である。
Measures against this have just been started in research, and only one PMD compensation method at the laboratory stage has been reported. In the compensation method described in this report, polarization controllers are arranged at the transmitting end and the receiving end respectively, and every time the polarization controller at the transmitting end is changed, the polarization error controller causes the polarization error at the receiving end to change. By repeating the operation of controlling to the minimum while communicating with each other at the transmitting end and the receiving end,
This is a method in which the condition for giving the minimum code error rate is continuously calculated.

【0004】しかしながら、上記のようなPMD補償法
では、10000km級の光伝送システムに採用すると
すれば、10000kmにも及ぶ送信端及び受信端間で
相互に制御情報を交換する必要があり、極めて非現実的
である。さらに、使用する偏波制御器が波長依存性を持
たないため、等化できる偏波モード分散が特殊な場合に
限られるなど、大きな欠点を有している。
However, in the above PMD compensation method, if it is adopted in an optical transmission system of 10000 km class, it is necessary to exchange control information between the transmitting end and the receiving end of 10000 km, which is extremely non-existent. It is realistic. Further, since the polarization controller used does not have wavelength dependence, it has a serious drawback that the polarization mode dispersion that can be equalized is limited to a special case.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来より、超高速超長距離光伝送システムにおいて、光フ
ァイバの偏波モード分散による伝送歪を補償することが
要求されているが、今だこの問題を解決する有効な方法
が案出されていない。
As described above, it has been conventionally required to compensate for transmission distortion due to polarization mode dispersion of an optical fiber in an ultrafast ultralong distance optical transmission system. However, no effective method has been devised to solve this problem.

【0006】この発明は上記の課題を解決するためにな
されたもので、光ファイバの偏波モード分散による伝送
歪を補償することのできる光ファイバ偏波モード分散補
償装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide an optical fiber polarization mode dispersion compensator capable of compensating for transmission distortion due to polarization mode dispersion of an optical fiber. To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る光ファイバ偏波モード分散補償装置
は、光伝送路からの偏波モード分散された信号光を入力
し、直交する光波に対して一定の群遅延時間差を与える
第1の光回路、直交する光波の位相差を制御信号に応じ
て可変する機能及び直交する光波の振幅回転接続角を制
御信号に応じて可変相互変換する機能を有する第2の光
回路がN(Nは任意の自然数)段繰返し直列接続され、
偏波モード分散された信号光の直交光波を取り出して一
定の群遅延時間差、制御信号に対応する位相差、振幅回
転接続角を可変制御する等化光回路と、この等化光回路
から出力される信号光を受信する光受信手段と、この手
段で得られる受信信号から符号列を識別する符号列識別
手段と、この手段の識別信号を基準に識別前の受信信号
と比較して差信号を生成し、整流、積分して等化誤差信
号を生成する等化誤差信号生成手段と、この手段で得ら
れる等化誤差信号が最小となるように前記光等化回路に
位相差、振幅回転接続角に対する制御信号を生成出力す
るパラメータ制御手段とを具備して構成したことを第1
の特徴とする。
In order to achieve the above object, an optical fiber polarization mode dispersion compensating apparatus according to the present invention inputs a signal light in which polarization mode dispersion is performed from an optical transmission line, and an orthogonal optical wave. A first optical circuit that provides a constant group delay time difference with respect to the function, a function of varying the phase difference of orthogonal light waves according to a control signal, and a variable mutual conversion of an amplitude rotation connection angle of orthogonal light waves according to a control signal A second optical circuit having a function is repeatedly connected in N (N is an arbitrary natural number) stages in series,
An equalization optical circuit that variably controls a constant group delay time difference, a phase difference corresponding to a control signal, and an amplitude rotation connection angle by extracting orthogonal light waves of polarization-mode-dispersed signal light, and output from this equalization optical circuit. Optical receiving means for receiving a signal light, a code string identifying means for identifying a code string from the received signal obtained by this means, and a difference signal comparing the received signal before identification with the identifying signal of this means as a reference. Equalization error signal generating means for generating, rectifying and integrating to generate an equalization error signal, and phase difference and amplitude rotation connection to the optical equalization circuit so that the equalization error signal obtained by this means is minimized. And a parameter control means for generating and outputting a control signal for the corner.
It is a feature of.

【0008】特に、前記第2の光回路は、複屈折性が十
分小さいと見なせる偏波依存性ファイバを制御信号に応
じた角度だけ捩じることで振幅回転接続角の可変相互変
換機能を実現し、偏波保持ファイバに部分的に制御信号
に応じた温度変化を与えることで位相差可変機能を実現
したことを第2の特徴とする。
In particular, the second optical circuit realizes a variable mutual conversion function of the amplitude rotation connection angle by twisting the polarization dependent fiber which can be regarded as having sufficiently small birefringence by an angle corresponding to the control signal. The second feature is that the phase difference varying function is realized by partially changing the temperature of the polarization maintaining fiber according to the control signal.

【0009】[0009]

【作用】上記第1の特徴とする構成による光ファイバ偏
波モード分散補償装置では、偏波モード分散を受けた信
号光を等化光回路を介して受信し、一度符号列を識別し
て、識別前後の信号を比較することでその差信号を得
て、整流、積分することで等化誤差信号を生成し、等化
光回路のパラメータを少し変化させて等化誤差信号が減
少する方向を見つけ、制御ループによりパラメータ制御
を繰返すことで、自動的に等化誤差信号が最小となる状
態に追い込むようにしている。
In the optical fiber polarization mode dispersion compensator according to the first characteristic configuration, the signal light subjected to the polarization mode dispersion is received through the equalization optical circuit, the code string is once identified, The difference signal is obtained by comparing the signals before and after the identification, the equalization error signal is generated by rectifying and integrating, and the equalization error signal is reduced by slightly changing the parameters of the equalization optical circuit. By finding and repeating the parameter control by the control loop, the equalization error signal is automatically driven to the minimum state.

【0010】上記第2の特徴とする構成の等化光回路で
は、偏波保持ファイバ回転接続型光回路を構成するもの
で、偏波依存性ファイバと偏波保持ファイバの物理特性
を利用することで、振幅回転接続角の可変相互変換機能
と位相差可変機能を実現している。
In the equalizing optical circuit having the second characteristic configuration, a polarization maintaining fiber rotary connection type optical circuit is configured, and the physical characteristics of the polarization dependent fiber and the polarization maintaining fiber are used. In this way, the variable mutual conversion function of the amplitude rotation connection angle and the phase difference variable function are realized.

【0011】[0011]

【実施例】以下、図面を参照してこの発明の実施例を詳
細に説明する。図1はこの発明に係る光ファイバ偏波モ
ード分散補償装置の構成を示すもので、偏波モード分散
を示す光伝送路1からの信号光(パルス信号)は偏波モ
ード分散等化光回路2に入力される。この偏波モード分
散等化光回路2は、初段の直交光波相互変換回路(θ0
)21と、直交光波間群遅延時間差回路(Ts )22
N、可変光位相差回路(φk )23N及び可変直交光波
相互変換回路(θk )24Nの繰返し光回路部(繰返し
数をNとする)と、最終段としての直交光波間群遅延時
間差回路(Ts )25とで構成される。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the configuration of an optical fiber polarization mode dispersion compensator according to the present invention. Signal light (pulse signal) from an optical transmission line 1 exhibiting polarization mode dispersion is a polarization mode dispersion equalization optical circuit 2 Entered in. This polarization mode dispersion equalization optical circuit 2 is a first-stage orthogonal lightwave mutual conversion circuit (θ0
) 21 and a group delay time difference circuit (Ts) 22 between orthogonal light waves
N, the variable optical phase difference circuit (φk) 23N and the variable orthogonal lightwave mutual conversion circuit (θk) 24N, and the repeating optical circuit unit (where the number of repetitions is N), and the orthogonal lightwave group delay time difference circuit (Ts) as the final stage. ) 25 and.

【0012】ここで、初段の直交光波相互変換回路21
は直交する光波の振幅をθ0 だけ相互変換する光回路で
ある。繰返し光回路部の直交光波間群遅延時間差回路2
2N及び最終段の直交光波間群遅延時間差回路25は直
交する光波に対してTsだけ群遅延時間差を与える光回
路である。繰返し光回路部の可変光位相差回路(φk)
23Nは、直交する光波に対して制御信号に基づいてφ
k (光位相シフト量)だけ位相差を与える光回路であ
る。繰返し光回路部の可変直交光波相互変換回路24N
は、直交する光波に対して制御信号に基づいてθk (回
転接続角)だけ振幅を可変相互変換する光回路である。
Here, the first stage orthogonal lightwave mutual conversion circuit 21
Is an optical circuit that mutually converts the amplitude of orthogonal light waves by θ 0. Group delay time difference circuit between orthogonal light waves of repetitive optical circuit unit 2
The group delay time difference circuit 25 between the orthogonal light waves of 2N and the final stage is an optical circuit that gives a group delay time difference of Ts to the orthogonal light waves. Variable optical phase difference circuit (φk) for repetitive optical circuit
23N is φ based on a control signal for orthogonal light waves.
It is an optical circuit that gives a phase difference by k (optical phase shift amount). Variable orthogonal lightwave mutual conversion circuit 24N of repetitive optical circuit unit
Is an optical circuit that mutates the amplitude of the orthogonal light waves by θk (rotational connection angle) based on the control signal.

【0013】偏波モード分散等化光回路2を通過した信
号光は、偏波依存性のない光検出器3で光電変換され、
受信パルス信号として出力される。この受信パルス信号
はプリアンプ41及び帰還抵抗42によるAGC(自動
利得制御)回路4で所定レベルまで増幅された後、クロ
ック再生回路(CLOCK−REG)5及び識別回路
(DECISION)6に送られる(この点を識別点A
とする)。
The signal light passing through the polarization mode dispersion equalization optical circuit 2 is photoelectrically converted by the photodetector 3 having no polarization dependence,
It is output as a reception pulse signal. This received pulse signal is amplified to a predetermined level by an AGC (automatic gain control) circuit 4 by a preamplifier 41 and a feedback resistor 42, and then sent to a clock recovery circuit (CLOCK-REG) 5 and an identification circuit (DECISION) 6 (this Identify point A
And).

【0014】クロック再生回路5は入力信号から伝送信
号の同期クロックを再生するもので、この再生クロック
は識別回路6に送られる。この識別回路6は受信パルス
信号を再生クロックのタイミングで信号中の符号列を識
別するもので、識別された受信パルス信号は、識別点A
での等化波形を生成する等化フィルタ(HEQ)7を介
して差動増幅器9の(+)入力端に送られる。
The clock reproducing circuit 5 reproduces the synchronous clock of the transmission signal from the input signal, and this reproduced clock is sent to the identifying circuit 6. The discrimination circuit 6 discriminates the code string in the received pulse signal at the timing of the reproduction clock. The discerned received pulse signal is the discrimination point A.
Is sent to the (+) input terminal of the differential amplifier 9 via the equalization filter (HEQ) 7 for generating the equalized waveform in the.

【0015】一方、識別点Aでの受信パルス信号は遅延
回路(DELAY)8で識別回路6及び等化フィルタ7
の処理に要する時間だけ遅延されて差動増幅器9の
(−)入力端に送られる。この差動増幅器9は(+)入
力端に供給される識別パルス信号を基準に(−)入力端
に供給される受信パルス信号を比較して、その差信号を
出力するものである。この差信号は整流回路(REC
T)10で整流され、ローパスフィルタ(LPF)11
で積分されて、等化誤差信号としてパラメータ制御回路
(CONTROL)12に送られる。
On the other hand, the received pulse signal at the identification point A is delayed by the delay circuit (DELAY) 8 and the identification circuit 6 and the equalization filter 7 are provided.
Is delayed by the time required for processing and is sent to the (−) input terminal of the differential amplifier 9. The differential amplifier 9 compares the received pulse signal supplied to the (-) input terminal with the identification pulse signal supplied to the (+) input terminal as a reference, and outputs the difference signal. This difference signal is a rectifier circuit (REC
T) rectified by 10 and low-pass filter (LPF) 11
Is integrated by and is sent to the parameter control circuit (CONTROL) 12 as an equalization error signal.

【0016】このパラメータ制御回路12は、与えられ
た等化誤差信号が最小になるように偏波モード分散等化
光回路2の初段直交光位相差回路21を駆動する共に等
化光回路2の可変光位相差回路23N及び可変直交光波
相互変換回路24Nのパラメータ{φk ,θk }を制御
することで、偏波モード分散を等化補償するものであ
る。
The parameter control circuit 12 drives the first-stage quadrature optical phase difference circuit 21 of the polarization mode dispersion equalization optical circuit 2 so that the given equalization error signal is minimized, and the equalization optical circuit 2 also receives the equalization error signal. The polarization mode dispersion is equalized and compensated by controlling the parameters {φk, θk} of the variable optical phase difference circuit 23N and the variable orthogonal lightwave mutual conversion circuit 24N.

【0017】すなわち、上記構成による補償装置は、光
伝送路1からの偏波モード分散を受けた信号光(パルス
信号)を等化光回路2を介して光検出器3で受信し、A
GC回路4で増幅した後、識別回路6で識別する。この
識別された受信パルス信号を同期化された識別前の受信
パルス信号と差動増幅器9で比較することで差信号を得
て、整流、積分することで等化誤差信号を生成する。
That is, the compensator having the above-mentioned configuration receives the signal light (pulse signal), which has undergone the polarization mode dispersion from the optical transmission line 1, at the photodetector 3 via the equalization optical circuit 2, and A
After being amplified by the GC circuit 4, the identification circuit 6 identifies. By comparing the identified received pulse signal with the synchronized received pulse signal before identification by the differential amplifier 9, a difference signal is obtained and rectified and integrated to generate an equalization error signal.

【0018】そして、パラメータ制御回路12で偏波モ
ード分散等化光回路2のパラメータ{φk ,θk }を少
し変化させて等化誤差信号が減少する方向を見つけ、上
述の制御ループによりパラメータ制御を繰返すことで自
動的に等化誤差信号が最小となる状態に追い込む。これ
によってPMD歪を補償することができる。
Then, the parameter control circuit 12 slightly changes the parameters {φk, θk} of the polarization mode dispersion equalization optical circuit 2 to find the direction in which the equalization error signal decreases, and the parameter control is performed by the control loop described above. By repeating the process, the equalization error signal is automatically minimized. This makes it possible to compensate for PMD distortion.

【0019】図2、図3は共に上記構成による補償装置
のシュミレーション結果を示すものである。ここでは、
PMD伝送路モデルとして、区間遅延時間差30ps、
区間数9とした。等化光回路2は2段構成(N=2)
で、Ts =60psである。
2 and 3 both show simulation results of the compensator having the above-mentioned structure. here,
As a PMD transmission line model, a section delay time difference of 30 ps,
The number of sections was 9. The equalization optical circuit 2 has a two-stage configuration (N = 2)
Therefore, Ts = 60 ps.

【0020】図2は信号光が比較的大きなPMD歪を受
けている場合に対する等化前後の時間波形を示してい
る。図2(a)は光伝送路1に用いられる光ファイバが
伝送光に与える偏波モード分散特性を示すもので、横軸
は光周波数 [GHz] 、縦軸は偏波モード分散によるファ
イバ伝達関数行列成分|P11(f) |2 (振幅自乗特性)
を示している。図2(b)は送信波aを光伝送路1に通
すことによりPMD歪を受けた受信波bの波形を示すも
ので、横軸は時間 [ns] 、縦軸は光強度を示している。
図2(c)は送信波aについて上記等化光回路2で補償
を行ったときの受信波b′の波形を示すもので、横軸は
時間 [ns] 、縦軸は光強度を示している。
FIG. 2 shows time waveforms before and after equalization when the signal light is subjected to a relatively large PMD distortion. FIG. 2 (a) shows the polarization mode dispersion characteristics given to the transmitted light by the optical fiber used in the optical transmission line 1, where the horizontal axis is the optical frequency [GHz] and the vertical axis is the fiber transfer function due to polarization mode dispersion. Matrix element | P11 (f) | 2 (Amplitude squared characteristic)
Is shown. FIG. 2B shows the waveform of the reception wave b that has undergone PMD distortion by passing the transmission wave a through the optical transmission line 1. The horizontal axis represents time [ns] and the vertical axis represents light intensity. .
FIG. 2C shows the waveform of the received wave b'when the transmitted wave a is compensated by the equalization optical circuit 2, where the horizontal axis represents time [ns] and the vertical axis represents the light intensity. There is.

【0021】一方、図3は信号光が比較的小さなPMD
歪を受けている場合に対する等化前後の時間波形を示し
ている。図3(a)〜(c)はそれぞれ図2(a)〜
(c)に対応するもので、個々の説明は省略する。図2
(c)、図3(c)から明らかなように、いずれも等化
によってPMDによる波形歪が減少しており、上記構成
の補償装置が有効に作用していることが確認することが
できる。
On the other hand, FIG. 3 shows a PMD whose signal light is relatively small.
The time waveform before and after equalization for the case of being distorted is shown. FIGS. 3A to 3C are shown in FIGS.
This corresponds to (c), and the individual description is omitted. Figure 2
As is clear from (c) and FIG. 3 (c), waveform distortion due to PMD is reduced in both cases, and it can be confirmed that the compensator having the above-described configuration is effectively operating.

【0022】尚、上記補償装置の補償方式は、等化光回
路の規模(段数)の拡張により、その実回線に適合した
等化特性を実現できるだけでなく、等化光回路の制御に
特別な符号などを用いる必要がないため、極めて実用的
であるといえる。
The compensating method of the compensating device described above not only realizes equalization characteristics suitable for the actual line by expanding the scale (number of stages) of the equalizing optical circuit, but also uses a special code for controlling the equalizing optical circuit. It can be said that it is extremely practical because it is not necessary to use

【0023】図4は上記PMD等化光回路2の具体的な
構成を示すもので、偏波保持ファイバ回転接続型光回路
で実現している。この構成は2波長偏波制御光回路(T
WPC)として実績のある構造である。偏波保持ファイ
バには、例えばいわゆるパンダファイバ(PANDA)
が用いられる。
FIG. 4 shows a concrete structure of the PMD equalization optical circuit 2, which is realized by a polarization maintaining fiber rotation connection type optical circuit. This configuration has a dual wavelength polarization control optical circuit (T
It has a proven structure as WPC). The polarization maintaining fiber is, for example, a so-called panda fiber (PANDA).
Is used.

【0024】すなわち、この構成は、伝送路ファイバ3
1及び偏波保持ファイバ32間、直列接続される偏波保
持ファイバ32と33、33と34間を、それぞれ複屈
折性が十分小さいと見なせる5cm程度のDSF(偏波
依存性ファイバ)35,36,37を介して融着し、D
SF部分で捩ることで安定な回線接続を等化的に実現し
たものである。
That is, this configuration is used in the transmission line fiber 3
1 and the polarization-maintaining fiber 32, and between the polarization-maintaining fibers 32 and 33 and 33 and 34 connected in series, the DSFs (polarization-dependent fibers) 35 and 36 of about 5 cm can be regarded as having sufficiently small birefringence. , 37 through fusion, D
By twisting at the SF part, a stable line connection is realized by equalization.

【0025】この構成において、可変位相シフトは偏波
保持ファイバ32,33を部分的に加熱することによっ
て実現できる。図4の例では、偏波保持ファイバ長を2
0mとし、その巻装表面の一部に電力トランジスタ3
8,39を発熱源として装着することで、直交光波可変
位相差機能を実現している。等化誤差信号発生は、通常
のガリウム砒素集積回路(GaAsIC)を用いて作成
することができる。
In this configuration, the variable phase shift can be realized by partially heating the polarization maintaining fibers 32 and 33. In the example of FIG. 4, the polarization maintaining fiber length is set to 2
0 m, and a power transistor 3 on a part of the winding surface.
The quadrature light wave variable phase difference function is realized by mounting 8, 39 as a heat source. The equalization error signal generation can be created using a normal gallium arsenide integrated circuit (GaAs IC).

【0026】実験段階では、パルス発生器で2.5Gb
/s擬似ランダム符号を生成し、LN光変調器を用いて
1.55μmの光符号列を得て、模擬PMD発生光回路
で発生させたPMD波形歪を加えることで、PMD波形
歪を有する偏波モード分散光波を生成し、これを上記構
成による補償装置に入力して、等化誤差信号を最小とす
るようにPMD等化光回路を手動制御してみたところ、
ほぼ完全に等化できることを確認することができた。
At the experimental stage, the pulse generator was 2.5 Gb.
/ S pseudo-random code is generated, an optical code string of 1.55 μm is obtained by using the LN optical modulator, and the PMD waveform distortion generated by the simulated PMD generation optical circuit is added to obtain the polarization having the PMD waveform distortion. A wave mode dispersion light wave is generated, input to the compensator having the above-mentioned configuration, and the PMD equalization optical circuit is manually controlled so as to minimize the equalization error signal.
It was confirmed that the equalization was possible almost completely.

【0027】さらに、実回線でのPMD推定法として、
受信波形サンプルから伝送路のPMD等化光回路合成に
より伝送路PMD推定を行い、模擬PMD伝送路パラメ
ータと対比することで推定の妥当性を確認した。これに
より、実回線PMD等化光回路を容易に設計できると考
えられる。
Further, as a PMD estimation method on an actual line,
The transmission line PMD was estimated from the received waveform sample by PMD equalization optical circuit synthesis of the transmission line, and the validity of the estimation was confirmed by comparing with the simulated PMD transmission line parameter. It is considered that this makes it possible to easily design a real line PMD equalization optical circuit.

【0028】また、全自動等化は、PMD等化光回路の
可変位相シフト部の時定数が長いため、収束が遅く、困
難と考えられていたが、この制御アルゴリズムはシュミ
レーションで十分確認されている。
Also, the fully automatic equalization was considered to be slow and difficult to converge because the time constant of the variable phase shift section of the PMD equalization optical circuit was long, but this control algorithm was sufficiently confirmed by simulation. There is.

【0029】尚、PMD等化光回路の構成に関しては、
基本確認に適した実施例の構成を示したが、実用段階で
は、等化的な光回路をLiNbO3 光ICの上にTE/
TM変換器、位相シフタなどを構成する方法、ないしは
2パラレル・スクェンス・オプティカル・トランスバー
サル・フィルタ(Two-parallel squence optical trans
versal filter ;電子情報通信学会、1993年春季全
国大会にて発表)を光回路基板の上に構成する方法が利
用可能である。これらの構成によれば等化光回路の安定
性と制御の高速応答性の要求に十分対応できると考えら
れる。尚、この発明は上記実施例に限定されるものでは
なく、この発明の要旨を逸脱しない範囲で種々変形して
も、同様に実施可能であることはいうまでもない。
Regarding the configuration of the PMD equalization optical circuit,
Although the configuration of the embodiment suitable for basic confirmation is shown, in the practical stage, an equalizing optical circuit is provided on the LiNbO 3 optical IC with TE / TE.
A method of configuring a TM converter, a phase shifter, or a two-parallel squence optical transversal filter.
versal filter; announced at IEICE, National Assembly Spring 1993) can be used on the optical circuit board. It is considered that these configurations can sufficiently meet the requirements for stability of the equalization optical circuit and high-speed control response. Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

【0030】[0030]

【発明の効果】以上のようにこの発明によれば、光ファ
イバの偏波モード分散による伝送歪を補償することので
きる光ファイバ偏波モード分散補償装置を提供すること
ができる。
As described above, according to the present invention, it is possible to provide the optical fiber polarization mode dispersion compensator capable of compensating the transmission distortion due to the polarization mode dispersion of the optical fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る光ファイバ偏波モード分散補償
装置の一実施例の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of an optical fiber polarization mode dispersion compensator according to the present invention.

【図2】同実施例のシュミレーション結果として、比較
的大きなPMD歪波形の場合に対する等化前後の時間波
形を示す図である。
FIG. 2 is a diagram showing a time waveform before and after equalization for a case of a relatively large PMD distortion waveform as a simulation result of the example.

【図3】同実施例で比較的小さなPMD歪波形の場合に
対する等化前後の時間波形を示す図である。
FIG. 3 is a diagram showing time waveforms before and after equalization for a case of a relatively small PMD distortion waveform in the example.

【図4】上記実施例のPMD等化光回路の具体的な構成
を示す図である。
FIG. 4 is a diagram showing a specific configuration of the PMD equalization optical circuit of the above embodiment.

【符号の説明】[Explanation of symbols]

1…光伝送路、2…偏波モード分散等化光回路、21…
直交光波相互変換回路、22N…直交光波間群遅延時間
差回路、23N…可変光位相差回路、24N…可変直交
光波相互変換回路、25…直交光波間群遅延時間差回路
(Ts )、4…AGC回路、41…プリアンプ、42…
帰還抵抗、5…クロック再生回路、6…識別回路、7…
等化フィルタ、8…遅延回路、9…差動増幅器、10…
整流回路、11…ローパスフィルタ、12…パラメータ
制御回路、31…伝送路ファイバ、32〜34…偏波保
持ファイバ、35〜37…DSF、38,39…電力ト
ランジスタ。
1 ... Optical transmission line, 2 ... Polarization mode dispersion equalization optical circuit, 21 ...
Orthogonal lightwave mutual conversion circuit, 22N ... Orthogonal lightwave group delay time difference circuit, 23N ... Variable optical phase difference circuit, 24N ... Variable orthogonal lightwave mutual conversion circuit, 25 ... Orthogonal lightwave group delay time difference circuit (Ts), 4 ... AGC circuit , 41 ... Preamplifier, 42 ...
Feedback resistor, 5 ... Clock recovery circuit, 6 ... Identification circuit, 7 ...
Equalization filter, 8 ... Delay circuit, 9 ... Differential amplifier, 10 ...
Rectifier circuit, 11 ... Low-pass filter, 12 ... Parameter control circuit, 31 ... Transmission line fiber, 32-34 ... Polarization maintaining fiber, 35-37 ... DSF, 38, 39 ... Power transistor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光伝送路からの偏波モード分散された信号
光を入力し、直交する光波に対して一定の群遅延時間差
を与える第1の光回路、直交する光波の位相差を制御信
号に応じて可変する機能及び直交する光波の振幅回転接
続角を制御信号に応じて可変相互変換する機能を有する
第2の光回路がN(Nは任意の自然数)段繰返し直列接
続され、偏波モード分散された信号光の直交光波を取り
出して一定の群遅延時間差、制御信号に対応する位相
差、振幅回転接続角を可変制御する等化光回路と、 この等化光回路から出力される信号光を受信する光受信
手段と、 この手段で得られる受信信号から符号列を識別する符号
列識別手段と、 この手段の識別信号を基準に識別前の受信信号と比較し
て差信号を生成し、整流、積分して等化誤差信号を生成
する等化誤差信号生成手段と、 この手段で得られる等化誤差信号が最小となるように前
記光等化回路に位相差、振幅回転接続角に対する制御信
号を生成出力するパラメータ制御手段とを具備する光フ
ァイバ偏波モード分散補償装置。
1. A first optical circuit for inputting signal light in which polarization modes are dispersed from an optical transmission line and giving a constant group delay time difference to orthogonal light waves, and a control signal for controlling a phase difference between orthogonal light waves. A second optical circuit having a function of varying in accordance with a control signal and a function of performing variable mutual conversion of an amplitude rotation connection angle of orthogonal light waves in response to a control signal, N (N is an arbitrary natural number) stages are repeatedly connected in series, An equalization optical circuit for variably controlling a constant group delay time difference, a phase difference corresponding to a control signal, and an amplitude rotation connection angle by extracting orthogonal light waves of mode-dispersed signal light, and a signal output from this equalization optical circuit Light receiving means for receiving light, code string identifying means for identifying a code string from the received signal obtained by this means, and a difference signal is generated by comparing the received signal before identification with the identification signal of this means as a reference. , Rectify, integrate and generate equalization error signal And an parameter control means for generating and outputting a control signal for the phase difference and the amplitude rotation connection angle to the optical equalization circuit so that the equalization error signal obtained by this means is minimized. Optical fiber polarization mode dispersion compensator.
【請求項2】前記第2の光回路は、複屈折性が十分小さ
いと見なせる偏波依存性ファイバを制御信号に応じた角
度だけ捩じることで振幅回転接続角の可変相互変換機能
を実現し、偏波保持ファイバに部分的に制御信号に応じ
た温度変化を与えることで位相差可変機能を実現するよ
うにしたことを特徴とする請求項1記載の光ファイバ偏
波モード分散補償装置。
2. The second optical circuit realizes a variable mutual conversion function of an amplitude rotation connection angle by twisting a polarization dependent fiber which can be regarded as having sufficiently small birefringence by an angle according to a control signal. 2. The optical fiber polarization mode dispersion compensator according to claim 1, wherein the phase difference variable function is realized by partially changing the temperature of the polarization maintaining fiber according to the control signal.
JP02044694A 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator Expired - Lifetime JP3281162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02044694A JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02044694A JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Publications (2)

Publication Number Publication Date
JPH07231297A true JPH07231297A (en) 1995-08-29
JP3281162B2 JP3281162B2 (en) 2002-05-13

Family

ID=12027290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02044694A Expired - Lifetime JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Country Status (1)

Country Link
JP (1) JP3281162B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758029A1 (en) * 1996-12-30 1998-07-03 Alsthom Cge Alcatel POLARIZATION DISPERSION COMPENSATION DEVICE IN AN OPTICAL TRANSMISSION SYSTEM
WO1998037396A1 (en) * 1997-02-25 1998-08-27 Mci Communications Corporation A method and system for simulating pmd using incremental delay switching
WO2000003506A1 (en) * 1998-07-10 2000-01-20 Siemens Aktiengesellschaft Device for detecting polarization mode dispersions
US6275315B1 (en) 1997-08-28 2001-08-14 Samsung Electronics Co., Ltd. Apparatus for compensating for dispersion of optical fiber in an optical line
JP2001230728A (en) * 1999-12-30 2001-08-24 Alcatel Polarized wave dispersion compensation device in optical transmission system
US6871024B2 (en) 2001-01-10 2005-03-22 Fujitsu Limited Dispersion compensating method, dispersion compensating apparatus and optical transmission system
JP2006340115A (en) * 2005-06-03 2006-12-14 Univ Of Tokyo Waveform degradation compensation method and device
US8131155B2 (en) 2008-03-21 2012-03-06 Hitachi, Ltd. Optical signal transmission apparatus
CN111585645A (en) * 2019-02-18 2020-08-25 富士通株式会社 Polarization state change monitoring device and method caused by optical link and optical receiver

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029972A1 (en) * 1996-12-30 1998-07-09 Alcatel Alsthom Compagnie Generale D'electricite Device for compensating the dispersion of polarisation in an optical transmission system
EP0853395A1 (en) * 1996-12-30 1998-07-15 Alcatel Polarisation dispersion compensation device in an optical transmission system
FR2758029A1 (en) * 1996-12-30 1998-07-03 Alsthom Cge Alcatel POLARIZATION DISPERSION COMPENSATION DEVICE IN AN OPTICAL TRANSMISSION SYSTEM
WO1998037396A1 (en) * 1997-02-25 1998-08-27 Mci Communications Corporation A method and system for simulating pmd using incremental delay switching
US6275315B1 (en) 1997-08-28 2001-08-14 Samsung Electronics Co., Ltd. Apparatus for compensating for dispersion of optical fiber in an optical line
US6901225B1 (en) 1998-07-10 2005-05-31 Siemens Aktiengesellschaft Device for detecting polarization mode dispersions
WO2000003506A1 (en) * 1998-07-10 2000-01-20 Siemens Aktiengesellschaft Device for detecting polarization mode dispersions
JP2001230728A (en) * 1999-12-30 2001-08-24 Alcatel Polarized wave dispersion compensation device in optical transmission system
US6871024B2 (en) 2001-01-10 2005-03-22 Fujitsu Limited Dispersion compensating method, dispersion compensating apparatus and optical transmission system
JP2006340115A (en) * 2005-06-03 2006-12-14 Univ Of Tokyo Waveform degradation compensation method and device
US8131155B2 (en) 2008-03-21 2012-03-06 Hitachi, Ltd. Optical signal transmission apparatus
CN111585645A (en) * 2019-02-18 2020-08-25 富士通株式会社 Polarization state change monitoring device and method caused by optical link and optical receiver
CN111585645B (en) * 2019-02-18 2023-03-31 富士通株式会社 Polarization state change monitoring device and method caused by optical link and optical receiver

Also Published As

Publication number Publication date
JP3281162B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US6678431B2 (en) Method for compensating polarization mode dispersion occurring in optical transmission fiber and apparatus therefor
EP0782282B1 (en) Synchronous polarization and phase modulation using a periodic waveform with complex harmonics for improved perfomance of optical transmission systems
JP3014244B2 (en) Device for compensating polarization-dependent distortion in optical communication
US5930414A (en) Method and apparatus for automatic compensation of first-order polarization mode dispersion (PMD)
Hakki Polarization mode dispersion compensation by phase diversity detection
CN1734988B (en) Adaptive optical equalization and joint opto-electronic equalizer architecture
US7127181B2 (en) System for mitigating the effects of fiber dispersion by separate detection of two transmitted sidebands
JP4247927B2 (en) Synchronous polarization and phase modulation for improved optical transmission performance
US9166703B2 (en) Equalizer for an optical transmission system
JPH05244094A (en) Optical transmission equipment
JP3281162B2 (en) Optical fiber polarization mode dispersion compensator
Kamiyama et al. Neural network nonlinear equalizer in long-distance coherent optical transmission systems
US6580542B1 (en) Automatic dispersion equalization apparatus in high-speed optical transmission system
US9020365B2 (en) Method and apparatus for compensating for polarization mode dispersion (PMD)
CN101136707B (en) Dispersion compensation device and dispersion compensation control method
JP3262444B2 (en) Automatic equalizer
CN116827732A (en) Optical fiber communication method and system based on nonlinear decision feedback equalization of neural network
JP2982402B2 (en) Optical communication device
CN1312867C (en) Polarisation mode dispersion compensator using a mean square error technique
JP5043292B2 (en) Optical signal reproducing apparatus and method
US20050135722A1 (en) Apparatus for compensating polarization mode dispersion
US6542271B1 (en) Apparatus and method for reducing optical impairments in optical communications systems and networks
JPH05110516A (en) Optical repeater transmission system and optical repeater circuit
Diniz Advanced Digital Signal Processing for Next-Generation Coherent Optical Communication Transceivers
US12101125B2 (en) Method of operating a bidirectional optical transmission link and corresponding optical transmission link

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term