JP3281162B2 - Optical fiber polarization mode dispersion compensator - Google Patents

Optical fiber polarization mode dispersion compensator

Info

Publication number
JP3281162B2
JP3281162B2 JP02044694A JP2044694A JP3281162B2 JP 3281162 B2 JP3281162 B2 JP 3281162B2 JP 02044694 A JP02044694 A JP 02044694A JP 2044694 A JP2044694 A JP 2044694A JP 3281162 B2 JP3281162 B2 JP 3281162B2
Authority
JP
Japan
Prior art keywords
signal
optical
optical circuit
circuit
polarization mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02044694A
Other languages
Japanese (ja)
Other versions
JPH07231297A (en
Inventor
健 小関
博之 井辺
マニッシュ・シャーマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02044694A priority Critical patent/JP3281162B2/en
Publication of JPH07231297A publication Critical patent/JPH07231297A/en
Application granted granted Critical
Publication of JP3281162B2 publication Critical patent/JP3281162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、超高速超長距離光伝
送システムにおいて、光ファイバの伝送帯域幅を制限す
る偏波モード分散特性を補償する光ファイバ偏波モード
分散補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber polarization mode dispersion compensator for compensating a polarization mode dispersion characteristic for limiting a transmission bandwidth of an optical fiber in an ultra-high speed ultra-long distance optical transmission system.

【0002】[0002]

【従来の技術】周知のように、光増幅器による超高速超
長距離光伝送システムは、太平洋海底光ケーブルシステ
ムの構築などに向けて研究開発が盛んである。その中
で、本質的には未解決の課題として偏波モード分散(P
MD)補償法がある。特に、光増幅器の実用化に伴い、
従来問題とならなかった光ファイバの偏波モード分散に
よる伝送歪が、10000km級の非再生中継光伝送方
式の開発研究で深刻な課題になりつつある。
2. Description of the Related Art As is well known, research and development of an ultra-high-speed and ultra-long-distance optical transmission system using an optical amplifier is actively conducted for the construction of an optical cable system on the Pacific Ocean. Among them, polarization mode dispersion (P
MD) There is a compensation method. In particular, with the practical use of optical amplifiers,
Transmission distortion due to polarization mode dispersion of an optical fiber, which has not been a problem in the past, is becoming a serious problem in research and development of a 10,000 km class non-regenerative repeater optical transmission system.

【0003】これへの対策は研究の緒についたばかり
で、実験室段階でのPMD補償法が一つ報告されている
にすぎない。この報告に記載されている補償法は、送信
端、受信端にそれぞれ偏波制御器を配置し、送信端の偏
波制御器を変化させる毎に受信端の偏波制御器を符号誤
り率が最小になるように制御するという操作を、送信
端、受信端で相互に連絡し合いながら繰り返すことで、
最小の符号誤り率を与える条件を求め続けるといった方
法である。
[0003] The countermeasure for this has just started in research, and only one PMD compensation method at the laboratory stage has been reported. In the compensation method described in this report, a polarization controller is arranged at each of the transmitting end and the receiving end, and the code error rate of the polarization controller at the receiving end is changed every time the polarization controller at the transmitting end is changed. By repeating the operation of controlling to the minimum while communicating with each other at the transmitting end and the receiving end,
This is a method in which conditions for giving the minimum bit error rate are continuously obtained.

【0004】しかしながら、上記のようなPMD補償法
では、10000km級の光伝送システムに採用すると
すれば、10000kmにも及ぶ送信端及び受信端間で
相互に制御情報を交換する必要があり、極めて非現実的
である。さらに、使用する偏波制御器が波長依存性を持
たないため、等化できる偏波モード分散が特殊な場合に
限られるなど、大きな欠点を有している。
However, if the above-described PMD compensation method is adopted in a 10,000 km-class optical transmission system, it is necessary to exchange control information between the transmitting end and the receiving end of up to 10,000 km, which is extremely non-existent. Realistic. Furthermore, since the polarization controller used does not have wavelength dependence, there is a great disadvantage that the polarization mode dispersion that can be equalized is limited to a special case.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来より、超高速超長距離光伝送システムにおいて、光フ
ァイバの偏波モード分散による伝送歪を補償することが
要求されているが、今だこの問題を解決する有効な方法
が案出されていない。
As described above, in the conventional ultra-high-speed ultra-long distance optical transmission system, it has been required to compensate for transmission distortion due to polarization mode dispersion of an optical fiber. However, no effective method has been devised to solve this problem.

【0006】この発明は上記の課題を解決するためにな
されたもので、光ファイバの偏波モード分散による伝送
歪を補償することのできる光ファイバ偏波モード分散補
償装置を提供することを目的とする。
An object of the present invention is to provide an optical fiber polarization mode dispersion compensator capable of compensating for transmission distortion due to polarization mode dispersion of an optical fiber. I do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る光ファイバ偏波モード分散補償装置
、直交する光波に対して一定の群遅延時間差を与える
第1の光回路、直交する光波の位相差を制御信号に応じ
て可変する機能及び直交する光波の振幅回転接続角を制
御信号に応じて可変相互変換する機能を有する第2の光
回路がN(Nは任意の自然数)段繰返し直列接続され、
光伝送路からの偏波モード分散された信号光を入力し、
各段で、入力される信号光から直交光波を取り出して
前記第1の光回路で一定の群遅延時間差を与えつつ、前
記第2の光回路で制御信号に対応する位相差、振幅回転
接続角を可変制御する等化光回路と、この等化光回路か
ら出力される信号光を受信する光受信手段と、この手段
で得られる受信信号から符号列を識別する符号列識別手
段と、この手段で得られる識別信号を基準に識別前の受
信信号と比較して差信号を生成し、整流、積分して等化
誤差信号を生成する等化誤差信号生成手段と、この手段
で得られる等化誤差信号が最小となるように前記等化光
回路に位相差、振幅回転接続角に対する制御信号を生成
出力するパラメータ制御手段とを具備して構成したこと
を第1の特徴とする。
Means for Solving the Problems An optical fiber polarization mode dispersion compensator according to the present invention in order to achieve the above object, a first optical circuit which gives a constant group delay time difference with respect to a straight interlinking lightwave, A second optical circuit having a function of varying the phase difference between orthogonal light waves according to a control signal and a function of variably and mutually converting an amplitude rotation connection angle of orthogonal light waves according to a control signal is N (N is an arbitrary natural number). ) Repeatedly connected in series,
Input the polarization mode dispersed signal light from the optical transmission line,
At each stage, take out the orthogonal light wave from the input signal light ,
While the first optical circuit gives a certain group delay time difference ,
An equalizing optical circuit for variably controlling a phase difference and an amplitude rotation connection angle corresponding to a control signal in the second optical circuit; an optical receiving means for receiving signal light output from the equalizing optical circuit; A code string identifying means for identifying a code string from the received signal obtained in step (a), and a difference signal generated by comparing the received signal before identification based on the identification signal obtained by this means , and rectified and integrated to obtain an equalization error An equalization error signal generating means for generating a signal, and generating and outputting a control signal for the phase difference and the amplitude rotation connection angle to the equalization optical circuit so that the equalization error signal obtained by this means is minimized. The first feature is that the apparatus is configured to include a parameter control unit that performs the control.

【0008】特に、前記第2の光回路は、複屈折性が十
分小さいと見なせる偏波依存性ファイバを制御信号に応
じた角度だけ捩じることで振幅回転接続角の可変相互変
換機能を実現し、偏波保持ファイバに部分的に制御信号
に応じた温度変化を与えることで位相差可変機能を実現
したことを第2の特徴とする。
In particular, the second optical circuit realizes a variable mutual conversion function of an amplitude rotation connection angle by twisting a polarization dependent fiber, which can be regarded as having sufficiently small birefringence, at an angle corresponding to a control signal. A second feature is that a phase difference variable function is realized by partially applying a temperature change according to the control signal to the polarization maintaining fiber.

【0009】[0009]

【作用】上記第1の特徴とする構成による光ファイバ偏
波モード分散補償装置では、偏波モード分散を受けた信
号光を等化光回路を介して受信し、一度符号列を識別し
て、識別前後の信号を比較することでその差信号を得
て、整流、積分することで等化誤差信号を生成し、等化
光回路のパラメータを少し変化させて等化誤差信号が減
少する方向を見つけ、制御ループによりパラメータ制御
を繰返すことで、自動的に等化誤差信号が最小となる状
態に追い込むようにしている。
In the optical fiber polarization mode dispersion compensator according to the first feature, the signal light subjected to the polarization mode dispersion is received via the equalizing optical circuit, and the code string is identified once. The difference signal is obtained by comparing the signals before and after the identification, and an equalization error signal is generated by rectifying and integrating, and the parameter of the equalization optical circuit is slightly changed to determine the direction in which the equalization error signal decreases. By finding and repeating the parameter control by the control loop, the state is automatically driven to a state where the equalization error signal is minimized.

【0010】上記第2の特徴とする構成の等化光回路で
は、偏波保持ファイバ回転接続型光回路を構成するもの
で、偏波依存性ファイバと偏波保持ファイバの物理特性
を利用することで、振幅回転接続角の可変相互変換機能
と位相差可変機能を実現している。
[0010] In the equalizing optical circuit having the configuration of the second feature, a polarization maintaining fiber rotation connection type optical circuit is formed, and the physical characteristics of the polarization dependent fiber and the polarization maintaining fiber are utilized. Thus, the function of changing the amplitude rotation connection angle and the function of changing the phase difference are realized.

【0011】[0011]

【実施例】以下、図面を参照してこの発明の実施例を詳
細に説明する。図1はこの発明に係る光ファイバ偏波モ
ード分散補償装置の構成を示すもので、偏波モード分散
を示す光伝送路1からの信号光(パルス信号)は偏波モ
ード分散等化光回路2に入力される。この偏波モード分
散等化光回路2は、初段の直交光波相互変換回路(θ0
)21と、直交光波間群遅延時間差回路(Ts )22
N、可変光位相差回路(φk )23N及び可変直交光波
相互変換回路(θk )24Nの繰返し光回路部(繰返し
数をNとする)と、最終段としての直交光波間群遅延時
間差回路(Ts )25とで構成される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration of an optical fiber polarization mode dispersion compensator according to the present invention. A signal light (pulse signal) from an optical transmission line 1 showing polarization mode dispersion is applied to a polarization mode dispersion equalizing optical circuit 2. Is input to This polarization mode dispersion equalization optical circuit 2 is a first stage orthogonal light wave mutual conversion circuit (θ0
) 21 and a group delay time difference circuit (Ts) 22 between orthogonal lightwaves.
N, a variable optical phase difference circuit (φk) 23N and a variable orthogonal lightwave interconversion circuit (θk) 24N, a repetitive optical circuit section (the number of repetitions is N), and a group delay time difference circuit (Ts) between orthogonal lightwaves as the last stage. ) 25.

【0012】ここで、初段の直交光波相互変換回路21
は直交する光波の振幅をθ0 だけ相互変換する光回路で
ある。繰返し光回路部の直交光波間群遅延時間差回路2
2N及び最終段の直交光波間群遅延時間差回路25は直
交する光波に対してTsだけ群遅延時間差を与える光回
路である。繰返し光回路部の可変光位相差回路(φk)
23Nは、直交する光波に対して制御信号に基づいてφ
k (光位相シフト量)だけ位相差を与える光回路であ
る。繰返し光回路部の可変直交光波相互変換回路24N
は、直交する光波に対して制御信号に基づいてθk (回
転接続角)だけ振幅を可変相互変換する光回路である。
Here, the first-stage orthogonal light wave mutual conversion circuit 21
Is an optical circuit for mutually converting the amplitudes of orthogonal light waves by θ0. Group delay time difference circuit 2 between orthogonal lightwaves of repetitive optical circuit section
The 2N and final-stage orthogonal lightwave group delay time difference circuit 25 is an optical circuit that gives a group delay time difference of Ts to orthogonal lightwaves. Variable optical phase difference circuit (φk) for repetitive optical circuit
23N is φ based on the control signal for the orthogonal light wave.
This is an optical circuit that gives a phase difference by k (optical phase shift amount). Variable orthogonal light wave mutual conversion circuit 24N of repetitive optical circuit section
Is an optical circuit that variably and mutually converts the amplitude of orthogonal light waves by θk (rotation connection angle) based on a control signal.

【0013】偏波モード分散等化光回路2を通過した信
号光は、偏波依存性のない光検出器3で光電変換され、
受信パルス信号として出力される。この受信パルス信号
はプリアンプ41及び帰還抵抗42によるAGC(自動
利得制御)回路4で所定レベルまで増幅された後、クロ
ック再生回路(CLOCK−REG)5及び識別回路
(DECISION)6に送られる(この点を識別点A
とする)。
The signal light having passed through the polarization mode dispersion equalizing optical circuit 2 is photoelectrically converted by a photodetector 3 having no polarization dependency, and
It is output as a reception pulse signal. The received pulse signal is amplified to a predetermined level by an AGC (automatic gain control) circuit 4 by a preamplifier 41 and a feedback resistor 42, and then sent to a clock recovery circuit (CLOCK-REG) 5 and an identification circuit (DECISION) 6. Identify point A
And).

【0014】クロック再生回路5は入力信号から伝送信
号の同期クロックを再生するもので、この再生クロック
は識別回路6に送られる。この識別回路6は受信パルス
信号を再生クロックのタイミングで信号中の符号列を識
別するもので、識別された受信パルス信号は、識別点A
での等化波形を生成する等化フィルタ(HEQ)7を介
して差動増幅器9の(+)入力端に送られる。
The clock reproducing circuit 5 reproduces a synchronous clock of the transmission signal from the input signal, and the reproduced clock is sent to the identification circuit 6. The identification circuit 6 identifies the code string in the received pulse signal at the timing of the reproduction clock, and the identified received pulse signal is identified by an identification point A.
The signal is sent to the (+) input terminal of the differential amplifier 9 via an equalizing filter (HEQ) 7 for generating an equalized waveform at the step (a).

【0015】一方、識別点Aでの受信パルス信号は遅延
回路(DELAY)8で識別回路6及び等化フィルタ7
の処理に要する時間だけ遅延されて差動増幅器9の
(−)入力端に送られる。この差動増幅器9は(+)入
力端に供給される識別パルス信号を基準に(−)入力端
に供給される受信パルス信号を比較して、その差信号を
出力するものである。この差信号は整流回路(REC
T)10で整流され、ローパスフィルタ(LPF)11
で積分されて、等化誤差信号としてパラメータ制御回路
(CONTROL)12に送られる。
On the other hand, the received pulse signal at the discrimination point A is converted into a discrimination circuit 6 and an equalization filter 7 by a delay circuit (DELAY) 8.
And is sent to the (−) input terminal of the differential amplifier 9 after being delayed by the time required for the processing. The differential amplifier 9 compares the received pulse signal supplied to the (-) input terminal with reference to the identification pulse signal supplied to the (+) input terminal, and outputs the difference signal. This difference signal is supplied to the rectifier circuit (REC
T) Rectified by 10 and low-pass filter (LPF) 11
And is sent to the parameter control circuit (CONTROL) 12 as an equalization error signal.

【0016】このパラメータ制御回路12は、与えられ
た等化誤差信号が最小になるように偏波モード分散等化
光回路2の初段直交光位相差回路21を駆動する共に等
化光回路2の可変光位相差回路23N及び可変直交光波
相互変換回路24Nのパラメータ{φk ,θk }を制御
することで、偏波モード分散を等化補償するものであ
る。
The parameter control circuit 12 drives the first-stage quadrature optical phase difference circuit 21 of the polarization mode dispersion equalization optical circuit 2 so that the given equalization error signal is minimized, and also controls the equalization optical circuit 2. By controlling the parameters {φk, θk} of the variable optical phase difference circuit 23N and the variable orthogonal light wave mutual conversion circuit 24N, the polarization mode dispersion is equalized and compensated.

【0017】すなわち、上記構成による補償装置は、光
伝送路1からの偏波モード分散を受けた信号光(パルス
信号)を等化光回路2を介して光検出器3で受信し、A
GC回路4で増幅した後、識別回路6で識別する。この
識別された受信パルス信号を同期化された識別前の受信
パルス信号と差動増幅器9で比較することで差信号を得
て、整流、積分することで等化誤差信号を生成する。
That is, the compensating device having the above configuration receives the signal light (pulse signal) subjected to the polarization mode dispersion from the optical transmission line 1 by the photodetector 3 via the equalizing optical circuit 2, and
After being amplified by the GC circuit 4, identification is performed by the identification circuit 6. The difference signal is obtained by comparing the identified reception pulse signal with the synchronized reception pulse signal before identification by the differential amplifier 9, and rectifies and integrates to generate an equalization error signal.

【0018】そして、パラメータ制御回路12で偏波モ
ード分散等化光回路2のパラメータ{φk ,θk }を少
し変化させて等化誤差信号が減少する方向を見つけ、上
述の制御ループによりパラメータ制御を繰返すことで自
動的に等化誤差信号が最小となる状態に追い込む。これ
によってPMD歪を補償することができる。
Then, the parameter control circuit 12 slightly changes the parameters {φk, θk} of the polarization mode dispersion equalizing optical circuit 2 to find a direction in which the equalization error signal decreases, and performs parameter control by the control loop described above. The repetition automatically drives the state where the equalization error signal is minimized. This makes it possible to compensate for the PMD distortion.

【0019】図2、図3は共に上記構成による補償装置
のシュミレーション結果を示すものである。ここでは、
PMD伝送路モデルとして、区間遅延時間差30ps、
区間数9とした。等化光回路2は2段構成(N=2)
で、Ts =60psである。
FIG. 2 and FIG. 3 both show simulation results of the compensating device having the above configuration. here,
As a PMD transmission line model, a section delay time difference of 30 ps,
The number of sections was 9. The equalizing optical circuit 2 has a two-stage configuration (N = 2)
And Ts = 60 ps.

【0020】図2は信号光が比較的大きなPMD歪を受
けている場合に対する等化前後の時間波形を示してい
る。図2(a)は光伝送路1に用いられる光ファイバが
伝送光に与える偏波モード分散特性を示すもので、横軸
は光周波数 [GHz] 、縦軸は偏波モード分散によるファ
イバ伝達関数行列成分|P11(f) |2 (振幅自乗特性)
を示している。図2(b)は送信波aを光伝送路1に通
すことによりPMD歪を受けた受信波bの波形を示すも
ので、横軸は時間 [ns] 、縦軸は光強度を示している。
図2(c)は送信波aについて上記等化光回路2で補償
を行ったときの受信波b′の波形を示すもので、横軸は
時間 [ns] 、縦軸は光強度を示している。
FIG. 2 shows time waveforms before and after equalization when the signal light is subjected to relatively large PMD distortion. FIG. 2A shows the polarization mode dispersion characteristics given to the transmission light by the optical fiber used in the optical transmission line 1. The horizontal axis is the optical frequency [GHz], and the vertical axis is the fiber transfer function due to the polarization mode dispersion. Matrix component | P11 (f) | 2 (amplitude square characteristic)
Is shown. FIG. 2B shows the waveform of the received wave b which has been subjected to PMD distortion by passing the transmitted wave a through the optical transmission line 1. The horizontal axis indicates time [ns], and the vertical axis indicates light intensity. .
FIG. 2C shows the waveform of the received wave b 'when the equalizing optical circuit 2 compensates for the transmitted wave a, in which the horizontal axis represents time [ns] and the vertical axis represents light intensity. I have.

【0021】一方、図3は信号光が比較的小さなPMD
歪を受けている場合に対する等化前後の時間波形を示し
ている。図3(a)〜(c)はそれぞれ図2(a)〜
(c)に対応するもので、個々の説明は省略する。図2
(c)、図3(c)から明らかなように、いずれも等化
によってPMDによる波形歪が減少しており、上記構成
の補償装置が有効に作用していることが確認することが
できる。
On the other hand, FIG. 3 shows a PMD having a relatively small signal light.
FIG. 9 shows time waveforms before and after equalization for a case where distortion is received. FIGS. 3A to 3C respectively show FIGS.
This corresponds to (c), and the individual description is omitted. FIG.
3 (c) and FIG. 3 (c), in each case, the waveform distortion due to PMD is reduced by the equalization, and it can be confirmed that the compensating device having the above configuration is working effectively.

【0022】尚、上記補償装置の補償方式は、等化光回
路の規模(段数)の拡張により、その実回線に適合した
等化特性を実現できるだけでなく、等化光回路の制御に
特別な符号などを用いる必要がないため、極めて実用的
であるといえる。
The compensation method of the compensator can realize not only an equalization characteristic suitable for the actual line but also a special code for controlling the equalization optical circuit by expanding the scale (number of stages) of the equalization optical circuit. Since it is not necessary to use such a method, it can be said that the method is extremely practical.

【0023】図4は上記PMD等化光回路2の具体的な
構成を示すもので、偏波保持ファイバ回転接続型光回路
で実現している。この構成は2波長偏波制御光回路(T
WPC)として実績のある構造である。偏波保持ファイ
バには、例えばいわゆるパンダファイバ(PANDA)
が用いられる。
FIG. 4 shows a specific configuration of the PMD equalizing optical circuit 2, which is realized by a polarization maintaining fiber rotary connection type optical circuit. This configuration has a two-wavelength polarization control optical circuit (T
WPC). As the polarization maintaining fiber, for example, a so-called panda fiber (PANDA)
Is used.

【0024】すなわち、この構成は、伝送路ファイバ3
1及び偏波保持ファイバ32間、直列接続される偏波保
持ファイバ32と33、33と34間を、それぞれ複屈
折性が十分小さいと見なせる5cm程度のDSF(偏波
依存性ファイバ)35,36,37を介して融着し、D
SF部分で捩ることで安定な回線接続を等化的に実現し
たものである。
That is, this configuration is similar to the transmission line fiber 3
A DSF (Polarization Dependent Fiber) 35, 36 of about 5 cm, which can be regarded as having a sufficiently small birefringence, is provided between the polarization maintaining fiber 32 and the polarization maintaining fibers 32 and 33, 33 and 34 connected in series. , 37, and D
A stable line connection is realized by equalizing by twisting at the SF.

【0025】この構成において、可変位相シフトは偏波
保持ファイバ32,33を部分的に加熱することによっ
て実現できる。図4の例では、偏波保持ファイバ長を2
0mとし、その巻装表面の一部に電力トランジスタ3
8,39を発熱源として装着することで、直交光波可変
位相差機能を実現している。等化誤差信号発生は、通常
のガリウム砒素集積回路(GaAsIC)を用いて作成
することができる。
In this configuration, the variable phase shift can be realized by partially heating the polarization maintaining fibers 32, 33. In the example of FIG. 4, the polarization maintaining fiber length is 2
0 m, and the power transistor 3
By mounting 8, 39 as a heat source, a quadrature light wave variable phase difference function is realized. The generation of the equalization error signal can be created using a normal gallium arsenide integrated circuit (GaAs IC).

【0026】実験段階では、パルス発生器で2.5Gb
/s擬似ランダム符号を生成し、LN光変調器を用いて
1.55μmの光符号列を得て、模擬PMD発生光回路
で発生させたPMD波形歪を加えることで、PMD波形
歪を有する偏波モード分散光波を生成し、これを上記構
成による補償装置に入力して、等化誤差信号を最小とす
るようにPMD等化光回路を手動制御してみたところ、
ほぼ完全に等化できることを確認することができた。
In the experimental stage, the pulse generator uses 2.5 Gb
/ S pseudo random code is generated, an optical code train of 1.55 μm is obtained using an LN optical modulator, and a PMD waveform distortion generated by a simulated PMD generation optical circuit is added, thereby obtaining a PMD waveform distortion. A wave mode dispersion light wave was generated, and this was input to the compensator having the above configuration, and the PMD equalization optical circuit was manually controlled to minimize the equalization error signal.
It could be confirmed that almost equalization was possible.

【0027】さらに、実回線でのPMD推定法として、
受信波形サンプルから伝送路のPMD等化光回路合成に
より伝送路PMD推定を行い、模擬PMD伝送路パラメ
ータと対比することで推定の妥当性を確認した。これに
より、実回線PMD等化光回路を容易に設計できると考
えられる。
Further, as a PMD estimation method on a real line,
The transmission path PMD was estimated by PMD equalization optical circuit synthesis of the transmission path from the received waveform samples, and the validity of the estimation was confirmed by comparing with the simulated PMD transmission path parameters. It is considered that this makes it possible to easily design a real line PMD equalizing optical circuit.

【0028】また、全自動等化は、PMD等化光回路の
可変位相シフト部の時定数が長いため、収束が遅く、困
難と考えられていたが、この制御アルゴリズムはシュミ
レーションで十分確認されている。
Also, it has been considered that the fully automatic equalization is difficult because the time constant of the variable phase shift unit of the PMD equalization optical circuit is long, so that convergence is slow. However, this control algorithm has been sufficiently confirmed by simulation. I have.

【0029】尚、PMD等化光回路の構成に関しては、
基本確認に適した実施例の構成を示したが、実用段階で
は、等化的な光回路をLiNbO3 光ICの上にTE/
TM変換器、位相シフタなどを構成する方法、ないしは
2パラレル・スクェンス・オプティカル・トランスバー
サル・フィルタ(Two-parallel squence optical trans
versal filter ;電子情報通信学会、1993年春季全
国大会にて発表)を光回路基板の上に構成する方法が利
用可能である。これらの構成によれば等化光回路の安定
性と制御の高速応答性の要求に十分対応できると考えら
れる。尚、この発明は上記実施例に限定されるものでは
なく、この発明の要旨を逸脱しない範囲で種々変形して
も、同様に実施可能であることはいうまでもない。
As for the configuration of the PMD equalizing optical circuit,
Although the configuration of the embodiment suitable for the basic confirmation has been described, in the practical stage, an equalizing optical circuit is mounted on the LiNbO 3 optical IC by TE /
A method of configuring a TM converter, a phase shifter, or the like, or a two-parallel optical transversal filter (Two-parallel squence optical trans)
(a versal filter; presented at the Institute of Electronics, Information and Communication Engineers, 1993 Spring National Convention) on an optical circuit board can be used. It is considered that these configurations can sufficiently satisfy the requirements of the stability of the equalizing optical circuit and the high-speed response of the control. It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

【0030】[0030]

【発明の効果】以上のようにこの発明によれば、光ファ
イバの偏波モード分散による伝送歪を補償することので
きる光ファイバ偏波モード分散補償装置を提供すること
ができる。
As described above, according to the present invention, it is possible to provide an optical fiber polarization mode dispersion compensator capable of compensating for transmission distortion due to polarization mode dispersion of an optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る光ファイバ偏波モード分散補償
装置の一実施例の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an optical fiber polarization mode dispersion compensator according to the present invention.

【図2】同実施例のシュミレーション結果として、比較
的大きなPMD歪波形の場合に対する等化前後の時間波
形を示す図である。
FIG. 2 is a diagram showing time waveforms before and after equalization for a comparatively large PMD distortion waveform as a simulation result of the embodiment.

【図3】同実施例で比較的小さなPMD歪波形の場合に
対する等化前後の時間波形を示す図である。
FIG. 3 is a diagram showing time waveforms before and after equalization in a case of a relatively small PMD distortion waveform in the embodiment.

【図4】上記実施例のPMD等化光回路の具体的な構成
を示す図である。
FIG. 4 is a diagram showing a specific configuration of a PMD equalizing optical circuit of the embodiment.

【符号の説明】[Explanation of symbols]

1…光伝送路、2…偏波モード分散等化光回路、21…
直交光波相互変換回路、22N…直交光波間群遅延時間
差回路、23N…可変光位相差回路、24N…可変直交
光波相互変換回路、25…直交光波間群遅延時間差回路
(Ts )、4…AGC回路、41…プリアンプ、42…
帰還抵抗、5…クロック再生回路、6…識別回路、7…
等化フィルタ、8…遅延回路、9…差動増幅器、10…
整流回路、11…ローパスフィルタ、12…パラメータ
制御回路、31…伝送路ファイバ、32〜34…偏波保
持ファイバ、35〜37…DSF、38,39…電力ト
ランジスタ。
DESCRIPTION OF SYMBOLS 1 ... Optical transmission line, 2 ... Polarization mode dispersion equalization optical circuit, 21 ...
Orthogonal light wave mutual conversion circuit, 22N: orthogonal light wave group delay time difference circuit, 23N: variable optical phase difference circuit, 24N: variable orthogonal light wave mutual conversion circuit, 25: orthogonal light wave group delay time difference circuit (Ts), 4: AGC circuit , 41 ... preamplifier, 42 ...
Feedback resistor, 5: clock recovery circuit, 6: identification circuit, 7 ...
Equalization filter, 8 ... delay circuit, 9 ... differential amplifier, 10 ...
Rectifier circuit, 11 low-pass filter, 12 parameter control circuit, 31 transmission line fiber, 32-34 polarization maintaining fiber, 35-37 DSF, 38, 39 power transistor.

フロントページの続き (56)参考文献 特開 平5−130062(JP,A) 特開 平6−284093(JP,A) 特開 平7−131418(JP,A) 特開 平7−221705(JP,A) 欧州特許出願公開578380(EP,A 1) 渡部夏子 他,2波長偏光制御素子, 電子情報通信学会秋季大会講演論文集 4,日本,社団法人電子情報通信学会, 1993年8月15日,B−908,4−149 (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 Continuation of the front page (56) References JP-A-5-130062 (JP, A) JP-A-6-284093 (JP, A) JP-A-7-131418 (JP, A) JP-A-7-221705 (JP) , A) European Patent Application Publication 578380 (EP, A 1) Natsuko Watanabe et al., 2-wavelength polarization control element, Proceedings of IEICE Autumn Conference 4, Japan, The Institute of Electronics, Information and Communication Engineers, August 15, 1993 , B-908, 4-149 (58) Fields investigated (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直交する光波に対して一定の群遅延時間差
を与える第1の光回路、直交する光波の位相差を制御信
号に応じて可変する機能及び直交する光波の振幅回転接
続角を制御信号に応じて可変相互変換する機能を有する
第2の光回路がN(Nは任意の自然数)段繰返し直列接
続され、光伝送路からの偏波モード分散された信号光を
入力し、各段で、入力される信号光から直交光波を取り
出して、前記第1の光回路で一定の群遅延時間差を与え
つつ、前記第2の光回路で制御信号に対応する位相差、
振幅回転接続角を可変制御する等化光回路と、 この等化光回路から出力される信号光を受信する光受信
手段と、 この手段で得られる受信信号から符号列を識別する符号
列識別手段と、 この手段で得られる識別信号を基準に識別前の受信信号
と比較して差信号を生成し、整流、積分して等化誤差信
号を生成する等化誤差信号生成手段と、 この手段で得られる等化誤差信号が最小となるように前
等化光回路に位相差、振幅回転接続角に対する制御信
号を生成出力するパラメータ制御手段とを具備する光フ
ァイバ偏波モード分散補償装置。
1. A first optical circuit for providing a constant group delay time difference to orthogonal light waves, a function of varying a phase difference between orthogonal light waves according to a control signal, and controlling an amplitude rotation connection angle of orthogonal light waves. A second optical circuit having a function of variably interconverting according to a signal is repeatedly connected in series with N (N is an arbitrary natural number) stages, and converts a polarization mode-dispersed signal light from an optical transmission line.
Input, and at each stage, an orthogonal light wave is extracted from the input signal light , and a given group delay time difference is given by the first optical circuit.
A phase difference corresponding to a control signal in the second optical circuit ;
Equalizing optical circuit for variably controlling the amplitude rotation connection angle, optical receiving means for receiving signal light output from the equalizing optical circuit, and code string identifying means for identifying a code string from a received signal obtained by this means And an equalization error signal generation means for generating a difference signal by comparing the received signal before identification based on the identification signal obtained by this means, rectifying and integrating to generate an equalization error signal, An optical fiber polarization mode dispersion compensator comprising: a parameter control unit that generates and outputs a control signal for a phase difference and an amplitude rotation connection angle in the equalization optical circuit so that an obtained equalization error signal is minimized.
【請求項2】前記第2の光回路は、複屈折性が十分小さ
いと見なせる偏波依存性ファイバを制御信号に応じた角
度だけ捩じることで振幅回転接続角の可変相互変換機能
を実現し、偏波保持ファイバに部分的に制御信号に応じ
た温度変化を与えることで位相差可変機能を実現するよ
うにしたことを特徴とする請求項1記載の光ファイバ偏
波モード分散補償装置。
2. The second optical circuit realizes a variable mutual conversion function of an amplitude rotation connection angle by twisting a polarization dependent fiber that can be regarded as having sufficiently small birefringence by an angle corresponding to a control signal. 2. The optical fiber polarization mode dispersion compensator according to claim 1, wherein a phase difference variable function is realized by partially applying a temperature change according to the control signal to the polarization maintaining fiber.
JP02044694A 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator Expired - Lifetime JP3281162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02044694A JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02044694A JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Publications (2)

Publication Number Publication Date
JPH07231297A JPH07231297A (en) 1995-08-29
JP3281162B2 true JP3281162B2 (en) 2002-05-13

Family

ID=12027290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02044694A Expired - Lifetime JP3281162B2 (en) 1994-02-17 1994-02-17 Optical fiber polarization mode dispersion compensator

Country Status (1)

Country Link
JP (1) JP3281162B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758029B1 (en) * 1996-12-30 1999-01-29 Alsthom Cge Alcatel POLARIZATION DISPERSION COMPENSATION DEVICE IN AN OPTICAL TRANSMISSION SYSTEM
AU6437998A (en) * 1997-02-25 1998-09-09 John A. Fee A method and system for simulating pmd using incremental delay switching
KR100269171B1 (en) 1997-08-28 2000-10-16 윤종용 Dispersion compensation apparatus in optical fiber communication network
JP3655826B2 (en) * 1998-07-10 2005-06-02 シーメンス アクチエンゲゼルシヤフト Polarization mode dispersion detector
FR2803460B1 (en) * 1999-12-30 2002-03-29 Cit Alcatel POLARIZATION DISPERSION COMPENSATION DEVICE IN AN OPTICAL TRANSMISSION SYSTEM
JP4011290B2 (en) 2001-01-10 2007-11-21 富士通株式会社 Dispersion compensation method, dispersion compensation apparatus, and optical transmission system
JP4820984B2 (en) * 2005-06-03 2011-11-24 国立大学法人 東京大学 Waveform deterioration compensation method and apparatus
JP5091739B2 (en) 2008-03-21 2012-12-05 株式会社日立製作所 Optical signal transmission device
CN111585645B (en) * 2019-02-18 2023-03-31 富士通株式会社 Polarization state change monitoring device and method caused by optical link and optical receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡部夏子 他,2波長偏光制御素子,電子情報通信学会秋季大会講演論文集4,日本,社団法人電子情報通信学会,1993年8月15日,B−908,4−149

Also Published As

Publication number Publication date
JPH07231297A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
JP4031076B2 (en) Synchronous polarization and phase modulation using periodic waveforms with complex harmonics for high-performance optical transmission systems
US6744992B2 (en) Synchronous amplitude modulation for improved performance of optical transmission systems
CN1734988B (en) Adaptive optical equalization and joint opto-electronic equalizer architecture
US7382985B2 (en) Electrical domain mitigation of polarization dependent effects in an optical communications system
US7127181B2 (en) System for mitigating the effects of fiber dispersion by separate detection of two transmitted sidebands
US7844144B2 (en) Adaptive optical signal processing with multimode waveguides
US8229302B2 (en) Method and arrangement for polarization mode dispersion mitigation
CN1571307B (en) Multi-channel optical equalizer for intersymbol interference mitigation
JP3281162B2 (en) Optical fiber polarization mode dispersion compensator
EP2317672B1 (en) Adjusting device of delay time and method thereof
US6580542B1 (en) Automatic dispersion equalization apparatus in high-speed optical transmission system
JP3262444B2 (en) Automatic equalizer
JP2001251251A (en) Reproduction of 3r optical signal
CN116827732A (en) Optical fiber communication method and system based on nonlinear decision feedback equalization of neural network
JP2982402B2 (en) Optical communication device
EP1394969B1 (en) Electronic equaliser for optical transmitter
US6542271B1 (en) Apparatus and method for reducing optical impairments in optical communications systems and networks
JP5043292B2 (en) Optical signal reproducing apparatus and method
WO2004032386A1 (en) Electrical domain mitigation of polarization dependent effects in an optical communications system
US20080138082A1 (en) Apparatus and method for generating optical return-to-zero signal
JP2001358710A (en) Optical chaos communication equipment
JP2658678B2 (en) Optical repeater circuit
Diniz Advanced Digital Signal Processing for Next-Generation Coherent Optical Communication Transceivers
JP2006054888A (en) Color and/or polarization mode dispersion compensating adaptive optical equalization and coupling photoelectron equalization device structure
US20030185578A1 (en) Receiving device for disturbed optical signals with generation of a feedback signal by correlation, and method of generating such a feedback signal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term