JPH07230821A - Layer-built fuel cell - Google Patents

Layer-built fuel cell

Info

Publication number
JPH07230821A
JPH07230821A JP6275054A JP27505494A JPH07230821A JP H07230821 A JPH07230821 A JP H07230821A JP 6275054 A JP6275054 A JP 6275054A JP 27505494 A JP27505494 A JP 27505494A JP H07230821 A JPH07230821 A JP H07230821A
Authority
JP
Japan
Prior art keywords
laminated
gas
fuel cell
separator
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6275054A
Other languages
Japanese (ja)
Inventor
Yasushi Shimizu
水 康 清
Kenji Isobe
部 賢 司 磯
Tooru Kaiji
治 徹 海
Kenji Murata
田 謙 二 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6275054A priority Critical patent/JPH07230821A/en
Publication of JPH07230821A publication Critical patent/JPH07230821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve adhesion of electromotive parts of a cell layered body for increasing electric conductivity between cells, and provide a layer-built fuel cell having end part structural bodies having tightening functions which satisfy gas seal properties both at wet seal parts and manifold parts. CONSTITUTION:A layer-built fuel cell comprises unit cells 1 comprising electrolyte matrix held by an anode and a cathode, which are laminated alternately. with separators to introduce fuel gas to the anodes and oxidizer gas to the cathodes respectively and separately, and holes provided at circumferential edge parts of the separators having manifolds penetrating a layered body for supplying/discharging both gases. Manifold parts and electromotive parts 23 on which the unit cells 1 are positioned are integrally covered with plate-shaped structural bodies 21, 22 to be tightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解質マトリックスを
アノード(燃料極)とカソード(空気極)とで挟んだ単
電池と、そのアノードに燃料ガスを、カソードに酸化剤
ガスをそれぞれ隔てて導くセパレータを交互に積層した
積層型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit cell in which an electrolyte matrix is sandwiched between an anode (fuel electrode) and a cathode (air electrode), and a fuel gas is led to the anode and an oxidant gas is led to the cathode. The present invention relates to a stacked fuel cell in which separators are stacked alternately.

【0002】[0002]

【従来の技術】燃料電池は電極上で生じる電気化学的反
応を直接電気出力に変換する発電方式であり、この反応
を行わせるには燃料ガスと酸化剤ガスとを、電解質マト
リックスを挟んで向き合うアノードとカソードとにそれ
ぞれ分けて供給するようにしてある。そしてガスをアノ
ード、カソードに導くセパレータと電解質マトリック
ス、アノードおよびカソードからなる単電池とを交互に
積層し、上下端の電流取り出し・締め付け・ガス給排・
電気絶縁の機能を有する端部構造体で挟みつけることに
より、積層型燃料電池が構成されている。
2. Description of the Related Art A fuel cell is a power generation system in which an electrochemical reaction occurring on an electrode is directly converted into an electric output. In order to carry out this reaction, a fuel gas and an oxidant gas face each other with an electrolyte matrix in between. The anode and the cathode are separately supplied. Then, the separator that guides the gas to the anode and the cathode and the electrolyte matrix, and the unit cell composed of the anode and the cathode are alternately laminated, and the current extraction at the upper and lower ends, tightening, gas supply and discharge,
A laminated fuel cell is constituted by sandwiching the end structure having an electrical insulating function.

【0003】図19は積層型燃料電池の繰り返し構造の
一例を示す図であり、単電池1は電解質マトリックス2
と、その両面に密着して配置されるアノード3およびカ
ソード4とから構成されている。また、セパレータ5は
インターコネクタ6、アノードエッジ板7、カソードエ
ッジ板8、アノード集電板9、カソード集電板10、お
よびアノードエッジ板7、カソードエッジ板8とインタ
ーコネクタ6との間に介装されるエッジスプリング(図
示せず)からなり、上記単電池1に密着して配設され、
アノード3に燃料ガス11をカソード4に酸化剤ガス1
2を導く。本図に示されるこれらの部品から単セルが構
成され、このセルを複数積層して燃料電池発電設備の基
本単位を成す電池積層体が構成される。積層に際して、
セパレータ5はインターコネクタ6を両側からアノード
エッジ板7とカソードエッジ板8とで挟み周縁を接合し
て一体化して取り扱う。インターコネクタ6とアノード
エッジ板7との間に形成される空間に燃料ガス、インタ
ーコネクタ6とカソードエッジ板8との間に形成される
空間に酸化剤ガスが流される。これらの空間を確保する
ために、アノード集電板9とカソード集電板10がエッ
ジ板7,8の中に設けられている。
FIG. 19 is a view showing an example of a repeating structure of a stacked fuel cell, in which a unit cell 1 is an electrolyte matrix 2
And an anode 3 and a cathode 4 which are arranged in close contact with both surfaces thereof. The separator 5 is interposed between the interconnector 6, the anode edge plate 7, the cathode edge plate 8, the anode current collector plate 9, the cathode current collector plate 10, and the anode edge plate 7, the cathode edge plate 8 and the interconnector 6. It is composed of an edge spring (not shown) mounted, and is arranged in close contact with the unit cell 1,
Fuel gas 11 for anode 3 and oxidant gas 1 for cathode 4
Guide 2 A single cell is composed of these components shown in this figure, and a plurality of these cells are stacked to form a battery stack that constitutes a basic unit of a fuel cell power generation facility. When stacking
The separator 5 is handled by sandwiching the interconnector 6 from both sides with the anode edge plate 7 and the cathode edge plate 8 and joining the peripheral edges together. Fuel gas is flown into the space formed between the interconnector 6 and the anode edge plate 7, and oxidant gas is flowed into the space formed between the interconnector 6 and the cathode edge plate 8. To secure these spaces, an anode current collector 9 and a cathode current collector 10 are provided in the edge plates 7 and 8.

【0004】セパレータはガスの流路を形成するととも
に、隣接する単電池同士を電気的に接続する役割を有
し、電気は主にアノード3、カソード4に密着するアノ
ード集電板9、カソード集電板10を通って流れる。
The separator has a role of forming a gas flow path and electrically connecting adjacent cells to each other. The electricity is mainly collected by the anode current collector 9 and the cathode current collector 9 which are in close contact with the anode 3 and the cathode 4. Flow through the electrical plate 10.

【0005】燃料ガスと酸化剤ガスはセパレータの周縁
部に位置してスタックを貫通した孔から供給、排出され
る。上下に積層されるセパレータの孔同士は電気絶縁性
のマニホールドリング13で接続されている。このガス
給排用のガス流路を内部マニホールドと呼び、この内部
マニホールドを有する燃料電池は内部マニホールド型燃
料電池と呼ばれる。
The fuel gas and the oxidant gas are supplied and discharged from the holes penetrating the stack at the periphery of the separator. The holes of the separators that are stacked one above the other are connected by an electrically insulating manifold ring 13. This gas supply / discharge gas passage is called an internal manifold, and a fuel cell having this internal manifold is called an internal manifold type fuel cell.

【0006】単電池1の周縁部はセパレータと密着し
て、セパレータ内のガス流路と電池雰囲気とをシールす
る。単電池1は電解質液を含んでいるため、密着面を濡
らしてシールすることができる。このシールをウェット
シールと呼ぶ。
The peripheral portion of the unit cell 1 is in close contact with the separator to seal the gas passage in the separator and the battery atmosphere. Since the unit cell 1 contains the electrolyte solution, the contact surface can be wet and sealed. This seal is called a wet seal.

【0007】このように、部品間の密着性が要求される
ために、スタックは上下の端部構造体を構成する締付板
によって締め付けられて、発電運転に供される。
As described above, since the close contact between the parts is required, the stack is clamped by the clamp plates constituting the upper and lower end structures and is used for the power generation operation.

【0008】[0008]

【発明が解決しようとする課題】上記したように、単セ
ルは複数の構成要素を積層して構成され、さらに電池積
層体は複数の単セルを積層して構成されるため、構成要
素の高さがばらつくと密着性を損なうおそれがある。ウ
ェットシール部分で密着性が乏しいとガスが漏れて発電
性能および発電効率が損なわれるばかりでなく、燃料ガ
スと酸化剤ガスとが燃焼反応を起こす危険性がある。ま
た、起電部分での密着性の不良は電気抵抗の増大を招
き、発電電力の幾分かが失われることになる。
As described above, the unit cell is formed by stacking a plurality of constituent elements, and the battery stack is formed by stacking a plurality of unit cells. If the variation is uneven, the adhesion may be impaired. If the wet seal portion has poor adhesion, not only gas may leak and the power generation performance and power generation efficiency may be impaired, but also the fuel gas and the oxidant gas may cause a combustion reaction. In addition, poor adhesion at the electromotive portion causes an increase in electrical resistance, and some of the generated power is lost.

【0009】特に、起電部分とマニホールド部分とでは
積層する構成要素が異なるため、両者の高さの違いが、
起電部分の密着性を損ない、上記した性能低下を引き起
こす原因になりかねない。
In particular, since the components to be laminated are different between the electromotive portion and the manifold portion, the difference in height between them is
This may impair the adhesion of the electromotive part and cause the above-mentioned performance deterioration.

【0010】一方、積層端部構造体には、起電部分の密
着性・電気伝導性とウェットシール部とマニホールド部
分のガスシール性を確保するための締め付け機能ととも
に、直流電流の取り出し、反応ガスの給排、電気絶縁、
望ましくは熱絶縁機能が要求される。
On the other hand, the laminated end structure has a tightening function to secure the adhesion and electric conductivity of the electromotive portion and the gas sealability of the wet seal portion and the manifold portion, and also to take out the direct current and the reaction gas. Supply and discharge, electrical insulation,
Desirably, a heat insulation function is required.

【0011】そこで本発明は、製造寸法公差内で寸法の
ばらつきを有する各構成要素からなる電池積層体の起電
部分の密着性を向上させ、セル間の電気伝導性を高くす
ることと、各セルのウェットシール部分とマニホールド
部分とのガスシール性を両立させる締め付け機能を有す
るとともに、直流電流取り出し・電気絶縁・反応ガス給
排の機能を兼ねた端部構造体を有する積層型燃料電池を
提供することを目的とする。
Therefore, the present invention improves the adhesion of the electromotive portion of the battery stack consisting of the constituent elements having dimensional variations within the manufacturing dimensional tolerance, and increases the electrical conductivity between the cells. Provide a laminated fuel cell having an end structure that has a tightening function that achieves both gas sealability between the cell's wet seal part and manifold part, and that also has the functions of direct current extraction, electrical insulation, and reaction gas supply / discharge. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】本発明は、電解質マトリ
ックスをアノードとカソードとで挟んだ単電池と、その
アノードに燃料ガスを、カソードに酸化剤ガスをそれぞ
れ隔てて導くセパレータとを交互に積層し、両ガスを給
排するマニホールドがその積層体を貫通して各セパレー
タの周縁部に設けられた孔から構成されるマニホールド
を有する積層型燃料電池において、マニホールドの部分
と単電池の位置する起電部分とを一体で覆う板状構造体
で締め付けたことを特徴とする。
According to the present invention, a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode, and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated. In a laminated fuel cell in which a manifold that supplies and discharges both gases has a manifold that is formed by holes that are provided in the peripheral portion of each separator and that penetrates through the laminated body, in the stack fuel cell It is characterized in that it is fastened by a plate-like structure integrally covering the electric part.

【0013】また、第2の発明は、締付板と電池積層体
との間に、あるいは電池ユニット同士間の間に弾性体を
設けて、高さのばらつきを解消したことを特徴とする。
A second aspect of the invention is characterized in that an elastic body is provided between the tightening plate and the battery stack or between the battery units to eliminate the height variation.

【0014】さらに第3の発明は、電池積層体を複数の
ユニットに分けて積層し、任意のユニットの燃料ガス或
は酸化剤ガスの下流側を、そのユニットの上に積層され
るユニットのガス上流側に位置させたことを特徴とす
る。
Furthermore, a third aspect of the present invention is to divide a cell stack into a plurality of units and stack the units, and to arrange a gas of a unit to be stacked on the downstream side of a fuel gas or an oxidant gas of an arbitrary unit. It is characterized by being located on the upstream side.

【0015】第4の発明は、電池積層体を複数の電池ユ
ニットに分割して積層し、各電池ユニットのマニホール
ドにガスを給排する中間ヘッダーを設け、電池積層体の
密着性を保つために、中間ヘッダー同士を接続する配管
を伸縮継手を用いて構成した。
According to a fourth aspect of the invention, the battery stack is divided into a plurality of battery units and stacked, and an intermediate header for supplying and discharging gas is provided in the manifold of each battery unit to maintain the adhesion of the battery stack. The pipe connecting the intermediate headers to each other was configured using expansion joints.

【0016】第5の発明は、所定の締付圧で発電運転す
る前により高い締付圧で電池積層体をあらかじめ一旦締
め付けたことを特徴とする。
A fifth aspect of the present invention is characterized in that the battery stack is once tightened in advance with a higher tightening pressure before the power generation operation is performed with a predetermined tightening pressure.

【0017】第6の発明は電池積層体を上下より締め付
ける締付板を中央部を周縁部よりも厚くしたリブ構成と
したことを特徴とする。
A sixth aspect of the invention is characterized in that the tightening plate for tightening the battery stack from above and below has a rib structure in which the central part is thicker than the peripheral part.

【0018】[0018]

【作用】内部マニホールド型の燃料電池においては、セ
パレータが集電機能を果たす中央部分とガス給排機能を
果たす外縁のマニホールド部分とから成り立っているた
め、両者が独立の変位をもって締め付けられるのはセパ
レータを変形させることになり、構成要素の密着性が損
なわれて好ましくない。そこで、上記両部分を一体の剛
性の高い締付板を用いて電池積層体を締め付けること
で、両部分の変位量を等しくできセパレータの変形を抑
え、両部分の密着性を向上させることができる。
In the internal manifold type fuel cell, since the separator is composed of a central portion that performs a current collecting function and a manifold portion that is an outer edge that performs a gas supply / discharge function, the separator is tightened with independent displacement. Will be deformed, and the adhesion of the components will be impaired, which is not preferable. Therefore, by tightening the battery laminated body by using a clamp plate having high rigidity that integrates both parts, the displacement amount of both parts can be made equal, the deformation of the separator can be suppressed, and the adhesion of both parts can be improved. .

【0019】平板状の締付板によって電池積層体が上下
から押さえられた場合には、起電部分を構成する要素に
は、通常、特に、精密な厚さ精度が要求される。電池積
層体の積層方向に積算した各構成要素の高さの和がセパ
レータの面内で異なると局所的に締付圧力がかからない
ところが生じる。また構成要素が局所的に高温クリープ
によって収縮しても、その高さの和が経時的に異なって
くる。そこで、締付板と電池積層体との間に、あるいは
電池ユニット同士間の間に弾性体を設けることにより、
高さのばらつきを解消することができる。
When the battery stack is pressed from above and below by the flat plate-shaped tightening plate, the elements constituting the electromotive portion are usually required to have a particularly accurate thickness. If the sum of the heights of the respective constituent elements integrated in the stacking direction of the battery stack is different in the plane of the separator, the tightening pressure may not be locally applied. Further, even if the constituent element locally shrinks due to high temperature creep, the sum of the heights of the constituent elements changes with time. Therefore, by providing an elastic body between the tightening plate and the battery stack or between the battery units,
Height variations can be eliminated.

【0020】また、電池積層体の内部の温度は、一般
に、燃料ガスおよび酸化剤ガスの下流側で高く、高温ク
リープの度合いはその温度分布によって影響を受ける。
構成要素がより高温にさらされてクリープ収縮し易いガ
スの下流側を電池積層体の異なる方向に振り分けること
で、電池積層体の高さの変化量を均一に保つことができ
る。
The temperature inside the cell stack is generally high downstream of the fuel gas and the oxidant gas, and the degree of high temperature creep is affected by the temperature distribution.
By distributing the downstream side of the gas in which the constituent elements are exposed to higher temperature and easily creeps and contracts in different directions of the battery stack, it is possible to keep the amount of change in the height of the battery stack uniform.

【0021】ガスの流れ方向を振り分けるために、電池
積層体を複数の電池ユニットに分割して積層し、各電池
ユニットのマニホールドにガスを給排する中間ヘッダー
を設けた。さらに、電池ユニットのクリープ収縮や電池
ユニット同士の間に設けた弾性体の収縮により中間ヘッ
ダー同士の間隔は収縮する。その場合においても、中間
ヘッダー同士を接続する配管を伸縮継手を用いることに
より、電池積層体の密着性を保つことができる。
In order to distribute the gas flow direction, the battery stack was divided into a plurality of battery units and stacked, and an intermediate header for supplying and discharging gas was provided in the manifold of each battery unit. Further, the space between the intermediate headers is contracted due to the creep contraction of the battery units or the elastic body provided between the battery units. Even in that case, the adhesion of the battery stack can be maintained by using the expansion joint for the pipe connecting the intermediate headers.

【0022】上記したように積層型燃料電池はガスシー
ル性と電気接触性を良好に保つために所定の圧力をもっ
て締め付けられている。締付圧力を高くすれば密着性は
向上するが、高温クリープによる構成要素の収縮量が大
きくなるので、発電運転中はできるだけ低い締付圧で締
め付けるのが好ましい。締付圧低減のひとつの方法とし
て、所定の締付圧で発電運転する前により高い締付圧で
電池積層体をあらかじめ一旦締め付けることにより、電
池積層体の構成要素同士を馴染ませることができる。
As described above, the laminated fuel cell is clamped with a predetermined pressure in order to maintain good gas sealing and electrical contact. The higher the tightening pressure, the better the adhesion, but since the amount of shrinkage of the components due to high temperature creep increases, it is preferable to tighten the tightening pressure as low as possible during the power generation operation. As one method of reducing the tightening pressure, the constituent elements of the battery stack can be made to fit together by previously tightening the battery stack at a higher tightening pressure before the power generation operation at a predetermined tightening pressure.

【0023】電池積層体を均等な面圧で締め付けるため
に、締付板は十分な剛性を必要とする。しかしながら、
電池発電運転立ち上げに関わる電池の昇温においては、
電池外部からのエネルギー供給量を最小限にするため
に、電池積層体の端部構造体の熱容量が小さいことが好
ましく、また、端部構造体から積層電池を収納する容器
への伝熱量が小さいことが好ましい。そこで、締付板は
中央部を周縁部よりも厚くしたリブ構成とすることによ
り、端部構造体の熱容量を小さくし、伝熱性を低くする
ことができる。
The tightening plate needs to have sufficient rigidity in order to tighten the battery stack with a uniform surface pressure. However,
In raising the temperature of the battery related to the start of battery power generation operation,
In order to minimize the amount of energy supplied from the outside of the battery, the heat capacity of the end structure of the battery stack is preferably small, and the amount of heat transfer from the end structure to the container that houses the stacked battery is small. It is preferable. Therefore, the tightening plate has a rib structure in which the central portion is thicker than the peripheral portion, so that the heat capacity of the end structure can be reduced and the heat conductivity can be reduced.

【0024】[0024]

【実施例】本発明の実施例を図を用いて説明する。図1
は上下から締め付けた状態の電池積層体の概念図を示し
たものであり、積層の途中を破線で省略してある。本発
明では起電部分とマニホールド部分の変位量を等しくす
るために、上部締付板21および下部締付板22がマニ
ホールド部分まで展延してある。従来例では、性能のよ
い積層型燃料電池を得るのに必要な、すなわち、起電部
分を密着させるのに必要な締付板の大きさは、概ね電解
質マトリックス2の大きさに限られていた。この場合、
起電部分とマニホールド部分との構成要素が異なるこ
と、セパレータ5の曲げ剛性が小さいことなどから、各
構成要素の製造寸法のばらつきと発電運転中のクリープ
収縮とで、両部分の高さに違いが生じセパレータに曲げ
変形が生じる。この変形により起電部分の密着性が損な
われる。図1に示す本例ではセパレータの曲げ剛性に比
べ十分に大きい曲げ剛性を有する上部・下部締付板2
1,22により、起電部分23とマニホールド部分24
の両方を押さえることで、セパレータの曲げ変形を抑制
することができる。したがって、起電部分の密着性が向
上し、曳いては、ガスシール性と電気接触性を向上させ
ることができる。
Embodiments of the present invention will be described with reference to the drawings. Figure 1
Shows a conceptual diagram of the battery stack in a state where it is clamped from above and below, and the middle of stacking is omitted by broken lines. In the present invention, the upper clamping plate 21 and the lower clamping plate 22 are extended to the manifold portion in order to equalize the displacement amounts of the electromotive portion and the manifold portion. In the conventional example, the size of the tightening plate required to obtain a stacked fuel cell with good performance, that is, the size of the tightening plate required to bring the electromotive portions into close contact with each other was generally limited to the size of the electrolyte matrix 2. . in this case,
Since the components of the electromotive part and the manifold part are different and the bending rigidity of the separator 5 is small, the difference in the manufacturing dimensions of each component and the creep contraction during power generation operation result in a difference in the height of both parts. Occurs and the separator is bent and deformed. This deformation impairs the adhesiveness of the electromotive portion. In this example shown in FIG. 1, the upper and lower tightening plates 2 have a bending rigidity sufficiently higher than that of the separator.
1 and 22, the electromotive portion 23 and the manifold portion 24
By pressing both of them, bending deformation of the separator can be suppressed. Therefore, the adhesiveness of the electromotive portion is improved, and thus the gas sealing property and the electrical contact property can be improved.

【0025】なお、本例では積層体全体の高さの変化に
追従して所定の圧力でこれを締め付ける手段として、空
気圧で伸縮する締付ベローズ25を用いたが、他の締め
付け方法を用いても同様の効果を得られる。また、締付
ベローズの大きさは空間効率とベローズ内のガス圧力と
を勘案し、締付板と同等な大きさまで大きくしてもかま
わない。上下の締付板と最上最下端の単セルとの間には
セルに接して電子伝導性の集電端板26、次いで、締付
板を電気的に遮断する電気絶縁板27が介装されてい
る。また、下部締付板には各セルへのガス給排を行うマ
ニホールドに連結した反応ガス給排管が接続され、上部
締付板21と締付ベローズ25との間には第2の電気絶
縁板28が介装され、ベローズの電位を容器と同様大地
電位と同じとしてある。なお、締付圧力の制御はベロー
ズへの封入ガス圧により行う。
In this example, the tightening bellows 25, which expands and contracts by air pressure, is used as a means for tightening it with a predetermined pressure by following the change in the height of the entire laminated body, but other tightening methods may be used. Also has the same effect. Further, the size of the tightening bellows may be increased to a size equivalent to the tightening plate in consideration of the space efficiency and the gas pressure in the bellows. Between the upper and lower tightening plates and the uppermost and lowermost unit cells, an electron conductive current collecting end plate 26 that is in contact with the cell and an electric insulating plate 27 that electrically cuts off the tightening plates are interposed. ing. A reaction gas supply / discharge pipe connected to a manifold for supplying / discharging gas to / from each cell is connected to the lower tightening plate, and a second electrical insulation is provided between the upper tightening plate 21 and the tightening bellows 25. A plate 28 is interposed so that the bellows has the same potential as the ground potential as does the container. The tightening pressure is controlled by the gas pressure filled in the bellows.

【0026】さらに、本発明の改良例を説明する。セパ
レータ同士を機械的に接合するマニホールド部分に対し
て、起電部分の接合は各構成要素の接触のみであるた
め、その密着性が直接発電性能に関わる。上記したよう
にマニホールド部分と起電部分を上下の締付板21,2
2で押さえた場合には、両部分が同じ変位量で締め付け
られるので、締付に対する両部分の弾性が起電部分にか
かる締付圧の制御性に影響する。その制御性を良好にす
るため、その圧縮に対するマニホールド部分の弾性係数
を起電部分の弾性係数より小さくしてある。すなわち、
締め付けに対するマニホールド部分の反力を起電部分の
反力よりも十分に小さくすることにより、起電部分にか
かる締付圧の制御を良好にして、起電部の密着性をより
確実にしてある。これにより、起電部分の電気的接触性
とウェットシール性を向上させることができる。
Further, an improved example of the present invention will be described. Since the electromotive portion is joined only to the contact of each component with respect to the manifold portion that mechanically joins the separators to each other, the adhesiveness directly affects the power generation performance. As described above, connect the manifold part and the electromotive part to the upper and lower tightening plates 21, 2.
When pressed by 2, both parts are tightened with the same amount of displacement, so the elasticity of both parts with respect to tightening affects the controllability of the tightening pressure applied to the electromotive part. In order to improve the controllability, the elastic modulus of the manifold portion against the compression is made smaller than that of the electromotive portion. That is,
By making the reaction force of the manifold part against tightening sufficiently smaller than the reaction force of the electromotive part, the tightening pressure applied to the electromotive part is well controlled and the adhesion of the electromotive part is made more reliable. . Thereby, the electrical contact property and the wet seal property of the electromotive portion can be improved.

【0027】次に、起電部分面内の高さのばらつきを解
消する第2の実施例について説明する。上述のようにマ
ニホールド部分の反力を十分に小さくすることでマニホ
ールド部分と起電部分の高さの差を吸収することができ
るが、起電部分の中での高さのばらつきは解消されな
い。局所的に起電部分に高さの大きいところがあると、
その周辺部に締付圧のかからないところが生じる。そこ
で、集電端板26と電気絶縁板27の間に弾性体29が
介装されている。その概念図を図2に示す。図1と異な
るのは介装した弾性体29の存在である。この弾性体は
接触するセパレータの凹凸に倣って自由に変形可能なも
のである。このような弾性体を介装することにより、起
電部分において局所的に高さの大きいところでは弾性体
がより収縮変形して、起電部分全体により均等な締付圧
を作用させることができる。これにより、起電部分の密
着性を向上することができる。
Next, a second embodiment for eliminating the variation in height within the electromotive surface will be described. As described above, by sufficiently reducing the reaction force of the manifold portion, the difference in height between the manifold portion and the electromotive portion can be absorbed, but the variation in height within the electromotive portion cannot be eliminated. If there is a large height locally in the electromotive part,
A part where the tightening pressure is not applied occurs in the peripheral part. Therefore, the elastic body 29 is interposed between the current collecting end plate 26 and the electric insulating plate 27. The conceptual diagram is shown in FIG. The difference from FIG. 1 is the presence of the interposed elastic body 29. This elastic body can be freely deformed according to the unevenness of the contacting separator. By interposing such an elastic body, the elastic body is more contracted and deformed at a locally large height in the electromotive portion, and a uniform tightening pressure can be applied to the entire electromotive portion. . Thereby, the adhesion of the electromotive portion can be improved.

【0028】本例では、弾性体29と電池積層体の間に
集電端板26を挟んでいるが、この集電端板26はセパ
レータの凹凸に倣って変形できるように十分に柔軟性に
富むものでなければならない。弾性体が電気伝導性に富
むものであれば、集電端板26を弾性体29と電気絶縁
板27との間に挟んでもよい。
In this example, the current collecting end plate 26 is sandwiched between the elastic body 29 and the battery stack, but the current collecting end plate 26 is sufficiently flexible so that it can be deformed following the irregularities of the separator. Must be rich. If the elastic body has a high electric conductivity, the current collecting end plate 26 may be sandwiched between the elastic body 29 and the electric insulating plate 27.

【0029】また、本例では、弾性体29を電池積層体
と上部締付板21の間に介装したが、弾性体の位置はこ
こに限定されるものではなく、セパレータ同士の間、中
間ヘッダーと電池ユニットの間、あるいは下部締付板2
2と電池積層体の間などどこに介装しても同様な効果が
得られる。また、複数の弾性体を同時に介装してもよ
い。
Further, in this example, the elastic body 29 is interposed between the battery stack and the upper tightening plate 21, but the position of the elastic body is not limited to this, and may be between the separators or the middle. Between the header and the battery unit, or the lower clamp plate 2
The same effect can be obtained regardless of where it is interposed, such as between 2 and the battery stack. Also, a plurality of elastic bodies may be interposed at the same time.

【0030】次に、電池積層体と締付板の間に介装した
弾性体の構造例について説明する。図3は電池積層体の
締付に用いた弾性体の一実施例である。金属製の薄板を
プレス加工して等間隔で突起31を設けたスプリング3
2を、突起の位相をずらして2枚積層したものを図に示
す。スプリング32の平坦部分がすぐ下のスプリングの
突起により撓むことで、全体が弾性的な特性を示す。実
際は、図5中に示されるように、このスプリング32を
10枚重ねて用いられている。セパレータ全面のばらつ
きを解消するには、セパレータの幅よりも十分に幅の狭
いスプリング32を積層して並列に配して構成するのが
効果的である。
Next, a structural example of the elastic body interposed between the battery laminate and the tightening plate will be described. FIG. 3 shows an example of an elastic body used for tightening the battery stack. Spring 3 in which projections 31 are provided at equal intervals by pressing a thin metal plate
2 is a laminate of two with the protrusions being out of phase. The flat portion of the spring 32 is bent by the protrusion of the spring immediately below, so that the entire spring 32 exhibits elastic characteristics. Actually, as shown in FIG. 5, ten springs 32 are used in a stacked manner. In order to eliminate the variation in the entire surface of the separator, it is effective to stack the springs 32 having a width sufficiently narrower than the width of the separator and to arrange them in parallel.

【0031】また、幅の狭いスプリング同士の間にスペ
ーサを配して、スプリングの最大収縮量を限定すること
ができる。その実施例を図4に示す。このスプリング3
3は図3のスプリング32同士の間に厚さの変化しない
スペーサ34が配してある。さらに、このような組み合
わせのスプリングを薄板を介して積み重ねて用いてもよ
い。この場合、個々のスプリングの収縮量を抑えてスプ
リングにかかる応力を小さく保ちながら、全体の収縮量
を大きくとることができる。
A spacer may be arranged between the narrow springs to limit the maximum contraction amount of the springs. An example thereof is shown in FIG. This spring 3
3, the spacers 34 whose thickness does not change are arranged between the springs 32 of FIG. Further, springs of such a combination may be stacked and used with thin plates. In this case, the total amount of contraction can be increased while suppressing the amount of contraction of each spring and keeping the stress applied to the springs small.

【0032】このような弾性体は積層方向の伝熱面積が
小さいので、電池積層体から締付構造体を伝わって外部
へ流出する熱損失が抑えられ、燃料電池のシステム効率
を向上させることができる。さらに、電池積層体の昇降
温時には、電池積層体と締付構造体との間の熱膨張差に
よって熱応力が生じるが、この弾性体が平面方向に伸縮
してその熱応力を緩和するという効果もある。
Since such an elastic body has a small heat transfer area in the stacking direction, it is possible to suppress the heat loss that flows out from the cell stack through the tightening structure to the outside, and to improve the system efficiency of the fuel cell. it can. Furthermore, when the temperature of the battery stack is raised or lowered, thermal stress is generated due to the difference in thermal expansion between the battery stack and the tightening structure, but this elastic body expands and contracts in the plane direction to relax the thermal stress. There is also.

【0033】さらに、他の弾性体を図5に示す。この弾
性体は図3に示されるスプリング32の積層体をガス圧
で収縮するベローズ35の内部に収めたものである。図
3の弾性体ではセパレータの全面を均等な圧力で締め付
けることができない。なぜなら、局所的に電池積層体の
高さが大きい箇所に接触するスプリングは大きく撓み、
その箇所の反力は大きいからである。そこで、本例の改
良点はセパレータの全面でより均等な締付圧が得られる
ようにしたことである。スプリングのみではその撓み量
が小さく締付圧の小さくなる箇所を、このベローズで補
うことでより均等な締付圧が得られる。セパレータに接
触するベローズ表面には薄板を用いて、セパレータの凹
凸に十分に倣うようにしてある。これにより、起電部分
の密着性を向上させることができる。このベローズ内の
ガス圧制御のためのガス配管は電気絶縁のため、後に図
15に示す下部締付板を介して行う。また、ベローズ内
部のガス圧を真空に近づけることで、この弾性体の積層
方向への伝熱量を小さくすることができる。
Further, another elastic body is shown in FIG. This elastic body is obtained by accommodating the laminated body of the springs 32 shown in FIG. 3 inside the bellows 35 which contracts by gas pressure. With the elastic body shown in FIG. 3, the entire surface of the separator cannot be clamped with a uniform pressure. This is because the spring that locally contacts the location where the height of the battery stack is large flexes greatly,
This is because the reaction force at that point is large. Therefore, the improvement of this example is that a more uniform tightening pressure can be obtained over the entire surface of the separator. A more uniform tightening pressure can be obtained by using the bellows to supplement a portion where the amount of bending is small and the tightening pressure is small only with the spring. A thin plate is used on the surface of the bellows that comes into contact with the separator so that the unevenness of the separator is sufficiently followed. This can improve the adhesion of the electromotive portion. The gas pipe for controlling the gas pressure in the bellows is electrically insulated, so that the gas pipe is provided later through a lower tightening plate shown in FIG. Further, by bringing the gas pressure inside the bellows close to vacuum, it is possible to reduce the amount of heat transfer in the stacking direction of the elastic body.

【0034】以上述べた発明は構成要素が高温クリープ
によって収縮する場合にも効果的に作用するが、高温ク
リープによる収縮量が大きい場合には、次に述べる構成
が効果的である。溶融炭酸塩型燃料電池のように高温の
もとで運転する電池では、セパレータおよび単電池の各
構成要素は高温にさらされてクリープし、厚さおよび高
さが収縮する。一般に燃料電池は燃料ガスおよび酸化剤
ガスの下流側ほど温度が高く、下流側に位置する構成要
素が高温クリープし易い。したがって、電池積層体の中
をガスが一方向に流れる場合には、下流側でより収縮し
起電部分の密着性が損なわれるおそれがある。
The invention described above works effectively even when the constituent elements shrink due to high temperature creep, but when the amount of shrinkage due to high temperature creep is large, the following construction is effective. In cells that operate at high temperatures, such as molten carbonate fuel cells, the separator and individual cell components creep when exposed to high temperatures, shrinking in thickness and height. Generally, in a fuel cell, the temperature is higher on the downstream side of the fuel gas and the oxidant gas, and the components located on the downstream side are more likely to creep at high temperature. Therefore, when the gas flows in one direction in the battery stack, there is a possibility that the gas may shrink more on the downstream side and the adhesion of the electromotive portion may be impaired.

【0035】そこで、本発明ではガスの流れ方向を振り
分けた電池ユニット同士を積層して電池積層体全体の収
縮量を均等に保った。図6にその積層型燃料電池の概念
図を示す。電池積層体を2つの電池ユニット41に分割
して、中間ヘッダー42を介して積層した。図中に電池
積層体内部を流れる燃料ガス43の方向を矢印で示す。
中間ヘッダー42より供給された燃料ガス43はマニホ
ールドで各セパレータに分配され、起電部分で電池反応
した後、中間ヘッダーを通って排出される。そして上下
に積層された電池ユニットは燃料ガス43の流れ方向が
逆向きになるようにしてある。燃料ガスの下流側、すな
わち、上部の電池ユニットは図中右側が、下部の電池ユ
ニットは図中左側が、発電運転中に収縮量がより大きく
なるが、全体の収縮量は均等に保つことができる。これ
により、上述した締付板や弾性体が機能し易く起電部分
の密着性が向上した。なお、図には燃料ガスの方向のみ
示したが、酸化剤ガスについても同様に逆方向に流す。
Therefore, in the present invention, the battery units in which the gas flow directions are distributed are stacked to keep the shrinkage amount of the entire battery stack uniform. FIG. 6 shows a conceptual diagram of the laminated fuel cell. The battery laminated body was divided into two battery units 41 and laminated via the intermediate header 42. In the figure, the direction of the fuel gas 43 flowing inside the cell stack is indicated by an arrow.
The fuel gas 43 supplied from the intermediate header 42 is distributed to each separator in the manifold, and after a cell reaction occurs in the electromotive portion, the fuel gas 43 is discharged through the intermediate header. The upper and lower cell units are arranged so that the fuel gas 43 flows in opposite directions. The downstream side of the fuel gas, that is, the upper battery unit is on the right side in the figure, and the lower battery unit is on the left side in the figure.The contraction amount becomes larger during power generation operation, but the overall contraction amount can be kept uniform. it can. As a result, the above-mentioned tightening plate and elastic body were easy to function, and the adhesion of the electromotive portion was improved. Although only the direction of the fuel gas is shown in the figure, the oxidizing gas also flows in the opposite direction.

【0036】中間ヘッダーでガスを電池ユニットに分配
するには、密着性を阻害する要因が別に生じる。すなわ
ち、積層した中間ヘッダーを配管で接続するときに、配
管の長さがヘッダー同士の間隔を制約してしまう。この
間隔が収縮しないと、起電部分の密着性が損なわれる。
そこで、中間ヘッダー同士が伸縮配管で接続されてい
る。その実施例を図7に示す。図6と同様に積層した電
池ユニット41同士が中間ヘッダー42を介して積層さ
れ、中間ヘッダー同士を接続する燃料ガス43の配管4
4が伸縮配管45を介して接続されている。したがっ
て、電池ユニット31の収縮にともなって、伸縮配管4
5も収縮する。本図は上下の電池ユニットに燃料ガスを
同方向で流した例であるが、もちろん、逆方向に流して
も同様な効果が得られる。また、酸化剤ガスの配管につ
いても同様である。
Distributing the gas to the battery unit by the intermediate header causes another factor that hinders the adhesion. That is, when the stacked intermediate headers are connected by pipes, the length of the pipes limits the distance between the headers. If this space does not shrink, the adhesion of the electromotive portion is impaired.
Therefore, the intermediate headers are connected to each other by expansion piping. An example thereof is shown in FIG. The battery units 41 that are stacked in the same manner as in FIG. 6 are stacked via the intermediate header 42, and the pipe 4 for the fuel gas 43 that connects the intermediate headers 4 together.
4 are connected via a telescopic pipe 45. Therefore, as the battery unit 31 contracts, the expansion pipe 4
5 also contracts. This figure shows an example in which the fuel gas is made to flow in the same direction in the upper and lower cell units, but of course the same effect can be obtained by making it flow in the opposite direction. The same applies to the oxidant gas piping.

【0037】中間ヘッダーと電池ユニットとの間に弾性
体を介装する場合には中間ヘッダーと電池ユニットとの
間を繋ぐ反応ガスの配管が弾性体の伸縮に伴って伸縮し
なければならない。したがって、図8に示すように中間
ヘッダー42から電池ユニット41のマニホールドに接
続する燃料ガス43の配管に伸縮管46が使用されてい
る。
When an elastic body is interposed between the intermediate header and the battery unit, the reaction gas pipe connecting the intermediate header and the battery unit must expand and contract as the elastic body expands and contracts. Therefore, as shown in FIG. 8, the expansion tube 46 is used for the pipe of the fuel gas 43 that connects the intermediate header 42 to the manifold of the battery unit 41.

【0038】次に、電池積層体の締付方法について説明
する。過大な締付圧はセパレータと単電池との構成要素
の高温クリープを促進するので、スタックの締付圧は電
気的接触とウェットシールを機能させるに十分かつ最少
であることが好ましい。そこで、発電運転中の締付圧を
低減させる方法を試みた。電池積層体に一時的に高い締
付圧をかけるとセパレータおよび単電池の反り等が解消
され、比較的低い締付圧で起電部分の密着性を向上する
ことができる。図9はウェットシール内外にかかるガス
の圧力差に対するウェットシール部を漏れるガスの流量
の関係を示したグラフである。発電運転中の締付圧を1
kgf/cm2 としたが、運転前に一旦3kgf/cm
2 で積層体を締め付けると、その後1kgf/cm2
締付圧に戻してもガスの漏れ量は大幅に減少した。3k
gf/cm2 締付時間は10時間以内であったが、その
効果はスタックを構成する各要素がその締付で馴染んだ
ことによる。これにより、起電部の密着性は向上した。
ここで、運転前とはカソードセパレータ材料の酸化反応
がそれほど大きくない、また、単セル材料の高温クリー
プが大きくない温度に積層型電池が保たれている状態を
いう。この温度はおよそ450℃程度以下である。この
仮の締付は発電前に制限されるものではなく、発電運転
を開始した後においても同様の効果が得られるのはもち
ろんであるが、材料を高温クリープで収縮させないため
に締付時間をより短くするのが望ましい。
Next, a method for tightening the battery stack will be described. Since excessive clamping pressure promotes high temperature creep of the separator and cell components, it is preferred that the clamping pressure of the stack be sufficient and minimal to provide electrical contact and wet sealing. Therefore, we attempted a method to reduce the tightening pressure during power generation operation. When a high tightening pressure is temporarily applied to the battery stack, warpage of the separator and the unit cell is eliminated, and the adhesion of the electromotive part can be improved with a relatively low tightening pressure. FIG. 9 is a graph showing the relationship between the pressure difference between the gas inside and outside the wet seal and the flow rate of the gas leaking from the wet seal portion. The tightening pressure during power generation is 1
Although it was set to kgf / cm 2 , it was once 3 kgf / cm before operation.
When the laminate was tightened at 2 , the amount of gas leakage was significantly reduced even after returning to the tightening pressure of 1 kgf / cm 2 . 3k
The gf / cm 2 tightening time was within 10 hours, but the effect was due to the fact that each element constituting the stack became familiar with the tightening. As a result, the adhesion of the electromotive section was improved.
Here, “before operation” refers to a state in which the laminated battery is kept at a temperature at which the oxidation reaction of the cathode separator material is not so large and the high temperature creep of the single cell material is not large. This temperature is about 450 ° C. or lower. This temporary tightening is not limited to before power generation, and it is of course possible to obtain the same effect after power generation operation is started, but the tightening time is set to prevent the material from shrinking due to high temperature creep. It is desirable to make it shorter.

【0039】次に、熱容量の小さい締付板について説明
する。図10はリブで構成した締付板51を用いて上下
から締め付けた電池積層体52である。電池積層体の四
隅において、上下の締付構造体同士を通しの棒(図示せ
ず)で固定してある。この締付構造体はリブの間に空間
があるので、熱容量が十分に小さい。さらに、リブにか
かる曲げ応力が大きい中央部分でリブを高くし、周縁部
分では低くしてあるので締付構造体の強度を満たすのに
必要最小限の部材を用いて、熱容量を抑えることができ
る。リブ間の空間には熱輻射能が低く断熱性の材料を充
填するのがよい。
Next, a tightening plate having a small heat capacity will be described. FIG. 10 shows a battery stack 52 that is tightened from above and below using a tightening plate 51 composed of ribs. At the four corners of the battery stack, the upper and lower tightening structures are fixed to each other with through rods (not shown). Since the tightening structure has a space between the ribs, the heat capacity is sufficiently small. Further, since the rib is made high in the central portion where the bending stress applied to the rib is large and is made low in the peripheral portion, the heat capacity can be suppressed by using the minimum number of members necessary to satisfy the strength of the tightening structure. . The space between the ribs is preferably filled with a material having a low heat radiation ability and a heat insulating property.

【0040】図11は締付板の他の実施例である。この
締付板53は薄板にリブを接合して、熱容量を抑えなが
ら強度を確保している。この締付板53を用いて電池積
層体を横置きの円筒容器54に組み込んだ実施例を図1
2に示す。締付板の中央部の円筒状リブが伸縮可能な締
付ベローズ25で抑えられるようにしてある。この円筒
状リブと締付ベローズが接触する面にはそれぞれアルミ
ナのプラズマスプレーで電気絶縁層を形成してある。な
お、図中符号57は電流取出部材である。締付板の中央
部を厚くしたことにより、電池積層体断面に比べて小さ
い断面を有する締付ベローズで、均等な締付が可能であ
る。さらに、横置きの円筒容器に収めるときの容積効率
を大きくすることができる。また、締付板がリブ構造で
あるので、電池積層体から容器に伝わる伝熱流路を小さ
くでき、熱損失を抑えることができる。本図中では、図
10において積層電池を締め付けている仮締めの棒は除
かれており、電池積層体は容器に取り付けられた締付ベ
ローズで締め付けられている。また、容器内の断熱材
(保温材)は図示されていない。
FIG. 11 shows another embodiment of the tightening plate. The tightening plate 53 has a rib joined to a thin plate to secure the strength while suppressing the heat capacity. An embodiment in which the battery stack is assembled in a horizontal cylindrical container 54 by using this tightening plate 53 is shown in FIG.
2 shows. The central cylindrical rib of the tightening plate is held by the expandable expandable tightening bellows 25. An electric insulating layer is formed by plasma spraying of alumina on the surface where the cylindrical rib and the tightening bellows are in contact with each other. Reference numeral 57 in the figure is a current extracting member. By thickening the central portion of the tightening plate, uniform tightening is possible with the tightening bellows having a cross section smaller than the cross section of the battery stack. Further, it is possible to increase the volumetric efficiency when it is housed in a horizontally placed cylindrical container. In addition, since the tightening plate has a rib structure, the heat transfer passage that is transmitted from the battery stack to the container can be made small, and heat loss can be suppressed. In FIG. 10, the provisional tightening bar that tightens the laminated battery in FIG. 10 is omitted, and the battery laminated body is tightened by the tightening bellows attached to the container. Further, the heat insulating material (heat insulating material) in the container is not shown.

【0041】図13には、同様に電池積層体を縦置きの
円筒容器56に収納した実施例を示す。この図は四辺形
の電池積層体の対角線上の位置から見たものである。
FIG. 13 shows an embodiment in which the battery laminated body is similarly housed in a vertical cylindrical container 56. This figure is seen from the diagonal position of the quadrilateral battery stack.

【0042】図12、図13に示される集電端板26は
電流取出部材57に接続され、積層電池の電気出力を容
器外へ取り出すようになっているが、電池積層体を容器
内に組み込むときにその接続が容易になるように、図1
4に示すように、容器壁58に電流取出部材57が硝子
59と伸縮ベローズ60を介して配設されており、その
電流取出部材57と集電端板26とが上記伸縮ベローズ
60により接触するように構成されている。しかして、
電池積層体を容器内に組み込むとその自重で集電端板2
6が電流取出部材57を挟んで伸縮ベローズ60を押し
つけ、ガス供給管61より供給されるガスの圧力で伸縮
ベローズ60により電流取出部材57が集電端板26に
押しつけられる。
The current collecting end plate 26 shown in FIGS. 12 and 13 is connected to the current extracting member 57 so that the electric output of the laminated battery is taken out of the container. However, the battery laminated body is incorporated in the container. Figure 1 to make the connection easier sometimes
As shown in FIG. 4, a current extraction member 57 is arranged on the container wall 58 via the glass 59 and the expansion bellows 60, and the current extraction member 57 and the current collecting end plate 26 are in contact with each other by the expansion bellows 60. Is configured. Then,
When the battery stack is assembled in a container, the current collecting end plate 2 is produced by its own weight.
6 presses the expandable bellows 60 with the current extracting member 57 interposed therebetween, and the expandable bellows 60 presses the current extracting member 57 against the current collecting end plate 26 by the pressure of the gas supplied from the gas supply pipe 61.

【0043】次に、横置きの円筒容器に複数の積層体を
組み込んだ例を図15に示す。下部締付板62は全ての
積層体に共通で、各積層体に反応ガスを供給するガスヘ
ッダーを兼ねている。積層体と下部締付板62との接続
の様子を図16に、そのA−A断面詳細を図17に示
す。積層体を下部締付板上に置くだけで反応ガスのヘッ
ダーとマニホールドとが接続される構造になっている。
図中矢印で接続部分を流れる反応ガス72を示す。すな
わち、下部締付板62には各積層体のマニホールドと対
応する位置にガス供給口63が穿設されており、各ガス
供給口63には第1のコネクタ64がベローズ65を介
して装着してある。一方積層体の各マニホールドには第
2のコネクタ66が設けられている。したがって積層体
を下部締付板の上に置くと積層体のマニホールドに装着
されている第2のコネクタ66が下部締付板71のベロ
ーズ73に装着された第1のコネクタ64とはめ合いに
よって係合する。このとき、ベローズ65が収縮しその
反力で接続部分の配管が気密に接続される。すなわち、
両者の熱膨張係数を違えておけば、発電運転前の昇温時
に両者が噛み合って気密が保たれる。このように積層体
を据えるだけで、自動的に気密がとれ、配管接続作業が
不要になる。また、積層体と容器との電気絶縁性を高め
るために下部締付板はセラミックスなどの電気絶縁性材
料で構成されるのが好ましい。
Next, FIG. 15 shows an example in which a plurality of laminated bodies are incorporated in a horizontally placed cylindrical container. The lower tightening plate 62 is common to all the laminated bodies and also serves as a gas header for supplying a reaction gas to each laminated body. FIG. 16 shows the state of connection between the laminated body and the lower tightening plate 62, and FIG. 17 shows the AA cross-section detail thereof. The structure is such that the header of the reaction gas and the manifold are connected by simply placing the laminated body on the lower tightening plate.
The reaction gas 72 flowing through the connecting portion is indicated by an arrow in the figure. That is, the lower tightening plate 62 is provided with a gas supply port 63 at a position corresponding to the manifold of each laminated body, and the first connector 64 is attached to each gas supply port 63 via the bellows 65. There is. On the other hand, a second connector 66 is provided on each manifold of the stack. Therefore, when the laminated body is placed on the lower clamping plate, the second connector 66 mounted on the manifold of the laminated body is engaged with the first connector 64 mounted on the bellows 73 of the lower clamping plate 71 by fitting. To meet. At this time, the bellows 65 contracts, and the reaction force of the bellows 65 airtightly connects the pipes at the connecting portion. That is,
If the thermal expansion coefficients of the two are different, the two mesh with each other during the temperature rise before the power generation operation, and the airtightness is maintained. By simply installing the laminated body in this way, the airtightness is automatically obtained, and the pipe connecting work is unnecessary. Further, in order to improve the electric insulation between the laminated body and the container, the lower tightening plate is preferably made of an electric insulating material such as ceramics.

【0044】次に、積層体高電圧部の電気絶縁について
説明する。図18に複数の積層体を直列に接続した例を
示す。送電の電力ロスを少なくするために、積層体同士
は直列に接続して、電流値を増やさずに電圧値を増やす
のが好ましいが、このとき、電気接続の方法によっては
高電圧差の電気絶縁が必要になる。図の接続方法は電気
絶縁の電圧差を小さく抑えた積層体の接続方法である。
積層体は各々容器に収納されており、容器は大地と同電
位に保たれている。積層体の電位は直列接続された中央
の電気リード71を大地電位とした。したがって、接続
された電池の最高電位は大地電位に対して、左端の積層
体Lが負、右端の積層体Rが正の電位になるように振り
分けて、積層体と容器との間の最大電位差を最小にし
た。積層体と容器との電気絶縁は前述のように、締付板
と集電端板との間に介装された電気絶縁板によって行わ
れているが、さらに電気絶縁性を高めるために絶縁材は
温度が低く電気絶縁性の高くなる位置に重ねて設けられ
ている。積層体の上部においては図1、図2に示される
電気絶縁板28を、積層体の下部においては図15、図
16に示される電気絶縁性の下部締付板62が用いられ
る。
Next, the electrical insulation of the high voltage portion of the laminate will be described. FIG. 18 shows an example in which a plurality of laminated bodies are connected in series. In order to reduce the power loss of power transmission, it is preferable to connect the stacked bodies in series and increase the voltage value without increasing the current value, but at this time, depending on the method of electrical connection, electrical insulation of high voltage difference may be performed. Will be required. The connecting method shown in the figure is a connecting method of the laminated body in which the voltage difference of electrical insulation is suppressed to a small level.
Each of the laminated bodies is housed in a container, and the container is kept at the same potential as the ground. The electric potential of the laminated body was set to the ground electric potential of the central electric lead 71 connected in series. Therefore, the highest potential of the connected batteries is distributed such that the leftmost laminate L is negative and the rightmost laminate R is positive with respect to the ground potential, and the maximum potential difference between the laminate and the container is determined. Was minimized. As described above, the electrical insulation between the laminated body and the container is performed by the electrical insulating plate interposed between the tightening plate and the current collecting end plate. Are overlapped at a position where the temperature is low and the electrical insulation is high. The electric insulating plate 28 shown in FIGS. 1 and 2 is used in the upper portion of the laminated body, and the electrically insulating lower clamping plate 62 shown in FIGS. 15 and 16 is used in the lower portion of the laminated body.

【0045】その他本発明の要旨を逸脱しない範囲内で
種々変更を加え得ることはいうまでもない。
Needless to say, various changes can be made without departing from the scope of the present invention.

【0046】[0046]

【発明の効果】本発明は上述のように構成したので、起
電部分の密着性を向上させることにより、電気接触抵抗
を低減させ、あわせてウェットシールのシール性を向上
させることができ、それにより、積層型燃料電池の性能
を向上させることができる。
Since the present invention is constructed as described above, by improving the adhesion of the electromotive portion, it is possible to reduce the electrical contact resistance and also improve the sealing performance of the wet seal. As a result, the performance of the stacked fuel cell can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における起電部分まで締付板を展延した
積層型燃料電池の概念図。
FIG. 1 is a conceptual diagram of a laminated fuel cell in which a fastening plate is extended to an electromotive portion according to the present invention.

【図2】本発明における電池積層体と締付板の間に弾性
体を介装した積層型燃料電池の概念図。
FIG. 2 is a conceptual diagram of a laminated fuel cell in which an elastic body is interposed between a cell laminated body and a fastening plate according to the present invention.

【図3】本発明における電池積層体と締付板の間に介装
したスプリングの斜視図。
FIG. 3 is a perspective view of a spring interposed between a battery stack and a tightening plate according to the present invention.

【図4】本発明における電池積層体と締付板の間に介装
したスプリングの他の実施例の斜視図。
FIG. 4 is a perspective view of another embodiment of the spring interposed between the battery stack and the fastening plate according to the present invention.

【図5】本発明における積層体と締付板の間に介装した
ベローズの断面図。
FIG. 5 is a cross-sectional view of a bellows interposed between a laminated body and a fastening plate according to the present invention.

【図6】本発明におけるガスの流れ方向の逆の電池ユニ
ット同士を積層した積層型燃料電池の概念図。
FIG. 6 is a conceptual diagram of a laminated fuel cell according to the present invention, in which cell units having gas flow directions opposite to each other are laminated.

【図7】本発明における中間ヘッダーを伸縮配管で接続
した積層型燃料電池の概念図。
FIG. 7 is a conceptual diagram of a laminated fuel cell in which an intermediate header according to the present invention is connected by expansion pipes.

【図8】本発明における中間ヘッダーと電池ユニットと
の間に弾性体を介装した積層型燃料電池の部分図。
FIG. 8 is a partial view of a laminated fuel cell in which an elastic body is interposed between an intermediate header and a cell unit according to the present invention.

【図9】ガスの差圧に対してのリーク量の変化を示す説
明図。
FIG. 9 is an explanatory diagram showing a change in leak amount with respect to a gas differential pressure.

【図10】リブ構成の締付板を用いて締め付けた電池積
層体の斜視図。
FIG. 10 is a perspective view of a battery stack tightened using a tightening plate having a rib structure.

【図11】リブ構成の締付板の他の実施例の斜視図。FIG. 11 is a perspective view of another embodiment of the tightening plate having a rib structure.

【図12】横置き円筒容器に組み込んだ電池積層体の断
面図。
FIG. 12 is a cross-sectional view of a battery laminated body incorporated in a horizontal container.

【図13】縦置き円筒容器に組み込んだ電池積層体の断
面図。
FIG. 13 is a cross-sectional view of a battery laminated body incorporated in a vertically placed cylindrical container.

【図14】集電端板と電流取出部材の接続部分図。FIG. 14 is a connection partial view of a current collecting end plate and a current extracting member.

【図15】横置き円筒容器に複数のスタックを組み込ん
だ燃料電池の斜視図。
FIG. 15 is a perspective view of a fuel cell in which a plurality of stacks are assembled in a horizontal container.

【図16】積層体と下部締付板の接続部詳細図。FIG. 16 is a detailed view of a connecting portion between the laminated body and the lower tightening plate.

【図17】積層体と下部締付板の接続部断面図。FIG. 17 is a sectional view of a connecting portion between the laminated body and the lower tightening plate.

【図18】複数の積層体を直列に接続した燃料電池の接
続概念図。
FIG. 18 is a connection conceptual diagram of a fuel cell in which a plurality of laminated bodies are connected in series.

【図19】一般的な溶融炭酸塩型燃料電池の構成を説明
する分解斜視図。
FIG. 19 is an exploded perspective view illustrating the configuration of a general molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1 単電池 3 アノード 4 カソード 5 セパレータ 9 アノード集電板 10 カソード集電板 13 マニホールドリング 21 上部締付板 22,62 下部締付板 23 起電部分 24 マニホールド部分 26 集電端板 27,28 電気絶縁板 29 弾性体 32 スプリング 35 ベローズ 42 中間ヘッダー 45 伸縮配管 46 伸縮管 51,53 締付板 57 電流取出部材 64,66 コネクタ 1 Single Cell 3 Anode 4 Cathode 5 Separator 9 Anode Current Collector Plate 10 Cathode Current Collector Plate 13 Manifold Ring 21 Upper Tightening Plate 22,62 Lower Tightening Plate 23 Electromotive Portion 24 Manifold Portion 26 Current Collector End Plate 27, 28 Electricity Insulation plate 29 Elastic body 32 Spring 35 Bellows 42 Intermediate header 45 Expansion pipe 46 Expansion pipe 51,53 Tightening plate 57 Current extraction member 64,66 Connector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村 田 謙 二 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Murata 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層し、両ガスを給排するマニホールドがその積
層体を貫通して各セパレータの周縁部に設けられた孔か
ら構成される内部マニホールドを有する積層型燃料電池
において、 マニホールドの部分と単電池の位置する起電部分とを一
体で覆う板状構造体にて締め付けたことを特徴とする積
層型燃料電池。
1. A single cell in which an electrolyte matrix is sandwiched between an anode and a cathode, and a separator for introducing a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated to supply and exhaust both gases. In a laminated fuel cell having an internal manifold formed of holes formed in the peripheral portion of each separator, the manifold penetrating the laminated body, and integrally covering the manifold portion and the electromotive portion where the unit cell is located. A laminated fuel cell characterized by being fastened with a plate-shaped structure.
【請求項2】電池積層体の圧縮に対する弾性係数につい
て、マニホールド部分の弾性係数を起電部分の弾性係数
よりも小さくしたことを特徴とする請求項1記載の積層
型燃料電池。
2. The laminated fuel cell according to claim 1, wherein the elastic modulus of the cell stack against compression is smaller than that of the electromotive part.
【請求項3】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層した積層型燃料電池において、 電池積層体を弾性体を介して締め付けたことを特徴とす
る積層型燃料電池。
3. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated, A laminated fuel cell, wherein the laminated body is fastened via an elastic body.
【請求項4】弾性体が、板の弾性を利用して伸縮する板
状のバネで構成されていることを特徴とする請求項3記
載の積層型燃料電池。
4. The stacked fuel cell according to claim 3, wherein the elastic body is composed of a plate-shaped spring which expands and contracts by utilizing elasticity of the plate.
【請求項5】電池積層体を締め付ける弾性体が、内部に
ガスを気密に保ちガスの圧力によって伸縮するガスベロ
ーズの中に、板の弾性を利用して伸縮する板状のバネか
らなる弾性体を内蔵したものにより構成されていること
を特徴とする請求項3記載の積層型燃料電池。
5. An elastic body for tightening a battery stack, comprising a plate-shaped spring that expands and contracts by utilizing the elasticity of the plate in a gas bellows that keeps gas tight inside and expands and contracts by the pressure of the gas. 4. The stacked fuel cell according to claim 3, wherein the stacked fuel cell is configured by including the.
【請求項6】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層した積層型燃料電池において、 電池積層体を複数のユニットに分けて積層し、任意のユ
ニットの燃料ガスあるいは酸化剤ガスの下流側を、その
ユニットの上に積層されるユニットのガス上流側に位置
させたことを特徴とする積層型燃料電池。
6. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated. A laminated body characterized in that the laminated body is divided into a plurality of units and laminated, and a downstream side of a fuel gas or an oxidant gas of an arbitrary unit is positioned on a gas upstream side of a unit laminated on the unit. Type fuel cell.
【請求項7】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層した積層型燃料電池において、 電池積層体を複数のユニットに分けて積層し、各ユニッ
トにガスを給排する中間ヘッダー同士を繋ぐガス配管を
伸縮継手配管を介して接続したことを特徴とする積層型
燃料電池。
7. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated. A laminated fuel cell, wherein a laminated body is divided into a plurality of units and laminated, and gas pipes connecting intermediate headers for supplying and exhausting gas to and from each unit are connected via expansion joint pipes.
【請求項8】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層した積層型燃料電池において、 電池積層体を複数のユニットに分けて積層し、各ユニッ
トにガスを給排する中間ヘッダーと電池積層体ユニット
との間に弾性体を介装したことを特徴とする積層型燃料
電池。
8. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated, wherein: A laminated fuel cell, wherein a laminated body is divided into a plurality of units and laminated, and an elastic body is interposed between an intermediate header for supplying and discharging gas to each unit and a cell laminated body unit.
【請求項9】電解質マトリックスをアノードとカソード
とで挟んだ単電池と、そのアノードに燃料ガスを、カソ
ードに酸化剤ガスをそれぞれ隔てて導くセパレータとを
交互に積層した積層型燃料電池において、 発電運転中の所定締め付け圧よりも高い圧力をもって、
電池積層体を一時的に締め付けたことを特徴とする積層
型燃料電池。
9. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated, With a pressure higher than the predetermined tightening pressure during operation,
A laminated fuel cell characterized by temporarily tightening a cell stack.
【請求項10】電解質マトリックスをアノードとカソー
ドとで挟んだ単電池と、そのアノードに燃料ガスを、カ
ソードに酸化剤ガスをそれぞれ隔てて導くセパレータと
を交互に積層した積層型燃料電池において、 電池積層体を上下より締め付ける締付板を、リブ構成と
し、中央部を周縁部よりも厚くしたことを特徴とする積
層型燃料電池。
10. A laminated fuel cell in which a unit cell in which an electrolyte matrix is sandwiched between an anode and a cathode, and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated. A laminated fuel cell, wherein a tightening plate for tightening the laminated body from above and below has a rib structure and a central portion is thicker than a peripheral portion.
JP6275054A 1993-12-24 1994-11-09 Layer-built fuel cell Pending JPH07230821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6275054A JPH07230821A (en) 1993-12-24 1994-11-09 Layer-built fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-327874 1993-12-24
JP32787493 1993-12-24
JP6275054A JPH07230821A (en) 1993-12-24 1994-11-09 Layer-built fuel cell

Publications (1)

Publication Number Publication Date
JPH07230821A true JPH07230821A (en) 1995-08-29

Family

ID=26551299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275054A Pending JPH07230821A (en) 1993-12-24 1994-11-09 Layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPH07230821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087344B2 (en) 2001-12-28 2006-08-08 Nec Corporation Battery module
JP2007035558A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Fuel cell stack
JP2010055892A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Fuel cell
CN113614422A (en) * 2019-03-29 2021-11-05 大阪瓦斯株式会社 Electrochemical module, electrochemical device, and energy system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087344B2 (en) 2001-12-28 2006-08-08 Nec Corporation Battery module
JP2007035558A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Fuel cell stack
JP2010055892A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Fuel cell
CN113614422A (en) * 2019-03-29 2021-11-05 大阪瓦斯株式会社 Electrochemical module, electrochemical device, and energy system

Similar Documents

Publication Publication Date Title
JP3530198B2 (en) Solid electrolyte fuel cell
JP6175410B2 (en) Fuel cell and manufacturing method thereof
JP3466960B2 (en) Flat cell with holding thin frame and fuel cell using the same
US6946212B2 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
JPH0421250Y2 (en)
JP4747486B2 (en) Fuel cell
US6670069B2 (en) Fuel cell stack assembly
US20070111068A1 (en) Compliant feed tubes for planar solid oxide fuel cell systems
CN116171498A (en) Power connection of electrochemical cell stacks
JP2007507834A (en) Followable stack of planar solid oxide fuel cells
US20150140466A1 (en) Fuel cell stack
JP3815518B2 (en) Molten carbonate fuel cell
JP3345240B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
US6017649A (en) Multiple step fuel cell seal
JP2008251236A (en) Flat lamination type fuel cell
JP4335336B2 (en) Fuel cell module
JPH07230821A (en) Layer-built fuel cell
JPH11224684A (en) Fuel cell
KR101162669B1 (en) Solid oxide fuel cell
KR20190123818A (en) A flat tubular solid oxide fuel cell stack having a collecting plate in a reducing atmosphere and a manufacturing method thereof
JPH10312818A (en) Solid electrolyte type fuel cell
CN114497669A (en) Fuel cell stack structure and assembling method thereof
JPH09283170A (en) Flat plate-shaped solid electrolyte fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
CN117558958B (en) Battery stack structure