JPH07230748A - Resistance thermal fuse - Google Patents

Resistance thermal fuse

Info

Publication number
JPH07230748A
JPH07230748A JP4527494A JP4527494A JPH07230748A JP H07230748 A JPH07230748 A JP H07230748A JP 4527494 A JP4527494 A JP 4527494A JP 4527494 A JP4527494 A JP 4527494A JP H07230748 A JPH07230748 A JP H07230748A
Authority
JP
Japan
Prior art keywords
temperature fuse
fuse element
resistance
case
film resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4527494A
Other languages
Japanese (ja)
Other versions
JP3594645B2 (en
Inventor
Toshihiko Kawamoto
敏彦 川元
Mitsuaki Uemura
充明 植村
Kazuo Ariyama
和男 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP4527494A priority Critical patent/JP3594645B2/en
Publication of JPH07230748A publication Critical patent/JPH07230748A/en
Application granted granted Critical
Publication of JP3594645B2 publication Critical patent/JP3594645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To perform an operation with no difference of a thermal fuse element based on heating each film resistor by providing the thermal fuse element in the center of an insulating base, and providing the film resistors of different resistance value in the right/left so as to interpose this thermal fuse element. CONSTITUTION:A thermal fuse element 14 is provided in the center of one surface of a heat conductive insulating base 11, and two film resistors 17 of different resistance value are provided in the other surface in a manner wherein the thermal fuse element 14 is interposed, to constitute a resistance thermal fuse main unit 1 by respectively connecting lead wires 13, 19. A case 2 comprising a right/left asymmetrical plate part 21, having a bulging part 20 in an intermediate part, and a frame edge is provided covering in a closely fitted condition in the resistance thermal fuse main unit 1 so as to receive the fuse element in the bulging part 20, and an insulating material 3 is injected into the case 2 and solidified. In this way, an operation of the thermal fuse element 14, based on heating each film resistor 17, is performed with no time difference, to surely protect a circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板タイプの合金型温
度ヒュ−ズに抵抗体を内蔵させた抵抗・温度ヒュ−ズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance / temperature fuse in which a resistor is incorporated in a substrate type alloy type temperature fuse.

【0002】[0002]

【従来の技術】抵抗・温度ヒュ−ズにおいては、合金型
の温度ヒュ−ズエレメントと抵抗体とを近接配置で一体
化し、抵抗体における過電流に基づく発生熱で温度ヒュ
−ズエレメントを溶断させてその過電流を遮断してい
る。
2. Description of the Related Art In a resistance / temperature fuse, an alloy type temperature fuse element and a resistor are integrated in close proximity, and the temperature fuse element is melted by heat generated due to overcurrent in the resistor. To shut off the overcurrent.

【0003】従来、基板型抵抗・温度ヒュ−ズとして、
図6の(イ)乃至図6の(ニ)に示す両面タイプが公知
である。図6の(イ)はこの両面タイプの基板型抵抗・
温度ヒュ−ズの平面説明図を、図6の(ロ)は同じく底
面説明図を、図6の(ハ)は図6の(イ)におけるハ−
ハ断面図を、図6の(ニ)は図6の(ロ)におけるニ−
ニ断面図をそれぞれ示し、熱伝導性絶縁基板11’の片
面に、縦中心線a−aに一致させて一対の温度ヒュ−ズ
用膜電極12’,12’を印刷し、この電極間に温度ヒ
ュ−ズエレメントとしての低融点金属片14’を橋設
し、この低融点金属片14’にフラックス15’を塗布
し、また、同絶縁基板11’の他面に、縦中心線a−a
を基準として左右対称に2対の抵抗用膜電極16’−1
6’,16’−16’を印刷し、これらの各対電極間に
膜抵抗体17’を絶縁基板11’への焼き付けにより橋
設し(18’は膜抵抗体の保護層)、各電極12’(1
6’)にリ−ド線13’(19’)を接続し、上記絶縁
基板11’の全面にエポキシ樹脂のような硬化性樹脂層
3’を浸漬塗装法により被覆してある。
Conventionally, as a substrate type resistance / temperature fuse,
The double-sided type shown in FIGS. 6A to 6D is known. Figure 6 (a) shows this double-sided board type resistor.
6B is a plan view of the temperature fuse, FIG. 6B is a bottom view of the same, and FIG. 6C is a view of FIG. 6A.
C is a cross-sectional view, and (d) of FIG. 6 is a cross section in (b) of FIG.
D cross-sectional views are shown, respectively, and a pair of temperature fuse membrane electrodes 12 'and 12' are printed on one surface of the heat conductive insulating substrate 11 'so as to coincide with the vertical center line aa, and between the electrodes. A low melting point metal piece 14 'serving as a temperature fuse element is bridged, a flux 15' is applied to the low melting point metal piece 14 ', and a vertical center line a- is formed on the other surface of the insulating substrate 11'. a
2 pairs of resistor film electrodes 16'-1 symmetrically with respect to
6 ', 16'-16' are printed, and a film resistor 17 'is bridged between these respective counter electrodes by baking onto the insulating substrate 11' (18 'is a protective layer of the film resistor), and each electrode 12 '(1
6 ') is connected to a lead wire 13' (19 '), and a curable resin layer 3'such as an epoxy resin is coated on the entire surface of the insulating substrate 11' by a dip coating method.

【0004】この抵抗・温度ヒュ−ズにおいては、保護
すべき電気回路に対し、一方の膜抵抗体を回路のある部
分に、他方の膜抵抗体を回路の他部分にそれぞれ挿入接
続し、温度ヒュ−ズエレメントを回路の入力端に挿入接
続することによって使用され、何れか一方の膜抵抗体に
過電流が流れて当該膜抵抗体が発熱すると、その発生熱
で温度ヒュ−ズエレメントが溶断されて回路への通電が
遮断される。
In this resistance / temperature fuse, one film resistor is inserted in one part of the circuit and the other film resistor is inserted in another part of the circuit for the electric circuit to be protected. It is used by inserting and connecting a fuse element to the input end of the circuit, and when an overcurrent flows through one of the membrane resistors and the membrane resistor generates heat, the generated heat causes the temperature fuse element to melt. Then, the power supply to the circuit is cut off.

【0005】[0005]

【発明が解決しようとする課題】上記抵抗・温度ヒュ−
ズにおいては、各膜抵抗体が挿入接続される各回路部分
の回路インピ−ダンスの制約上、膜抵抗体の抵抗値が異
なることがある。而るに、各膜抵抗体から温度ヒュ−ズ
エレメントに至る媒質の熱伝達経路が全く対称であれ
ば、各抵抗に同一値の過電流が流れても、抵抗値の小な
る膜抵抗体の発熱に基づく温度ヒュ−ズエレメントの作
動時間が、抵抗値の大なる膜抵抗体の発熱に基づく温度
ヒュ−ズエレメントの作動時間よりも長くなり、作動時
間のアンバランスが避けられない。
SUMMARY OF THE INVENTION The above resistance / temperature fuse
In this case, the resistance value of the film resistor may differ due to the restriction of the circuit impedance of each circuit portion in which each film resistor is inserted and connected. Therefore, if the heat transfer path of the medium from each film resistor to the temperature fuse element is completely symmetrical, even if an overcurrent of the same value flows to each resistor, the resistance of the film resistor having a small resistance value The operating time of the temperature fuse element based on the heat generation is longer than the operating time of the temperature fuse element based on the heat generation of the membrane resistor having a large resistance value, and the imbalance of the operating time cannot be avoided.

【0006】かかるアンバランスは、抵抗値の小なる膜
抵抗体と温度ヒュ−ズエレメントとの間の熱伝達性を抵
抗値の大なる膜抵抗体と温度ヒュ−ズエレメントとの間
の熱伝達性に較べ高くするように調整することにより排
除できる。而るに、その熱伝達性は膜抵抗体と温度ヒュ
−ズエレメントとの間に存在する熱伝達媒質の容積によ
り変わり、このアンバランスの解消手段としては、抵抗
値の小なる膜抵抗体と温度ヒュ−ズエレメントとの間の
熱伝達媒質の容積を抵抗値の大なる膜抵抗体と温度ヒュ
−ズエレメントとの間の熱伝達媒質の容積より小にし
て、熱伝達性を調整することが考えられるが、絶縁被覆
に定形の被覆が困難な浸漬塗装法を使用している上記抵
抗・温度ヒュ−ズにおいては、実施は困難である。
Such an imbalance is caused by the heat transfer between the film resistor having a small resistance value and the temperature fuse element, and the heat transfer between the film resistor having a large resistance value and the temperature fuse element. It can be eliminated by adjusting it to be higher than the sex. Therefore, the heat transfer property varies depending on the volume of the heat transfer medium existing between the film resistor and the temperature fuse element, and as a means for eliminating this imbalance, a film resistor having a small resistance value is used. Adjusting the heat transfer property by making the volume of the heat transfer medium between the temperature fuse element and the membrane resistor having a large resistance value smaller than the volume of the heat transfer medium between the temperature fuse element and the temperature fuse element. However, it is difficult to carry out the above-mentioned resistance / temperature fuse which uses a dip coating method in which it is difficult to form a fixed insulating coating.

【0007】本発明の目的は、絶縁基板の中央に温度ヒ
ュ−ズエレメントを、該温度ヒュ−ズエレメントを挾む
左右に異なる抵抗値の膜抵抗体をそれぞれ設けてなる抵
抗・温度ヒュ−ズにおいて、各膜抵抗体の発熱に基づく
温度ヒュ−ズエレメントの作動を、実質上の差異なく行
わせることにある。
An object of the present invention is to provide a resistance / temperature fuse in which a temperature fuse element is provided in the center of an insulating substrate and a film resistor having different resistance values is provided on the left and right sides of the temperature fuse element. In the above, the operation of the temperature fuse element based on the heat generation of each film resistor is performed without any substantial difference.

【0008】[0008]

【課題を解決するための手段】本発明に係る抵抗・温度
ヒュ−ズは、熱伝導性絶縁基板に温度ヒュ−ズエレメン
ト及び該エレメントを挾んで抵抗値の異なる2箇の膜抵
抗体が設けられてなる抵抗・温度ヒュ−ズ本体に熱伝達
調整用ケ−スが被施され、該ケ−ス内に絶縁材が注入固
化されて、同一過電流のもとでの各膜抵抗体の発熱に基
づく温度ヒュ−ズエレメントの作動時間がほぼ等しくさ
れていることを特徴とする構成であり、更に具体的に
は、熱伝導性絶縁基板の片面の中央に温度ヒュ−ズエレ
メントが、同基板の他面に前記温度ヒュ−ズエレメント
を中心として左右対称に異なる抵抗値の膜抵抗体が設け
られてなる抵抗・温度ヒュ−ズ本体に、プレ−ト部の周
囲に枠縁を有する熱伝達調整用ケ−スがそのプレ−ト部
を温度ヒュ−ズエレメント側に配して被施され、該ケ−
ス内に絶縁材が注入固化され、ケ−スのプレ−ト部が同
一過電流のもとでの各膜抵抗体の発熱に基づく温度ヒュ
−ズエレメントの作動時間をほぼ等しくするように左右
非対称とされていることを特徴とする構成、または熱伝
導性絶縁基板の片面に温度ヒュ−ズエレメントが、同基
板の他面に同温度ヒュ−ズエレメントを挾んで抵抗値の
異なる2箇の膜抵抗体が設けられてなる抵抗・温度ヒュ
−ズ本体に熱伝達調整用ケ−スが被施され、該ケ−ス内
に絶縁材が注入固化されて、同一過電流のもとでの各膜
抵抗体の発熱に基づく温度ヒュ−ズエレメントの作動時
間をほぼ等しくするように各膜抵抗体と温度ヒュ−ズエ
レメントとの間隔が異なされていることを特徴とする構
成であり、何れの具体的構成においても、ケ−スのプレ
−ト部の左右部分を抵抗・温度ヒュ−ズ本体の絶縁基板
の片面に近接させ、残部の中間膨出部内に温度ヒュ−ズ
エレメントを収容することが好ましい。
In a resistance / temperature fuse according to the present invention, a temperature fuse element and two film resistors having different resistance values are provided on a heat conductive insulating substrate. The main body of the resistance / temperature fuse thus formed is covered with a heat transfer adjusting case, and an insulating material is injected and solidified in the case, so that the resistance of each film resistor can be improved under the same overcurrent. The operating time of the temperature fuse element based on heat generation is made substantially equal, and more specifically, the temperature fuse element is provided at the center of one surface of the heat conductive insulating substrate. A resistance / temperature fuse main body, in which a film resistor having different resistance values is provided symmetrically with respect to the temperature fuse element on the other surface of the substrate, has a frame edge around the plate portion. A transmission adjustment case is installed on the plate of the temperature fuse Be decorated by placement into cement side, 該Ke -
The insulating material is injected and solidified in the case, and the plate portion of the case is controlled so that the operating time of the temperature fuse element based on the heat generation of each film resistor under the same overcurrent is almost equal. A structure characterized by being asymmetrical, or a temperature fuse element is provided on one side of the heat conductive insulating substrate, and two different temperature fuse elements are placed on the other side of the substrate to have different resistance values. A resistance / temperature fuse main body provided with a film resistor is covered with a heat transfer adjusting case, an insulating material is injected and solidified in the case, and under the same overcurrent. The structure is characterized in that the distance between each film resistor and the temperature fuse element is different so that the operating time of the temperature fuse element based on the heat generation of each film resistor is made substantially equal. Even in the concrete configuration of, the left and right parts of the plate part of the case Resistance Temperature fuse - brought close to one side of's body of the insulating substrate, the temperature fuse in the intermediate bulge portion of the balance - it is preferable to accommodate the's elements.

【0009】以下、図面を参照しつつ本発明の構成につ
いて説明する。図1の(イ)は本発明において使用する
抵抗・温度ヒュ−ズ本体の平面図を、図1の(ロ)は同
じく底面図を、図1の(ハ)は図1の(イ)におけるハ
−ハ断面図を、図1の(ニ)は図1の(ロ)におけるニ
−ニ断面図をそれぞれ示している。
The structure of the present invention will be described below with reference to the drawings. 1A is a plan view of the resistance / temperature fuse main body used in the present invention, FIG. 1B is a bottom view of the same, and FIG. 1C is similar to FIG. 1A. 1 is a sectional view taken along the line of FIG. 1, and FIG. 1D is a sectional view taken along the line of FIG.

【0010】図1の(イ)乃至図1の(ニ)において、
11は熱伝導性の絶縁基板であり、セラミックス基板が
好適である。12,12は絶縁基板11の片面の中央位
置に設けられた一対の膜電極であり、リ−ド線取付部1
21と温度ヒュ−ズエレメント取付部122とを備え、
縦方向中心線a−aに対し左右対称の膜電極が横方向中
心線b−bに対し上下対称に配設されている。この膜電
極12は、印刷法、例えば、導電塗料をスクリ−ン印刷
し、これを焼き付けたものを使用できる。13は各膜電
極12に溶接またはろう接されたリ−ド線である。14
は膜電極間に溶接により縦方向中央線a−aに沿い橋設
された温度ヒュ−ズエレメントであり、丸線または角線
(例えば、丸線を扁平化したもの)の低融点可溶合金線
材が使用されている。15は温度ヒュ−ズエレメント1
4上に塗布されたフラツクスであり、ロジンを主成分と
するものが使用されている。
In FIGS. 1A to 1D,
Reference numeral 11 denotes a heat conductive insulating substrate, and a ceramic substrate is suitable. Reference numerals 12 and 12 denote a pair of membrane electrodes provided at a central position on one surface of the insulating substrate 11, and the lead wire mounting portion 1
21 and a temperature fuse element mounting portion 122,
Membrane electrodes symmetrically arranged with respect to the vertical centerline aa are arranged vertically symmetrically with respect to the horizontal centerline bb. The membrane electrode 12 can be used by a printing method, for example, a screen printing of a conductive paint and baking it. Reference numeral 13 is a lead wire welded or brazed to each membrane electrode 12. 14
Is a temperature fuse element bridged along the longitudinal centerline aa by welding between the membrane electrodes, and is a low melting point fusible alloy of round wire or square wire (for example, flattened round wire). Wires are used. 15 is a temperature fuse element 1
No. 4, which has a rosin as a main component.

【0011】16,16、16,16は絶縁基板11の
他面の左右部に、縦方向中心線a−aに対し左右対称に
設けられた2対の膜電極であり、一端にリ−ド線取付部
161を有する帯状膜162が横方向中心線に対し上下
対称に配設され、そのリ−ド線取付部161が絶縁基板
11の左右両端側に位置されている。この膜電極16も
上記の印刷法により形成されている。17は各一対の膜
電極16,16間に跨り、絶縁基板11の他面に焼成さ
れた膜抵抗体であり、抵抗塗料(抵抗粒子とバインダ−
との混合物であり、抵抗粒子には酸化金属物の粉末、ニ
ッケルや鉄等の高抵抗金属の粉末を使用でき、バインダ
−にはガラスフリツトを使用できる)の印刷・焼き付け
により形成されている。この膜抵抗体は温度ヒュ−ズエ
レメントを中心として左右対称であり、抵抗値は、異な
る切り込み距離のトリミングにより異にされている。1
8は両膜抵抗体17,17を覆って設けられた保護膜で
あり、前記ガラスフリツトよりも低融点のガラスフリツ
トが使用され、膜抵抗体の抵抗値をトリミングにより調
整する際での膜抵抗体のクラック等の発生防止に有効で
ある。19は膜電極16に溶接またはろう接により接続
されたリ−ド線である。
Reference numerals 16, 16, 16 and 16 denote two pairs of membrane electrodes, which are symmetrically provided with respect to the longitudinal centerline aa on the left and right portions of the other surface of the insulating substrate 11, and have a lead at one end. The strip-shaped films 162 having the wire attachment portions 161 are vertically symmetrical with respect to the lateral center line, and the lead wire attachment portions 161 are located on the left and right ends of the insulating substrate 11. The membrane electrode 16 is also formed by the printing method described above. Reference numeral 17 denotes a film resistor that is burned on the other surface of the insulating substrate 11 across the pair of film electrodes 16 and 16 and is made of a resistive paint (resistive particles and binder).
A powder of a metal oxide or a powder of a high resistance metal such as nickel or iron can be used as the resistance particles, and a glass frit can be used as the binder). This film resistor is symmetrical about the temperature fuse element, and its resistance value is made different by trimming with different cutting distances. 1
Reference numeral 8 denotes a protective film provided so as to cover both the film resistors 17, and a glass frit having a melting point lower than that of the glass frit is used, and a film frit of the film resistor when adjusting the resistance value of the film resistor by trimming It is effective in preventing the occurrence of cracks. Reference numeral 19 is a lead wire connected to the membrane electrode 16 by welding or brazing.

【0012】図2の(イ)は本発明に係る抵抗・温度ヒ
ュ−ズの一例を示す断面図、図2の(ロ)は図2の
(イ)におけるロ−ロ断面図である。図2の(イ)並び
に図2の(ロ)において、1は上記した抵抗・温度ヒュ
−ズ本体である。2はケ−ス(図3にも示されている)
であり、中間部が膨出された左右非対称(ロ−ロは中央
線)のプレ−ト部21の周囲に枠縁22を有し、抵抗・
温度ヒュ−ズ本体1に被施され、抵抗・温度ヒュ−ズ本
体1の温度ヒュ−ズエレメント14側がケ−ス2のプレ
−ト部21に臨まされ、当該温度ヒュ−ズエレメント1
4が膨出部20内に収容され、プレ−ト部21の左右部
分211,212が絶縁基板11の片面に近接されてい
る。また、枠縁22に設けられた各Vノッチ221から
各リ−ド線13,19が引出されている。
FIG. 2A is a sectional view showing an example of the resistance / temperature fuse according to the present invention, and FIG. 2B is a sectional view taken along the line RO in FIG. In (a) of FIG. 2 and (b) of FIG. 2, 1 is the main body of the resistance / temperature fuse described above. 2 is the case (also shown in FIG. 3)
In addition, a frame edge 22 is provided around a plate portion 21 having a laterally asymmetrical shape (a roll is a center line) in which a middle portion is bulged, and
The temperature fuse element 1 is applied to the temperature fuse element 1, and the temperature fuse element 14 side of the resistance / temperature fuse element 1 is exposed to the plate portion 21 of the case 2.
4 is housed in the bulging portion 20, and the left and right portions 211 and 212 of the plate portion 21 are close to one surface of the insulating substrate 11. Further, the lead wires 13 and 19 are drawn out from the respective V notches 221 provided on the frame edge 22.

【0013】このケ−ス2の枠縁22の内郭は抵抗・温
度ヒュ−ズ本体1の絶縁基板11の外郭を実質上ギャッ
プを残すことなく密嵌させ得るように設定されており、
当該内郭の縦寸法並びに横寸法を絶縁基板の縦寸法並び
に横寸法のそれぞれに対し、1.1倍以下、好ましくは
1.07倍以下とされている。3はケ−ス2内に注入固
化された絶縁材であり、ケ−ス開放側を上に向け、粘度
が2万〜20万cps程度のエポキシ樹脂液を該ケ−ス2
内に計量滴下し、硬化させてある。
The inner edge of the frame edge 22 of the case 2 is set so that the outer edge of the insulating substrate 11 of the resistance / temperature fuse main body 1 can be fitted tightly without leaving a gap substantially.
The vertical dimension and the horizontal dimension of the inner contour are 1.1 times or less, preferably 1.07 times or less, of the vertical dimension and the horizontal dimension of the insulating substrate, respectively. An insulating material 3 is injected and solidified into the case 2. The case 2 is filled with an epoxy resin liquid having a viscosity of about 20,000 to 200,000 cps.
Weighed and dropped into it and cured.

【0014】図2の(イ)において、例えば、左側の膜
抵抗体17の抵抗値(R1)が右側の膜抵抗体17の抵
抗値(R2)よりも大であるとすると、左側の膜抵抗体
から温度ヒュ−ズエレメント14に至る熱伝達性Z
1(膜抵抗体から温度ヒュ−ズエレメントに至る熱伝達
媒質路の熱抵抗をr、熱容量をcとすると、rが低いほ
ど、cが小さいほど速く熱が伝達され、熱伝達性はrc
で評価される)を右側の膜抵抗体から温度ヒュ−ズエレ
メント14に至る熱伝達性Z2よりも低くするように
(R11=Z22とするように)、ケ−スプレ−ト部2
1の膨出部分20の中央位置pが高抵抗値の膜抵抗体側
にずらされてプレ−ト部1が中央線ロ−ロ線に対し左右
非対称とされている。
In FIG. 2A, if the resistance value (R 1 ) of the film resistor 17 on the left side is larger than the resistance value (R 2 ) of the film resistor 17 on the right side, for example, Heat transfer Z from the membrane resistor to the temperature fuse element 14
1 (where r is the heat resistance of the heat transfer medium path from the film resistor to the temperature fuse element and c is the heat capacity, heat is transferred faster as r is lower and c is smaller, and the heat transferability is rc.
To be lower than the heat transferability Z 2 from the membrane resistor on the right side to the temperature fuse element 14 (to be R 1 Z 1 = Z 2 R 2 ). -G part 2
The central position p of the bulging portion 20 of 1 is shifted to the side of the high-resistance film resistor so that the plate portion 1 is left-right asymmetric with respect to the central line.

【0015】上記の構成例では、膨出部をケ−スの左右
中央点に対しずらせて形成してケ−スを左右非対称化と
しているが、左右非対称化の構成は、これに限定される
ものではない。上記の構成例において、保護層18を含
めた膜抵抗体17の厚みはリ−ド線19の直径dよりも
小であり、フラックス塗布温度ヒュ−ズエレメント14
の高さhはリ−ド線13の直径dよりも大であり、膜抵
抗体17のリ−ド線19上の必要絶縁厚みをt、絶縁基
板11の厚みをe、膜電極の厚みをe’とすれば、ケ−
ス2の膨出部20内上面に至るまでの高さT1(図3)
は、次式のTよりやや大とされ、 T=t+h+d+e ケ−ス内の左右部分の高さT2(図3)は、次式のT’
よりもやや大に設定されている。 T’=t+d+e+e’
In the above configuration example, the bulging portion is formed so as to be displaced with respect to the left and right center point of the case to make the case bilaterally asymmetrical, but the bilaterally asymmetrical configuration is limited to this. Not a thing. In the above configuration example, the thickness of the film resistor 17 including the protective layer 18 is smaller than the diameter d of the lead wire 19, and the flux application temperature fuse element 14 is used.
Is larger than the diameter d of the lead wire 13, the required insulation thickness on the lead wire 19 of the membrane resistor 17 is t, the thickness of the insulating substrate 11 is e, and the thickness of the membrane electrode is If it is e ',
Height T 1 of the swell 2 up to the upper surface inside the bulging portion 20 (FIG. 3)
Is slightly larger than T in the following equation: T = t + h + d + e The height T 2 of the left and right parts in the case (FIG. 3) is T ′ in the following equation.
It is set slightly larger than. T '= t + d + e + e'

【0016】図4は請求項4記載の発明に係る抵抗・温
度ヒュ−ズの構成例を示す断面図を示している。この構
成例では、例えば、図4において、左側の膜抵抗体17
の抵抗値(R1)が右側の膜抵抗体17の抵抗値(R2
よりも大とされている。そこで、左右対称の扁平ケ−ス
2の使用のもとで、左右の各膜抵抗体の発熱に対し、温
度ヒュ−ズエレメント14をアンバランスなく作動させ
るために、左側の膜抵抗体17から温度ヒュ−ズエレメ
ント14に至る距離L1を右側の膜抵抗体17から温度
ヒュ−ズエレメント14に至る距離L2よりも大にし
て、左側の膜抵抗体から温度ヒュ−ズエレメントに至る
熱伝達性Z1と右側の膜抵抗体から温度ヒュ−ズエレメ
ントに至る熱伝達性Z2とを、Z1/Z2=R2/R1の関
係を可及的に充足させるように調整してある。
FIG. 4 is a sectional view showing a constitutional example of a resistance / temperature fuse according to the invention of claim 4. In this configuration example, for example, in FIG.
The resistance value (R 1) is the resistance value of the right-film resistor 17 (R 2)
Is said to be larger than. Therefore, in order to operate the temperature fuse element 14 without imbalance against the heat generation of the left and right membrane resistors under the use of the symmetrical flat case 2, the left membrane resistor 17 is operated. The distance L 1 to the temperature fuse element 14 is made larger than the distance L 2 to the temperature fuse element 14 from the membrane resistor 17 on the right side so that the heat from the membrane resistor on the left side to the temperature fuse element is increased. The transferability Z 1 and the heat transferability Z 2 from the membrane resistor on the right side to the temperature fuse element are adjusted so as to satisfy the relationship of Z 1 / Z 2 = R 2 / R 1 as much as possible. There is.

【0017】図4において、図2の(イ)並びに(ロ)
に対し同一の符号は、同一の構成要素を示している。而
して、11は熱伝導性の絶縁基板を、14は温度ヒュ−
ズエレメントを、15はフラックスを、17は膜抵抗体
を、18は保護層を、19は膜抵抗体のリ−ド線を、3
はケ−ス2内に注入固化された絶縁材、例えば、エポキ
シ樹脂をそれぞれ示し、温度ヒュ−ズエレメントのリ−
ド線は図には現れていない。
In FIG. 4, (a) and (b) of FIG.
, The same reference numerals indicate the same components. 11 is a thermally conductive insulating substrate, and 14 is a temperature fuse.
Element, 15 is a flux, 17 is a membrane resistor, 18 is a protective layer, 19 is a lead wire of the membrane resistor.
Indicates an insulating material injected into the case 2 and solidified therein, for example, an epoxy resin, and a lead of the temperature fuse element.
Lines do not appear in the figure.

【0018】この構成例においても、保護層18を含め
た膜抵抗体17の厚みはリ−ド線19の直径dよりも小
であり、フラックス塗布温度ヒュ−ズエレメント14の
高さhは温度ヒュ−ズエレメントのリ−ド線の直径dよ
りも大であり、膜抵抗体17のリ−ド線19上の必要絶
縁厚みをt、絶縁基板11の厚みをe、膜電極の厚みを
e’とすれば、ケ−ス2の高さT3は、 T3≧t+h+d+e+e’ に設定されている。
Also in this configuration example, the thickness of the film resistor 17 including the protective layer 18 is smaller than the diameter d of the lead wire 19, and the height h of the flux applying temperature fuse element 14 is the temperature. It is larger than the lead wire diameter d of the fuse element, the required insulation thickness on the lead wire 19 of the membrane resistor 17 is t, the thickness of the insulating substrate 11 is e, and the thickness of the membrane electrode is e. Then, the height T 3 of the case 2 is set to T 3 ≧ t + h + d + e + e '.

【0019】上記左右対称の扁平ケ−スに代え、図5に
示すようにプレ−ト部21の左右部分を本体1の絶縁基
板11に近接させ、中間部20を膨出させた左右対称の
ケ−ス2(c−c線は中央線)を使用し、フラックス1
5を塗布した温度ヒュ−ズエレメント14をこの中間膨
出部20内に収容することもできる。
As shown in FIG. 5, the left and right portions of the plate portion 21 are brought close to the insulating substrate 11 of the main body 1 and the intermediate portion 20 is swollen, instead of the symmetrical flat case. Use case 2 (center line is c-c line) and use flux 1
The temperature fuse element 14 coated with No. 5 may be housed in the intermediate bulging portion 20.

【0020】上記何れの構成例においても、ケ−スには
電気絶縁物の他、アルミニウム、ステンレス等の金属の
プレス成形品の使用も可能であるが、ケ−ス枠縁のVノ
ッチとリ−ド線との間の絶縁保証の面から、電気絶縁
物、特にプラスチック、例えば、エポキシ樹脂、不飽和
ポリエステル、ビニルエステル樹脂、フェノ−ル樹脂等
の熱硬化性樹脂、ポリ塩化ビニル、塩素化ポリ塩化ビニ
ル、ポリエチレン、ポリプロピレン、アクリロニトリル
−ブタジエン−スチレン共重合体、ポリスチレン、ポリ
カ−ボネ−ト、ポリアミド、ポリフッ化ビニリデン、ポ
リフェニレンサルファイド、ポリスルホン、ポリエ−テ
ル・エ−テルケトン等の熱可塑性樹脂等の射出成形品を
使用することが好ましい。
In any of the above-mentioned constitutional examples, a press-molded product of a metal such as aluminum or stainless steel can be used as the case in addition to the electric insulator, but the V notch and the relieve of the case frame edge can be used. -From the viewpoint of ensuring insulation from the wire, electrical insulation, especially plastic, such as thermosetting resins such as epoxy resin, unsaturated polyester, vinyl ester resin, phenol resin, polyvinyl chloride, chlorinated Such as polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene copolymer, polystyrene, polycarbonate, polyamide, polyvinylidene fluoride, polyphenylene sulfide, polysulfone, and thermoplastic resins such as polyether ether ketone. It is preferred to use injection molded articles.

【0021】上記抵抗・温度ヒュ−ズの各部の寸法は通
常、次ぎのように設定される。すなわち、絶縁基板の縦
(温度ヒュ−ズエレメントの方向)寸法:5〜12m
m、同横寸法:6〜18mm、厚み0.5〜1.5m
m、膜電極の厚み:10〜80μm、膜抵抗体の厚み:
10〜35μm、保護層の厚み:20〜200μm、温
度ヒュ−ズエレメントの直径:0.3〜1.0mm、温
度ヒュ−ズエレメント上の基板からのフラックスの塗布
厚み:0.4〜2mm、リ−ド線の直径:0.3〜1.
3mm、膜抵抗体リ−ド線の絶縁材厚み(図2や図5に
おけるt):0.1〜2mm、ケ−スの内郭:基板の外
郭寸法の1.005〜1.1倍、ケ−スの厚み:0.1
〜1.6mmとされ、ケ−ス内の高さは上記、、
式により設定される。本発明においては、熱伝導性絶縁
基板の同一面に、温度ヒュ−ズエレメント及び該エレメ
ントを挾んで抵抗値の異なる2箇の膜抵抗体を設けるこ
ともできる。また、ケ−スは、プレ−ト部を上下何れに
向けて被せてもよい。
The dimensions of each part of the resistance / temperature fuse are usually set as follows. That is, the length of the insulating substrate (direction of the temperature fuse element): 5 to 12 m
m, horizontal dimension: 6-18 mm, thickness 0.5-1.5 m
m, thickness of membrane electrode: 10 to 80 μm, thickness of membrane resistor:
10 to 35 μm, thickness of protective layer: 20 to 200 μm, diameter of temperature fuse element: 0.3 to 1.0 mm, coating thickness of flux from substrate on temperature fuse element: 0.4 to 2 mm, Lead wire diameter: 0.3-1.
3 mm, thickness of the insulation material of the membrane resistor lead wire (t in FIGS. 2 and 5): 0.1 to 2 mm, inner case: 1.005 to 1.1 times the outer dimension of the substrate, Case thickness: 0.1
~ 1.6 mm, the height in the case is the above,
Set by expression. In the present invention, the temperature fuse element and two film resistors having different resistance values may be provided on the same surface of the heat conductive insulating substrate. Further, the case may be covered with the plate portion facing up or down.

【0022】而して、(1)熱伝導性絶縁基板の片面の
中央に温度ヒュ−ズエレメントを、同片面に前記温度ヒ
ュ−ズエレメントを中心として左右対称に異なる抵抗値
の膜抵抗体を設けなる抵抗・温度ヒュ−ズ本体に、プレ
−ト部の周囲に枠縁を有する熱伝達調整用ケ−スを被施
し、該ケ−ス内に絶縁材を注入固化し、ケ−スのプレ−
ト部を同一過電流のもとでの各膜抵抗体の発熱に基づく
温度ヒュ−ズエレメントの作動時間をほぼ等しくするよ
うに左右非対称の形状とすること、(2)熱伝導性絶縁
基板の片面に温度ヒュ−ズエレメントを、同片面に同温
度ヒュ−ズエレメントを挾んで抵抗値の異なる2箇の膜
抵抗体を設けてなる抵抗・温度ヒュ−ズ本体に熱伝達調
整用ケ−スを被施し、該ケ−ス内に絶縁材を注入固化
し、同一過電流のもとでの各膜抵抗体の発熱に基づく温
度ヒュ−ズエレメントの作動時間をほぼ等しくするよう
に各膜抵抗体と温度ヒュ−ズエレメントとの間隔を異な
らしめることも可能である。
Thus, (1) a temperature fuse element is provided at the center of one surface of the heat conductive insulating substrate, and film resistors having different resistance values symmetrically with respect to the temperature fuse element are provided on the same surface. The resistance / temperature fuse main body to be provided is covered with a heat transfer adjusting case having a frame edge around the plate portion, and an insulating material is injected and solidified in the case to form a case. Pre-
The asymmetrical shape of the heat conducting element so that the operating time of the temperature fuse elements based on the heat generation of each film resistor under the same overcurrent is almost equal. A temperature-fuse element on one side, and two film resistors with different resistance values sandwiching the same-temperature fuse element on the same side, and a heat transfer adjustment case on the main body of the resistance / temperature fuse. And inject and solidify an insulating material into the case, so that the operating time of the temperature fuse elements based on the heat generation of each film resistor under the same overcurrent is made substantially equal. It is also possible to make the distance between the body and the temperature fuse element different.

【0023】本発明において、ケ−スのプレ−ト部と抵
抗・温度ヒュ−ズ本体の絶縁基板との間は、通常上記の
絶縁材で充填されるが、空隙の状態とすることも可能で
ある。
In the present invention, the space between the plate portion of the case and the insulating substrate of the main body of the resistance / temperature fuse is usually filled with the above-mentioned insulating material, but it is also possible to form a gap. Is.

【作用】本発明に係る抵抗・温度ヒュ−ズにおいては、
保護すべき電気回路に対し、一方の膜抵抗体を回路のあ
る部分に、他方の膜抵抗体を回路の他部分にそれぞれ挿
入接続し、温度ヒュ−ズエレメントを回路の入力端に挿
入接続することによって使用される。
In the resistance / temperature fuse according to the present invention,
For the electrical circuit to be protected, one membrane resistor is inserted and connected to one part of the circuit, and the other membrane resistor is inserted and connected to the other part of the circuit, and the temperature fuse element is inserted and connected to the input end of the circuit. Used by.

【0024】各膜抵抗体の抵抗値をR1、R2とすると、
同一過電流iによる各膜抵抗体の発生熱はR12、R2
2であり、各膜抵抗体から温度ヒュ−ズエレメントに
至る熱伝達経路の熱伝達性をZ1、Z2とすれば、R12
・Z1=R22・Z2を満たすとき、各膜抵抗体の発生熱
量の差にもかかわらず、温度ヒュ−ズエレメントをほぼ
同一に温度上昇させ得、抵抗値の相違にもかかわらず、
同一過電流のもとでの各膜抵抗体の発熱に基づく温度ヒ
ュ−ズエレメントの作動時間がほぼ等しくできる。
When the resistance values of the respective film resistors are R 1 and R 2 ,
The heat generated by each film resistor due to the same overcurrent i is R 1 i 2 , R 2
i 2 and R 1 i 2 where Z 1 and Z 2 are the heat transfer properties of the heat transfer path from each film resistor to the temperature fuse element.
When Z 1 = R 2 i 2 · Z 2 is satisfied, the temperature fuse elements can raise the temperature almost the same despite the difference in the amount of heat generated by each film resistor, and despite the difference in resistance value. No
The operating time of the temperature fuse elements based on the heat generation of each film resistor under the same overcurrent can be made almost equal.

【0025】而るに、膜抵抗体から温度ヒュ−ズエレメ
ントに至る熱伝達経路の熱伝達性はその間の距離、熱伝
達媒質の量等により調整できるが、抵抗・温度ヒュ−ズ
本体を浸漬塗装法で覆うときは、その被覆層の体積を一
定にすることが困難であり、各膜抵抗体から温度ヒュ−
ズエレメントに至る熱伝達経路の熱伝達性の満足せる精
度のもとでの調整は至難である。
Although the heat transfer property of the heat transfer path from the film resistor to the temperature fuse element can be adjusted by the distance between them and the amount of the heat transfer medium, the resistance / temperature fuse main body is immersed. When coating with a coating method, it is difficult to keep the volume of the coating layer constant, and the temperature of each film resistor is
It is extremely difficult to make adjustments with sufficient accuracy for the heat transfer properties of the heat transfer path to the element.

【0026】しかし、本発明の抵抗・温度ヒュ−ズにお
いては、射出成形等により定形性をよく保証できるケ−
スを抵抗・温度ヒュ−ズ本体に被せ、ケ−ス内に絶縁材
を計量滴下して注入固化することを可能にしているか
ら、上記の熱伝達性の調整を高精度で行い得、同一過電
流のもとでの各膜抵抗体の発熱に基づく温度ヒュ−ズエ
レメントの作動時間を充分に等しくできる。
However, in the resistance / temperature fuse of the present invention, the case where the regularity can be well ensured by injection molding or the like.
Since it is possible to cover the resistance and temperature fuse body with the main body and inject and solidify the insulating material by metering and dropping it into the case, the heat transfer can be adjusted with high accuracy and the same. The operating time of the temperature fuse elements based on the heat generation of each film resistor under an overcurrent can be made sufficiently equal.

【0027】また、請求項3記載並びに請求項5記載の
発明においては、絶縁基板の片面側の厚みの大なるフラ
ックス塗布ヒュ−ズエレメントをケ−スの膨出部内に収
容し、基板片面側の残部をケ−ス内面に近接させている
から、その間の媒質の量を著しく小にでき、熱容量cを
小さくして全体として作動迅速性を向上できる。
According to the third and fifth aspects of the invention, the flux coating fuse element having a large thickness on one side of the insulating substrate is housed in the bulging portion of the case, and one side of the substrate is provided. Since the remaining portion of the above is close to the inner surface of the case, the amount of the medium therebetween can be remarkably reduced, and the heat capacity c can be reduced to improve the quickness of operation as a whole.

【0028】[0028]

【実施例】【Example】

実施例1 図2の(イ)並びに図2の(ロ)に示す構成を用い、抵
抗・温度ヒュ−ズ本体には図1の(イ)乃至図1の
(ニ)に示す構成を使用した。熱伝導性絶縁基板には、
厚さ0.6mm、縦9mm、横14mmのセラミックス
基板を使用し、全ての膜電極を銀ペ−ストの印刷・焼き
付けにより形成し、電極厚みを25μmとした。温度ヒ
ュ−ズエレメントには直径0.5mm、液相温度96℃
の低融点可溶合金線を使用し、フラックス(ヒュ−ズエ
レメントの融点よりも低い軟化点のもの)の塗布厚みを
1.2mmとした。膜抵抗体は、酸化金属系抵抗塗料
(酸化金属粉末とガラスフリットとの混合物)の厚み2
0μmの印刷・焼き付けにより、保護膜は低融点ガラス
フリットの厚み80μmの焼き付けによりそれぞれ膜成
し、温度ヒュ−ズエレメントからの各膜抵抗体までの距
離を共に0.5mmとし、両膜抵抗体の抵抗値をトリミ
ングにより1kΩと950Ωに設定した。リ−ド線には
全て、直径0.6mmの銅線を使用した。
Example 1 The configurations shown in (a) of FIG. 2 and (b) of FIG. 2 were used, and the configurations shown in (a) to (d) of FIG. 1 were used for the main body of the resistance / temperature fuse. . The thermal conductive insulating substrate
A ceramic substrate having a thickness of 0.6 mm, a length of 9 mm, and a width of 14 mm was used, and all the membrane electrodes were formed by printing and baking silver paste, and the electrode thickness was set to 25 μm. The temperature fuse element has a diameter of 0.5 mm and a liquidus temperature of 96 ° C.
The low melting point fusible alloy wire was used and the coating thickness of the flux (having a softening point lower than the melting point of the fuse element) was 1.2 mm. The film resistor has a thickness of a metal oxide resistance paint (a mixture of metal oxide powder and glass frit) of 2
By printing and baking 0 μm, the protective film is formed by baking low melting point glass frit with a thickness of 80 μm, and the distance from the temperature fuse element to each film resistor is 0.5 mm. The resistance value of 1 was set to 1 kΩ and 950Ω by trimming. A copper wire having a diameter of 0.6 mm was used for all the lead wires.

【0029】ケ−スには、フェノ−ル樹脂の射出成形品
で、図3において、膨出部までの内部高さT1が2.7
mm、左右部の各内部高さT2が1.5mm、膨出部の
巾w0が6.3mm、左右部の各巾w1,w2が3.5m
mと5.1mm、内郭縦長さが9.7mm,厚みが0.
6mmのものを使用し、硬化性絶縁材には、浸漬塗装用
のエポキシ樹脂液を使用した。
The case is an injection-molded product of phenol resin, and in FIG. 3, the internal height T 1 to the bulge portion is 2.7.
mm, each internal height T 2 of the left and right parts is 1.5 mm, the width w 0 of the bulging part is 6.3 mm, and the widths w 1 and w 2 of the left and right parts are 3.5 m
m and 5.1 mm, the inner vertical length is 9.7 mm, and the thickness is 0.
An epoxy resin solution for dip coating was used as the curable insulating material.

【0030】これらの実施例品40個の内、20個につ
いて抵抗値が Ωの膜抵抗体と温度ヒュ−ズエレメ
ントとを直列に接続し、定格電力(1W)の9倍に相当
する電流94.4mAを流し、作動時間(通電開始の
後、通電が遮断されるまでの時間)を測定したところ、
20秒〜23秒であった。更に、残りの20個につい
て、抵抗値が950Ωの膜抵抗体と温度ヒュ−ズエレメ
ントとを直列に接続し、上記と同一電流のもとで、同じ
ようにして作動時間を測定したところ、21秒〜23秒
であり、同一過電流のもとでの各膜抵抗体の発熱に基づ
く温度ヒュ−ズエレメントの作動時間を実質上、等しく
できた。
Of the 40 products of these examples, for 20 of them, a film resistor having a resistance value of Ω and a temperature fuse element were connected in series, and a current 94 equivalent to 9 times the rated power (1 W) was obtained. When the operating time (time from the start of energization to the time when the energization is cut off) was measured by flowing 0.4 mA,
It was 20 to 23 seconds. Further, for the remaining 20 pieces, a membrane resistor having a resistance value of 950Ω and a temperature fuse element were connected in series, and the operating time was measured in the same manner under the same current as above. It was 2 seconds to 23 seconds, and the operating time of the temperature fuse elements based on the heat generation of each film resistor under the same overcurrent could be made substantially equal.

【0031】比較例1 実施例1と同じ抵抗・温度ヒュ−ズ本体を使用し、実施
例1で使用したエポキシ樹脂を絶縁基板に浸漬塗装し
た。実施例1と同様にして、各膜抵抗体に対する温度ヒ
ュ−ズエレメントの作動時間を測定したところ、作動時
間は19秒〜29秒と22秒〜32秒であり、作動時間
に約3秒の差があった。
Comparative Example 1 Using the same resistance / temperature fuse main body as in Example 1, the epoxy resin used in Example 1 was dip coated on the insulating substrate. When the operating time of the temperature fuse element for each film resistor was measured in the same manner as in Example 1, the operating time was 19 seconds to 29 seconds and 22 seconds to 32 seconds, and the operating time was about 3 seconds. There was a difference.

【0032】実施例2 図5に示す構成を用い、実施例1で用いた抵抗・温度ヒ
ュ−ズ本体に対し、抵抗値が1kΩの膜抵抗体と温度ヒ
ュ−ズエレメントとの距離を1mmだけ隔離する方向に
ずらし、その分だけ絶縁基板の巾を増大し、他は実施例
1とものと同じとした抵抗・温度ヒュ−ズ本体を使用し
た。ケ−スには、中央部を膨出させた左右対称のフェノ
−ル製で、膨出部内面までの高さT3が2.7mm、左
右内部の高さT2が1.5mm、膨出部内の巾w0が6.
3mm、左右部の内巾w3が4.3mm、内郭の縦長さ
が9mm、厚みが0.6mmのものを使用し、実施例1
と同様、エポキシ樹脂液を滴下法により注入固化した。
Example 2 Using the configuration shown in FIG. 5, with respect to the resistance / temperature fuse main body used in Example 1, the distance between the membrane resistor having a resistance value of 1 kΩ and the temperature fuse element was only 1 mm. The resistance / temperature fuse main body was used in the same manner as in Example 1 except that the width of the insulating substrate was increased correspondingly by shifting in the separating direction. The case is made of symmetrical phenol with the center part bulged, and the height T 3 to the inner surface of the bulge part is 2.7 mm, the height T 2 inside the left and right parts is 1.5 mm, The width w 0 inside the projection is 6.
3 mm, the inner width w 3 of the right and left portions using 4.3 mm, those vertical length of the inner contour is 9 mm, a thickness of 0.6 mm, Example 1
Similarly to, the epoxy resin liquid was injected and solidified by the dropping method.

【0033】この実施例品40個ににつき、実施例1と
同様に、一の各膜抵抗体と温度ヒュ−ズエレメントとを
それぞれ直列に接続し、通電電流94.4mAのもとで
の作動時間を測定したところ、何れの膜抵抗体について
も20秒〜24秒であり、作動時間のバラツキは実施例
1と同様、無視できた。
For each of the 40 products of this embodiment, as in the case of the first embodiment, each film resistor and the temperature fuse element are connected in series, and the operation is performed under a current of 94.4 mA. When the time was measured, it was 20 seconds to 24 seconds for all the film resistors, and the variation in the operating time was negligible as in Example 1.

【0034】[0034]

【発明の効果】本発明の抵抗・温度ヒュ−ズは上述した
通りの構成であり、絶縁基板の中央に温度ヒュ−ズエレ
メントを、該温度ヒュ−ズエレメントを挾む左右に異な
る抵抗値の膜抵抗体をそれぞれ設けてなる抵抗・温度ヒ
ュ−ズにおいて、各膜抵抗体の発熱に基づく温度ヒュ−
ズエレメントの作動を、実質上の時間差なく行わせるこ
とを保証でき、何れの膜抵抗体に過電流が流れても回路
を確実に保護できる。
The resistance / temperature fuse of the present invention has the structure as described above, and the temperature fuse element is provided at the center of the insulating substrate, and the resistance value is different between the right and left sides of the temperature fuse element. In a resistance / temperature fuse provided with each film resistor, a temperature fuse based on heat generation of each film resistor
It is possible to guarantee that the element operation is performed without a substantial time difference, and the circuit can be reliably protected even if an overcurrent flows through any of the membrane resistors.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1の(イ)は本発明において使用する抵抗・
温度ヒュ−ズ本体の一例を示す平面図、図1の(ロ)は
同じく底面図、図1の(ハ)は図1の(イ)におけるハ
−ハ断面図、図1の(ニ)は図1の(ロ)におけるニ−
ニ断面図である。
FIG. 1A shows a resistor used in the present invention.
A plan view showing an example of the temperature fuse main body, (b) of FIG. 1 is a bottom view of the same, (c) of FIG. 1 is a sectional view taken along the line of (a) of FIG. 1, and (d) of FIG. 1 in (b) of FIG.
FIG.

【図2】図2の(イ)は請求項3記載の本発明の構成例
を示す断面図、図2の(ロ)は図2の(イ)におけるロ
−ロ断面図である。
FIG. 2A is a sectional view showing a configuration example of the present invention according to claim 3, and FIG. 2B is a sectional view taken along line A-B in FIG.

【図3】図2の構成例におけるケ−スを示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a case in the configuration example of FIG.

【図4】請求項4記載の本発明の構成例を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing a configuration example of the present invention according to claim 4.

【図5】請求項5記載の本発明の構成例を示す断面図で
ある。
FIG. 5 is a sectional view showing a configuration example of the present invention according to claim 5.

【図6】図6の(イ)は従来例を示す平面説明図、図6
の(ロ)は同じく底面説明図、図6の(ハ)は図6の
(イ)におけるハ−ハ断面図、図6の(ニ)は図6の
(ロ)におけるニ−ニ断面図である。
6 (a) is an explanatory plan view showing a conventional example, and FIG.
Similarly, (B) is a bottom view, (C) of FIG. 6 is a sectional view taken along the line of (A) of FIG. 6, and (D) of FIG. 6 is a sectional view of the line of (B) of FIG. is there.

【符号の説明】[Explanation of symbols]

11 絶縁基板 12 膜電極 13 リ−ド線 14 温度ヒュ−ズエレメント 15 フラックス 16 膜電極 17 膜抵抗体 19 リ−ド線 1 抵抗・温度ヒュ−ズ本体 2 ケ−ス 20 膨出部 21 プレ−ト部 22 枠縁 3 硬化性絶縁材 11 Insulating Substrate 12 Membrane Electrode 13 Lead Wire 14 Temperature Fuse Element 15 Flux 16 Membrane Electrode 17 Membrane Resistor 19 Lead Wire 1 Resistance / Temperature Fuse Main Body 2 Case 20 Bulging Part 21 Pre- Toe 22 Frame edge 3 Curable insulating material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】熱伝導性絶縁基板に温度ヒュ−ズエレメン
ト及び該エレメントを挾んで抵抗値の異なる2箇の膜抵
抗体が設けられてなる抵抗・温度ヒュ−ズ本体に熱伝達
調整用ケ−スが被施され、該ケ−ス内に絶縁材が注入固
化されて、同一過電流のもとでの各膜抵抗体の発熱に基
づく温度ヒュ−ズエレメントの作動時間がほぼ等しくさ
れていることを特徴とする抵抗・温度ヒュ−ズ。
1. A resistance / temperature fuse main body comprising a thermal fuse insulating substrate and a temperature fuse element and two film resistors having different resistance values sandwiching the element, and a heat transfer adjusting case for the main body of the resistor / temperature fuse. -When the case is covered, the insulating material is injected and solidified in the case, and the operating time of the temperature fuse elements based on the heat generation of each film resistor under the same overcurrent is made substantially equal. Resistance and temperature fuse characterized by
【請求項2】熱伝導性絶縁基板の片面の中央に温度ヒュ
−ズエレメントが、同基板の他面に前記温度ヒュ−ズエ
レメントを中心として左右対称に異なる抵抗値の膜抵抗
体が設けられてなる抵抗・温度ヒュ−ズ本体に、プレ−
ト部の周囲に枠縁を有する熱伝達調整用ケ−スがそのプ
レ−ト部を温度ヒュ−ズエレメント側に配して被施さ
れ、該ケ−ス内に絶縁材が注入固化され、ケ−スのプレ
−ト部が同一過電流のもとでの各膜抵抗体の発熱に基づ
く温度ヒュ−ズエレメントの作動時間をほぼ等しくする
ように左右非対称とされていることを特徴とする抵抗・
温度ヒュ−ズ。
2. A thermal fuse element is provided at the center of one surface of a heat conductive insulating substrate, and a film resistor having different resistance values symmetrically with respect to the temperature fuse element is provided on the other surface of the substrate. The resistance / temperature fuse
A heat transfer adjusting case having a frame edge around the outer periphery of the housing is applied with its plate disposed on the temperature fuse element side, and an insulating material is injected and solidified in the housing, It is characterized in that the plate portion of the case is left-right asymmetric so that the operating time of the temperature fuse element based on the heat generation of each film resistor under the same overcurrent is made substantially equal. resistance·
Temperature fuse.
【請求項3】ケ−スのプレ−ト部の左右部分が抵抗・温
度ヒュ−ズ本体の絶縁基板の片面に近接され、残部の中
間膨出部内に温度ヒュ−ズエレメントが収容されている
請求項2記載の抵抗・温度ヒュ−ズ。
3. The left and right portions of the plate portion of the case are close to one surface of the insulating substrate of the resistance / temperature fuse main body, and the temperature fuse element is accommodated in the remaining intermediate bulge portion. The resistance / temperature fuse according to claim 2.
【請求項4】熱伝導性絶縁基板の片面に温度ヒュ−ズエ
レメントが、同基板の他面に同温度ヒュ−ズエレメント
を挾んで抵抗値の異なる2箇の膜抵抗体が設けられてな
る抵抗・温度ヒュ−ズ本体に左右対称の熱伝達調整用ケ
−スが被施され、該ケ−ス内に絶縁材が注入固化され、
同一過電流のもとでの各膜抵抗体の発熱に基づく温度ヒ
ュ−ズエレメントの作動時間をほぼ等しくするように各
膜抵抗体と温度ヒュ−ズエレメントとの間隔が異なされ
ていることを特徴とする抵抗・温度ヒュ−ズ。
4. A thermal fuse insulating substrate is provided with a temperature fuse element on one surface thereof, and two film resistors having different resistance values are provided on the other surface of the substrate with the temperature fuse element interposed therebetween. The resistance / temperature fuse main body is covered with a symmetrical heat transfer adjusting case, and an insulating material is injected and solidified in the case.
The distance between each film resistor and the temperature fuse element should be different so that the operating time of the temperature fuse element based on the heat generation of each film resistor under the same overcurrent is almost equal. Characteristic resistance and temperature fuse.
【請求項5】ケ−スのプレ−ト部の左右部分が抵抗・温
度ヒュ−ズ本体の絶縁基板の片面に近接され、残部の中
間膨出部内に温度ヒュ−ズエレメントが収容されている
請求項4記載の抵抗・温度ヒュ−ズ。
5. The left and right portions of the plate portion of the case are close to one surface of the insulating substrate of the resistance / temperature fuse main body, and the temperature fuse element is accommodated in the remaining intermediate bulging portion. The resistance / temperature fuse according to claim 4.
JP4527494A 1994-02-17 1994-02-17 Resistance / temperature fuse Expired - Fee Related JP3594645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4527494A JP3594645B2 (en) 1994-02-17 1994-02-17 Resistance / temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4527494A JP3594645B2 (en) 1994-02-17 1994-02-17 Resistance / temperature fuse

Publications (2)

Publication Number Publication Date
JPH07230748A true JPH07230748A (en) 1995-08-29
JP3594645B2 JP3594645B2 (en) 2004-12-02

Family

ID=12714741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4527494A Expired - Fee Related JP3594645B2 (en) 1994-02-17 1994-02-17 Resistance / temperature fuse

Country Status (1)

Country Link
JP (1) JP3594645B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207940A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Protective element and pack battery equipped with protective element
WO2009142141A1 (en) * 2008-05-23 2009-11-26 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP2014044955A (en) * 2013-10-01 2014-03-13 Dexerials Corp Protection element, and battery pack
CN105593962A (en) * 2013-09-26 2016-05-18 迪睿合电子材料有限公司 Short-circuiting element
JP2021077589A (en) * 2019-11-13 2021-05-20 デクセリアルズ株式会社 Protection circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207940A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Protective element and pack battery equipped with protective element
WO2009142141A1 (en) * 2008-05-23 2009-11-26 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP2010003665A (en) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp Protection element and secondary battery device
US8547195B2 (en) 2008-05-23 2013-10-01 Dexerials Corporation Protective element and secondary battery device
CN105593962A (en) * 2013-09-26 2016-05-18 迪睿合电子材料有限公司 Short-circuiting element
JP2014044955A (en) * 2013-10-01 2014-03-13 Dexerials Corp Protection element, and battery pack
JP2021077589A (en) * 2019-11-13 2021-05-20 デクセリアルズ株式会社 Protection circuit

Also Published As

Publication number Publication date
JP3594645B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6344633B1 (en) Stacked protective device lacking an insulating layer between the heating element and the low-melting element
JPH0750128A (en) Microminiature fuse
WO2004070758A1 (en) Protective element
CN109074988B (en) Protective element
JPH07230748A (en) Resistance thermal fuse
CN201570468U (en) Resistive fuse device
JP3594644B2 (en) Temperature fuse with resistor
JP3594646B2 (en) Manufacturing method of resistance / temperature fuse
JPH0719075Y2 (en) Substrate type thermal fuse
JPH087731A (en) Resistance/temperature fuse for board
TWM363674U (en) Structure of lead type resistor fuse
TWI284907B (en) Fusible resistor and method of fabricating the same
JPH0787129B2 (en) Substrate type resistance / temperature fuse composite
JP3594649B2 (en) Substrate type resistance / temperature fuse
TW200425200A (en) Fuse apparatus and method of manufacturing the same
JPS6322599Y2 (en)
JP2524859B2 (en) Resistance / temperature fuse and manufacturing method thereof
JP2004296422A (en) Protection element
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof
KR910000806Y1 (en) Synthesized unit of substrate type resistor and temperature fuse
JP3770408B2 (en) Substrate type resistance / temperature fuse and protection method for equipment
JPH0230135B2 (en) KAIROSHADANYOSOSHI
JP2004228027A (en) Chip type fuse and its manufacturing method
JP2501183Y2 (en) Alloy type temperature fuse
CN203339148U (en) Circuit protection element

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Effective date: 20040901

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees