JPH07229992A - Cooling facility for air recirculation system of reactor containment vessel - Google Patents

Cooling facility for air recirculation system of reactor containment vessel

Info

Publication number
JPH07229992A
JPH07229992A JP6023966A JP2396694A JPH07229992A JP H07229992 A JPH07229992 A JP H07229992A JP 6023966 A JP6023966 A JP 6023966A JP 2396694 A JP2396694 A JP 2396694A JP H07229992 A JPH07229992 A JP H07229992A
Authority
JP
Japan
Prior art keywords
cac
refrigerator
building ventilation
sbv
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6023966A
Other languages
Japanese (ja)
Inventor
Katsuo Yokota
勝男 横田
Fumito Nakamura
文人 中村
Seizo Hirao
誠造 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Nuclear Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Nuclear Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Nuclear Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP6023966A priority Critical patent/JPH07229992A/en
Publication of JPH07229992A publication Critical patent/JPH07229992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To reduce the entire facility capacity and the number of refrigerators in each cooling facility of a containment vessel air recirculation system (CAC) and a service building ventilation system in a reactor. CONSTITUTION:In order to make atmosphere temperature of the inside of a containment vessel 9 constant, a recirculation pump 1a for supplying cooling water to coolers for performing heat removal and a refrigerator 2d for performing the heat removal of the heat-exchanged cooling water in the coolers 3a-3d are equipped. Three refrigerators 4a-4c for removing heat load of a building ventilation system, SBV, and the inside of the containment vessel as the side of SBV, a CAC cooling water circulation pump 1b and refrigerator 2b as common spare, a flow control valve 17, cutoff valves 19a, 19b and a return valve 16 for removing the heat load of the inside of CAC at the time of normal operation, a flow control valve 13 for supplying the cooling water to a building ventilation system 13 and tubing 14 for connecting CAC and SBV are constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉の格納容器内の
冷却設備と建屋換気系の冷却設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling facility for a containment vessel of a nuclear reactor and a cooling facility for a building ventilation system.

【0002】[0002]

【従来の技術】従来技術を、図6に示す。2. Description of the Related Art The prior art is shown in FIG.

【0003】図6において、重水減速沸騰軽水冷却圧力
管型原子炉の格納容器空気再循環系(以下CACと略
す。)は、格納容器9内の温まった空気を排気ダクト1
1より冷却器3a,3b,3c,3dに吸気して冷却
し、給気ダクト12から格納容器9内に給気する閉じた
系を構成している。
In FIG. 6, a containment vessel air recirculation system (hereinafter abbreviated as CAC) of a heavy water deceleration boiling light water cooling pressure tube type reactor is configured so that the warm air in the containment vessel 9 is exhausted from the exhaust duct 1.
1, a cooler 3a, 3b, 3c, 3d is inhaled and cooled, and a closed system for supplying air from the air supply duct 12 into the storage container 9 is constituted.

【0004】格納容器9内の空気は、循環送風機10に
より格納容器9内を再循環することで格納容器9内の雰
囲気温度を一定に保つ。
The air in the storage container 9 is recirculated in the storage container 9 by the circulation blower 10 to keep the ambient temperature in the storage container 9 constant.

【0005】また、冷却器3a,3b,3c,3dで空
気の冷却を行った冷水は昇温するが、昇温した冷水は冷
凍機2a,2b,2c,2d内で補機冷却海水ポンプ5
にて供給される海水と熱交換することにより再度降温さ
れ、冷却器で再利用される。CACの冷凍機2a,2
b,2c,2dの容量は、通常運転時の格納容器9内の
熱負荷と一部の建屋換気系ローカルクーラーの熱負荷を
除去する容量、及び外部電源喪失時の格納容器9内の熱
負荷を除去するのに必要な冷却容量から決まっている。
Further, the cold water whose air is cooled by the coolers 3a, 3b, 3c, 3d rises in temperature, but the elevated cold water is cooled by the auxiliary cooling seawater pump 5 in the refrigerators 2a, 2b, 2c, 2d.
It is cooled again by exchanging heat with the seawater supplied at and is reused in the cooler. CAC refrigerators 2a, 2
The capacities of b, 2c, and 2d are the capacities for removing the heat load in the containment vessel 9 during normal operation and the heat load of some building ventilation local coolers, and the heat load in the containment vessel 9 at the time of loss of external power supply. Is determined by the cooling capacity required to remove

【0006】一方、建屋換気系(以下BVと略す。)の
一つであるサービス建屋換気系(以下SBVと示す。こ
こでは建屋換気系の一例としてサービス建屋換気系をあ
げる。)の冷凍機4a,4b,4c,4dは、廃棄物処
理建屋換気系,タービン建屋換気系及び自系統の熱負荷
を除去できる冷却容量を有している。
On the other hand, a refrigerator 4a of a service building ventilation system (hereinafter referred to as SBV, which is one of the building ventilation systems (hereinafter abbreviated as BV). Here, the service building ventilation system is taken as an example of the building ventilation system). , 4b, 4c, 4d have a cooling capacity capable of removing the heat load of the waste treatment building ventilation system, the turbine building ventilation system, and the own system.

【0007】この冷凍機4a,4b,4c,4dの冷却
は、常用補機冷却系で行う。
Cooling of the refrigerators 4a, 4b, 4c and 4d is carried out by a regular auxiliary equipment cooling system.

【0008】即ち、常用補機冷却系循環ポンプ8で冷却
水をこの冷凍機4a,4b,4c,4dに供給し、ここ
で温まった冷却水を常用補機冷却系熱交換器7で冷却す
ることにより、冷凍機4a,4b,4c,4dの冷却機
能が維持される。
That is, the cooling water is supplied to the refrigerators 4a, 4b, 4c, 4d by the normal auxiliary equipment cooling system circulation pump 8, and the cooling water heated here is cooled by the normal auxiliary equipment cooling system heat exchanger 7. As a result, the cooling function of the refrigerators 4a, 4b, 4c, 4d is maintained.

【0009】図7に従来例におけるCACとSBVの通
常運転時モードを示す。
FIG. 7 shows a normal operation mode of CAC and SBV in the conventional example.

【0010】図7で、通常運転時は冷凍機2a,2b,
2c,2d、冷水循環ポンプ1、CAC冷却器3a,3
b,3c,3d、CAC循環送風機10、各々4a,4
b,4c,4d台中3a,3b,3c,3d台を稼働さ
せ(各々1台は予備機)、格納容器9内の熱負荷を除去
する。
In FIG. 7, the refrigerators 2a, 2b,
2c, 2d, cold water circulation pump 1, CAC coolers 3a, 3
b, 3c, 3d, CAC circulation blower 10, 4a, 4 respectively
3a, 3b, 3c, 3d of b, 4c, 4d are operated (one for each is a standby machine) to remove the heat load in the storage container 9.

【0011】また、建屋換気系への遮断弁19,戻り弁
16を開すること、および流量調節弁13にて自動的に
流量制御を行うことにより、建屋換気系ローカルクーラ
ーの熱負荷を除去する。
Further, by opening the shutoff valve 19 and the return valve 16 to the building ventilation system and automatically controlling the flow rate by the flow rate control valve 13, the heat load of the building ventilation system local cooler is removed. .

【0012】また、常用系に接続されているSBVの冷
水循環ポンプ15,冷凍機4a,4b,4c,4d、各
々4台中3台を稼働させ(各々1台は予備機)、建屋内
の熱負荷を除去する。
The SBV chilled water circulation pump 15 and the refrigerators 4a, 4b, 4c and 4d, which are connected to the service system, are operated three out of four units (each one is a standby unit) to heat the inside of the building. Remove the load.

【0013】図8に外部電源喪失時のモードを示す。FIG. 8 shows a mode when the external power source is lost.

【0014】図8で、CAC冷却設備(冷水循環ポンプ
1a,1b,1c,1d冷凍機2a,2b,2c,2
d)は、非常用系電源に接続されており外部電源喪失時
には、常用系熱負荷である建屋換気系ローカルクーラー
熱負荷を除く(建屋換気系ローカルクーラーへの冷水供
給は、外部電源喪失信号により自動的に遮断弁19,戻
り弁16を閉じることで停止される)、格納容器9内の
熱負荷を除去するため、冷水循環ポンプ1a,1b,1
c,1d,冷凍機2a,2b,2c,2d、各々4台中
2台を運転し、残り2台を予備機としている。
In FIG. 8, the CAC cooling equipment (cold water circulation pumps 1a, 1b, 1c, 1d refrigerators 2a, 2b, 2c, 2) is used.
d) is connected to the emergency system power supply, and when the external power source is lost, the heat load of the building ventilation local cooler, which is the heat load of the regular system, is excluded (the cold water supply to the local ventilation system of the building ventilation system is controlled by the external power loss signal. It is automatically stopped by closing the shutoff valve 19 and the return valve 16), and the chilled water circulation pumps 1a, 1b, 1 for removing the heat load in the storage container 9
c, 1d, refrigerators 2a, 2b, 2c, 2d, two of each four are in operation, and the remaining two are spares.

【0015】つまり、外部電源喪失時は建屋換気系ロー
カルクーラー用の冷凍機1台は運転されない。
That is, when the external power source is lost, one refrigerator for the building ventilation local cooler is not operated.

【0016】一方、SBVの冷却設備は、非常用系電源
に接続されておらず、外部電源喪失時に運転することは
ない。
On the other hand, the SBV cooling equipment is not connected to the emergency power source and does not operate when the external power source is lost.

【0017】このように、非常用系であるCAC冷却設
備の冷凍機2a,2b,2c,2dの熱負荷には、常用
系である建屋換気系ローカルクーラーの熱負荷も考慮さ
れている為、CAC冷凍機2a,2b,2c,2dの容
量、及び台数は非常用系として要求される容量,台数
(外部電源喪失時に要求される容量,台数)より多くな
っている。
As described above, since the heat loads of the refrigerators 2a, 2b, 2c, 2d of the CAC cooling equipment, which is an emergency system, also take into consideration the heat load of the local cooler of the building ventilation system, which is a regular system, The capacity and the number of the CAC refrigerators 2a, 2b, 2c, 2d are larger than the capacity and the number of units required as an emergency system (capacity and number required when the external power source is lost).

【0018】ここで、CACの冷却設備容量の低減を図
るため、 非常用系の冷凍機負荷に常用系の負荷を取込んでい
る。
Here, in order to reduce the capacity of the cooling equipment for the CAC, the load of the normal system is incorporated into the load of the refrigerator of the emergency system.

【0019】同様の冷却設備を有する常用系の系統が
ある。
There is a conventional system with similar cooling equipment.

【0020】以上のことを考慮し、CACの冷却負荷を
常用系負荷と非常用系負荷に分離して、CACの冷却設
備の負荷である建屋換気系ローカルクーラーの熱負荷を
SBVの冷却負荷に取込み、CAC冷凍機2a,2b,2
c,2d容量の低減を図る必要がある(建屋換気系ロー
カルクーラーの負荷分を除くとCAC冷凍機1台分削減
できる。図9参照)。
In consideration of the above, the cooling load of the CAC is separated into the normal system load and the emergency system load, and the heat load of the building ventilation system local cooler, which is the load of the CAC cooling equipment, is separated.
Incorporated into the SBV cooling load, CAC refrigerators 2a, 2b, 2
It is necessary to reduce the c and 2d capacities (excluding the load of the building ventilation local cooler, it is possible to reduce by one CAC refrigerator. See Fig. 9).

【0021】CACの冷凍機2a,2b,2c,2d容
量から常用系負荷を取除くことで冷凍機2a,2b,2
c,2d総容量は、約25%(7.2→5.4×106kc
al/h)低減され、冷凍機2a,2b,2c,2d総台
数は、1台(4→3台)低減される。
The refrigerators 2a, 2b, 2 can be removed by removing the service load from the capacity of the refrigerators 2a, 2b, 2c, 2d of the CAC.
The total capacity of c and 2d is about 25% (7.2 → 5.4 × 10 6 kc
al / h), and the total number of refrigerators 2a, 2b, 2c, 2d is reduced by one (4 → 3).

【0022】一方、SBVの冷凍機4a,4b,4c,
4d容量は、建屋換気系ローカルクーラーの熱負荷分
(1.8×106kcal/h )が増加し、この熱負荷を通
常時の運転台数3台で除去することになるため、冷凍機
1台あたりの容量は約60%(1.0→1.6×106kc
al/h)増加することになり、SBVの冷凍機4a,4
b,4c,4d総容量に対しても現状の約60%(4.
0→6.4×106kcal/h)増加となる。
On the other hand, the SBV refrigerators 4a, 4b, 4c,
The 4d capacity is increased by the heat load (1.8 × 10 6 kcal / h) of the local cooler for the building ventilation system, and this heat load will be removed by three units operating normally, so the refrigerator 1 The capacity per unit is about 60% (1.0 → 1.6 × 10 6 kc
al / h) increase, and SBV refrigerators 4a, 4
b, 4c, 4d Total capacity is about 60% (4.
0 → 6.4 × 10 6 kcal / h) increase.

【0023】以上の結果から非常用系のCACの冷凍機
容量及び台数は低減できるが、その分、常用系のSBV
の冷凍機容量が増加する。
From the above results, it is possible to reduce the capacity and the number of refrigerators of the emergency system CAC, but the SBV of the regular system is correspondingly reduced.
Refrigerator capacity increases.

【0024】このように、常用系の建屋換気系ローカル
クーラーの熱負荷をSBVの熱負荷として取込むだけで
はCAC及びSBVのトータル設備容量が低減((7.
2 +4.0)=11.2×106kcal/h→(5.4+
6.4)=11.8×106kcal/h)されないことにな
る。
In this way, the total installed capacity of CAC and SBV is reduced only by incorporating the heat load of the local cooler of the building ventilation system of the regular system as the heat load of SBV ((7.
2 + 4.0) = 11.2 × 10 6 kcal / h → (5.4+
6.4) = 11.8 × 10 6 kcal / h).

【0025】ここで、外部電源喪失時の格納容器9内の
熱負荷の除去は、非常用系のCACの冷凍機2台でまか
なうこと(単一故障を考慮し予備機も設ける)を前提
に、CACとSBVのトータルの設備容量及び台数低減
のために、CACの冷凍機容量とSBVの冷凍機容量の
平準化を図った。
Here, the removal of the heat load in the containment vessel 9 when the external power source is lost is premised on the fact that two CAC refrigerators for emergency use are used (a spare unit is also provided in consideration of a single failure). , In order to reduce the total installed capacity of CAC and SBV and the number of units, the capacity of the refrigerator of CAC and the capacity of the refrigerator of SBV were leveled.

【0026】更に、CACとSBVの冷却設備は平準化
に伴い、予備機の共用化を図った。
Further, with the standardization of the cooling facilities for CAC and SBV, a spare machine was shared.

【0027】[0027]

【発明が解決しようとする課題】そこで、外部電源喪失
時の格納容器9内の熱負荷の除去は、非常用系のCAC
の冷凍機2台でまかなうこと(単一故障を考慮し予備機
も設ける)を前提に、CACとSBVのトータルの設備
容量及び台数低減のために、CACの冷凍機容量とSB
Vの冷凍機容量の平準化を図ること、更に、CACとS
BVの冷却設備は平準化に伴い、予備機の共用化を図る
ことが要望される。
Therefore, the removal of the heat load in the containment vessel 9 at the time of loss of the external power source is carried out by the CAC of the emergency system.
In order to reduce the total equipment capacity of CAC and SBV and the number of units, the capacity of the refrigerator of the CAC and the capacity of the SB of the
V refrigerator capacity should be leveled, and CAC and S
With the leveling of BV cooling equipment, it is desired to share the standby equipment.

【0028】上記、従来技術によるCACの冷却設備容
量は、常用系負荷である建屋換気系の負荷を取込んでい
たため非常用系電源に接続されている本系統の冷却設備
(冷凍機)の総容量,台数が過剰設備となっていた。
(常用系の負荷は常用系の冷却設備で冷却した方が設備
費上安くできる。)また、SBVはCACと同様の冷却
設備を構成しているが、別々の常用系負荷である建屋換
気系等へ冷水を供給しており、CACとSBVの冷凍機
には、それぞれ別々に機器仕様の異なる予備機があり、
設備の合理化(予備機の共用化)が望まれる。
The capacity of the cooling equipment of the CAC according to the prior art described above is that of the cooling equipment (refrigerator) of this system connected to the emergency system power supply because the load of the building ventilation system, which is the normal system load, is taken in. The total capacity and number were excessive.
(The load of the regular system can be cheaper if it is cooled by the cooling system of the regular system because of the equipment cost.) Moreover, although the SBV constitutes the same cooling facility as the CAC, the building ventilation system is a separate regular system load. Cold water is supplied to the refrigerator, etc., and the CAC and SBV refrigerators each have a spare unit with different equipment specifications.
Rationalization of equipment (common use of standby machines) is desired.

【0029】更に、これらの冷却設備には、トータル設
備容量の低減,メンテナンスの容易さ、配置の合理化の
ための機器台数の低減を目的とした冷凍機容量の平準化
が望まれている。
Further, in these cooling facilities, there is a demand for leveling of the refrigerator capacity for the purpose of reducing the total facility capacity, easiness of maintenance, and reducing the number of devices for rational arrangement.

【0030】本発明の目的は、CACとSBVの冷却設
備の併合簡素化を達成することにある。
It is an object of the present invention to achieve a combined simplification of CAC and SBV cooling equipment.

【0031】[0031]

【課題を解決するための手段】上記課題を解決するため
に、格納容器9内雰囲気を冷却し雰囲気温度を一定に維
持するためのCAC冷却設備容量に取込んでいる常用系
の建屋換気系熱負荷をSBVの冷却設備の熱負荷に取込
み、これにより、非常用系であるCACの冷凍機の負荷
容量を低減する。
In order to solve the above-mentioned problems, the heat of the building ventilation system of the normal system incorporated in the capacity of the CAC cooling equipment for cooling the atmosphere in the containment vessel 9 and keeping the atmosphere temperature constant. The load is taken into the heat load of the SBV cooling equipment, thereby reducing the load capacity of the refrigerator of the CAC, which is an emergency system.

【0032】更に、CACの冷凍機容量を低減するため
に、格納容器内の熱負荷のうち外部電源喪失時に必要な
ものとそうでないものに分けて、外部電源喪失時に必要
なものだけをCACの熱負荷とし、その他の熱負荷はS
BVの冷却設備の熱負荷とすることとした。
Further, in order to reduce the capacity of the refrigerator of the CAC, the heat load in the PCV is divided into those required when the external power source is lost and those not, and only those required when the external power source is lost are stored in the CAC. Heat load, other heat load is S
The heat load of the BV cooling equipment was decided.

【0033】以上のことにより、非常用系である冷凍機
容量を従来設計に比べ大幅(約40%)に削減すること
が可能である。
As described above, the capacity of the refrigerator, which is an emergency system, can be significantly reduced (about 40%) as compared with the conventional design.

【0034】また、CACとSBVのトータルの冷凍機
設備容量及び台数の低減のため、これらの冷凍機容量の
平準化を図り、更に予備機を共用化することを考える。
すなわち、先ずCACの冷凍機容量は、外部電源喪失時
に必要な容量を1台でまかなえる容量とし、またSBV
の冷凍機の1台当たりの容量がCACの冷凍機の1台当
たりの容量とほぼ等しくなるようにSBVの冷凍機容量
を設定する。そして予備機はCACと同じ容量の冷凍機
をCAC側に設置し、これをSBVとの共通予備機とす
る。以上のような冷凍機容量の平準化,予備機の共用化
により、機器設備台数の低減が図れ、配置の合理化,機
器のメンテナンス性の向上が図れる。
Further, in order to reduce the total capacity and the number of CAC and SBV refrigerators, it is considered that the capacity of these refrigerators should be leveled and a spare machine should be shared.
That is, first, the capacity of the CAC refrigerator should be the capacity required by one unit when the external power supply is lost.
The refrigerator capacity of the SBV is set so that the capacity of the refrigerator of 1 is substantially equal to the capacity of the refrigerator of CAC. Then, a refrigerator having the same capacity as the CAC is installed on the CAC side, and this is used as a common standby machine with the SBV. By equalizing the capacity of the refrigerator and sharing the standby unit as described above, the number of equipment units can be reduced, the layout can be rationalized, and the maintainability of the equipment can be improved.

【0035】[0035]

【作用】上記手段によれば、外部電源喪失時に冷却が必
要なものだけをCACの熱負荷とすることで、非常用系
であるCACの冷凍機の負荷容量を必要最小限にでき、
CAC冷却設備容量の削減が可能となる。また、CAC
とSBVの冷凍機容量の平準化、それに伴う冷凍機予備
機の共用化により、CACとSBVの冷凍機のトータル
設備容量の低減,機器設備台数の低減が図れ、配置の合
理化,機器のメンテナンス性の向上が図れる。
According to the above means, the load capacity of the CAC refrigerator, which is an emergency system, can be minimized by using only the heat load of the CAC that needs cooling when the external power supply is lost,
The capacity of the CAC cooling equipment can be reduced. Also, CAC
By equalizing the capacity of refrigerators for SBV and SBV, and sharing the refrigerator spare with it, it is possible to reduce the total equipment capacity of refrigerators for CAC and SBV, reduce the number of equipment, streamline the layout, and maintainability of equipment. Can be improved.

【0036】[0036]

【実施例】以下、本発明の一実施例を図1から図5で説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0037】図1で、本実施例は、CAC側として格納
容器9内の雰囲気温度を一定にするために熱除去を行う
冷却器3a,3b,3c,3dへの冷水を供給する循環
ポンプ1aの1台と冷却器3a,3b,3c,3dにて
熱交換された冷水の熱除去を行う冷凍機2aの1台、S
BV側として、建屋換気系の熱負荷、及びBVの熱負
荷、更に格納容器9内の熱負荷を除去するための冷凍機
4a,4b,4cの3台、及び各負荷に冷水を供給する
冷水循環ポンプ15a,15b,15cの3台の機器と
共通予備としてのCAC冷水循環ポンプ1b,冷凍機2
b各1台,通常運転時のCAC内の熱負荷を除去するた
めの流量調節弁17,遮断弁19,戻り弁16と建屋換
気系へ冷水を供給するための流量調節弁13及びCAC
とSBVの連絡用配管14から構成される。
In FIG. 1, in this embodiment, a circulation pump 1a for supplying cold water to the coolers 3a, 3b, 3c, 3d for removing heat in order to keep the ambient temperature in the containment vessel 9 constant on the CAC side. 1 and a refrigerator 2a for removing heat from the cold water heat-exchanged by the coolers 3a, 3b, 3c, 3d, S
On the BV side, the heat load of the building ventilation system, the heat load of the BV, and three refrigerators 4a, 4b, 4c for removing the heat load of the storage container 9, and cold water for supplying cold water to each load Three units of circulation pumps 15a, 15b, 15c and a CAC cold water circulation pump 1b and a refrigerator 2 as a common spare
b One each, a flow control valve 17 for removing the heat load in the CAC during normal operation, a shutoff valve 19, a return valve 16 and a flow control valve 13 and CAC for supplying cold water to the building ventilation system
And SBV communication piping 14.

【0038】通常運転時の格納容器9内熱負荷の除去モ
ードを図2に示す。
FIG. 2 shows a mode of removing the heat load in the containment vessel 9 during normal operation.

【0039】図2で、CACの外部電源喪失時の熱負荷
を冷凍機1台で冷却でき、かつCACとSBVの冷凍機の
トータル設備容量の低減を考え、CACとSBVの設備
の運用として、通常運転時の格納容器9内の熱負荷の除
去は、CACとSBVの冷凍機により除去する。また、
外部電源喪失時の格納容器9内熱負荷の除去は、CACの
冷凍機1台のみで除去できるものとする。即ち、通常運
転時の格納容器9内熱負荷は、CAC側冷凍機2aの1
台とSBV冷凍機4a,4b,4cからの冷却された冷
水を冷却器3a,3b,3c,3dに供給することによ
り除去する。
In FIG. 2, the heat load when the external power source of the CAC is lost can be cooled by one refrigerator, and in consideration of the reduction of the total equipment capacity of the CAC and SBV refrigerators, the operation of the CAC and SBV equipment is as follows. The heat load in the storage container 9 during normal operation is removed by a CAC and SBV refrigerator. Also,
When the external power supply is lost, the heat load inside the PCV 9 can be removed by only one CAC refrigerator. That is, the heat load in the storage container 9 during the normal operation is 1 in the CAC side refrigerator 2a.
The chilled cold water from the stand and the SBV refrigerators 4a, 4b, 4c is removed by supplying it to the coolers 3a, 3b, 3c, 3d.

【0040】また、建屋換気系ローカルクーラーの熱負
荷は、SBV冷凍機4a,4b,4cからの冷却された
冷水を供給することにより除去する。なお、CAC側及
び建屋換気系ローカルクーラーへの冷水供給は、それぞ
れの流量調節弁17,13により調節される。
The heat load of the building ventilation local cooler is removed by supplying the cooled cold water from the SBV refrigerators 4a, 4b, 4c. The supply of cold water to the CAC side and the building ventilation local cooler is controlled by the flow rate control valves 17 and 13, respectively.

【0041】ここで、SBV側の熱負荷は、CAC側及
び建屋換気系に供給したSBV冷却設備の残りの冷水供
給で十分熱負荷の除去が可能である。
Here, the heat load on the SBV side can be sufficiently removed by supplying the remaining cold water of the SBV cooling equipment supplied to the CAC side and the building ventilation system.

【0042】図3に格納容器9内及び建屋換気系ローカ
ルクーラーの熱負荷を除去するために冷水を供給してい
るSBVの冷凍機4aが単一故障した場合のモードを示
す。図3で、通常運転時にSBV側の冷凍機4a,4
b,4cから格納容器内の一部の熱負荷及び建屋換気系
ローカルクーラーの熱負荷の除去のため供給される冷水
は、CAC側及び建屋換気系ローカルクーラーとの接続
配管14を経由してそれぞれの流量調節弁13,17で
流量調節し、格納容器9内及び建屋換気系ローカルクー
ラーの熱負荷を除去しているが、単一故障の場合は、C
ACとSBVとの共通の予備機であるCACの冷凍機2
b(冷水循環ポンプ1bを含む)を自動起動させ、格納
容器9内及び建屋換気系ローカルクーラーに冷水を供給
することで格納容器9内及び建屋換気系ローカルクーラ
ーの熱負荷の除去を行う。
FIG. 3 shows a mode in which the SBV refrigerator 4a supplying cold water in order to remove the heat load in the containment vessel 9 and the building ventilation system local cooler has a single failure. In FIG. 3, the SBV side refrigerators 4a, 4 during normal operation
The cold water supplied from b and 4c for removing a part of the heat load in the containment vessel and the heat load of the building ventilation system local cooler is passed through the connection pipes 14 with the CAC side and the building ventilation system local cooler, respectively. The flow rate is adjusted by the flow rate control valves 13 and 17 to remove the heat load in the containment vessel 9 and the local cooler of the building ventilation system, but in the case of a single failure, C
Refrigerator 2 of CAC, which is a common standby machine for AC and SBV
b (including the cold water circulation pump 1b) is automatically activated to supply cold water to the storage container 9 and the building ventilation system local cooler, thereby removing the heat load on the storage container 9 and the building ventilation system local cooler.

【0043】図4に外部電源喪失時のモードを示す。FIG. 4 shows the mode when the external power supply is lost.

【0044】図4で、外部電源喪失時における熱負荷
は、対象となる熱負荷が格納容器9内の非常用系の熱負
荷だけであり、通常運転時の格納容器9内熱負荷の約7
5%の熱負荷となる(図5参照)。
In FIG. 4, the heat load when the external power supply is lost is that the target heat load is only the heat load of the emergency system in the storage container 9, and about 7 of the heat load in the storage container 9 during normal operation.
The heat load is 5% (see FIG. 5).

【0045】従って、SBVからの冷水の遮断弁19,
戻り弁16を自動的に閉として、CACの冷凍機2aの
1台(冷水循環ポンプ1a含む)を自動起動させること
により冷却可能である。単一故障の場合でも予備の冷凍
機2b(冷水循環ポンプ1b含む)を自動起動すること
により問題なく対応できる。
Therefore, the shutoff valve 19 for the cold water from the SBV,
It is possible to cool by automatically closing the return valve 16 and automatically starting one of the CAC refrigerators 2a (including the chilled water circulation pump 1a). Even in the case of a single failure, it can be dealt with without problems by automatically starting the spare refrigerator 2b (including the chilled water circulation pump 1b).

【0046】以上で説明したように、常用系負荷である
建屋換気系ローカルクーラー熱負荷と非常用系負荷であ
る格納容器内熱負荷を分離することにより、常用系負荷
である建屋換気系ローカルクーラー熱負荷をSBV冷却
設備にもたせて、過大容量となっていたCACの冷凍機
容量を低減することができる。
As explained above, by separating the heat load of the building ventilation local cooler, which is the normal system load, from the heat load in the containment vessel, which is the emergency system load, the building ventilation local cooler that is the normal system load. The heat load can be applied to the SBV cooling equipment to reduce the capacity of the CAC refrigerator, which has been excessively large.

【0047】また、CACとSBVの冷凍機容量を平準
化することにより、設備機器台数の低減が図れ、これに
伴い冷凍機のメンテナンス台数の削減及び機器製作性の
効率向上,機器配置の合理化を図ることが可能である。
Further, by equalizing the capacity of the refrigerators of CAC and SBV, the number of equipments can be reduced, and accordingly, the number of maintenances of refrigerators can be reduced, the efficiency of equipment manufacturability can be improved, and the arrangement of equipments can be rationalized. It is possible to plan.

【0048】更に冷凍機の単一故障を考慮した時の予備
機の共用化により冷却設備の設備容量,機器台数の低減
及び配置構成の合理化が図れる。
Further, by sharing the spare unit when a single failure of the refrigerator is taken into consideration, the facility capacity of the cooling facility, the number of devices can be reduced, and the layout configuration can be rationalized.

【0049】[0049]

【発明の効果】以上に説明したように、本発明によれ
ば、CACとSBVの冷却設備の併合簡素化を達成する
ことができる。
As described above, according to the present invention, the combined simplification of the cooling facilities for the CAC and SBV can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による原子炉格納容器空気再
循環系冷却設備の系統図である。
FIG. 1 is a system diagram of a reactor containment air recirculation system cooling facility according to an embodiment of the present invention.

【図2】図1の系統における通常運転時モードを通水状
態ラインを太い線で表わした系統図である。
FIG. 2 is a system diagram in which a water flow state line in a normal operation mode in the system of FIG. 1 is represented by a thick line.

【図3】図1の系統における単一故障時モードを通水状
態ラインを太い線で表わした系統図である。
FIG. 3 is a system diagram in which a water flow state line in a single failure mode in the system of FIG. 1 is represented by a thick line.

【図4】図1の系統における外部電源喪失時モードを通
水状態ラインを太い線で表わした系統図である。
FIG. 4 is a system diagram in which the water flow state line in the system of FIG. 1 at the time of loss of external power supply is represented by a thick line.

【図5】CAC冷凍機冷却容量(除予備機)内訳を表わ
した棒グラフ図である。
FIG. 5 is a bar graph showing a breakdown of the cooling capacity of the CAC refrigerator (removal machine).

【図6】従来技術による原子炉格納容器空気再循環系冷
却設備の系統図である。
FIG. 6 is a system diagram of a conventional containment vessel air recirculation system cooling facility.

【図7】図6の系統における通常運転時モードを通水状
態ラインを太い線で表わした系統図である。
FIG. 7 is a system diagram in which a water flow state line in the normal operation mode in the system of FIG. 6 is represented by a thick line.

【図8】図6の系統における外部電源喪失時モードを通
水状態ラインを太い線で表わした系統図である。
FIG. 8 is a system diagram in which the water flow state line in the system of FIG. 6 when the external power supply is lost is represented by a thick line.

【図9】建屋換気系熱負荷をSBVに取込んだ場合の系
統図である。
FIG. 9 is a system diagram when a building ventilation system heat load is taken into the SBV.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d…CAC冷水循環ポンプ、2
a,2b,2c,2d…CACの冷凍機、3a,3b,
3c,3d…CACの冷却器、4a,4b,4c,4d
…SBVの冷凍機、5a,5b,5c,5d…補機冷却
海水ポンプ、6a,6b…非常用補機冷却系熱交換器、
7a,7b…常用補機冷却系熱交換器、8a,8b…常
用補機冷却系循環ポンプ、9…格納容器、10…CAC
の循環送風機、11…排気ダクト、12…給気ダクト、
13…建屋換気系の流量調節弁、14…連絡用配管、1
5a,15b,15c,15d…SBV冷水循環ポン
プ、16…戻り弁、17…CACの流量調節弁、19
a,19b…遮断弁。
1a, 1b, 1c, 1d ... CAC cold water circulation pump, 2
a, 2b, 2c, 2d ... CAC refrigerators 3a, 3b,
3c, 3d ... CAC cooler, 4a, 4b, 4c, 4d
... SBV refrigerator, 5a, 5b, 5c, 5d ... Auxiliary equipment cooling seawater pump, 6a, 6b ... Emergency accessory cooling system heat exchanger,
7a, 7b ... Regular auxiliary machine cooling system heat exchanger, 8a, 8b ... Regular auxiliary machine cooling system circulation pump, 9 ... Storage container, 10 ... CAC
Circulation fan, 11 ... Exhaust duct, 12 ... Air supply duct,
13 ... Building ventilation system flow control valve, 14 ... Communication pipe, 1
5a, 15b, 15c, 15d ... SBV cold water circulation pump, 16 ... Return valve, 17 ... CAC flow control valve, 19
a, 19b ... shut-off valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 文人 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 平尾 誠造 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumito Nakamura 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Seizo Hirao 3-chome, Saiwaicho, Hitachi, Ibaraki No. 1 No. 1 Stock Company Hitachi Ltd. Hitachi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子炉の格納容器空気再循環系冷却設備に
おいて、前記設備の常用系負荷と非常用系負荷を分離
し、前記常用系負荷を前記格納容器空気再循環系冷却設
備と建屋換気系の冷凍機容量の平準化を図って前記建屋
換気系の常用系に取込むとともに、前記格納容器空気再
循環系冷却設備と前記建屋換気系の冷凍機についてそれ
ぞれの予備機を共用化されていることを特徴とする原子
炉格納容器空気再循環系冷却設備。
1. In a containment air recirculation system cooling facility of a nuclear reactor, a normal system load and an emergency system load of the facility are separated, and the normal system load is divided into the containment air recirculation system cooling facility and a building ventilation. The capacity of the refrigerator of the system is leveled, and it is taken in to the normal system of the building ventilation system, and each standby unit is shared for the cooling equipment of the containment air recirculation system and the refrigerator of the building ventilation system. An air recirculation system cooling facility for the containment vessel.
【請求項2】原子炉の格納容器空気再循環系冷却設備に
おいて、前記格納容器空気再循環系冷却設備の冷却器
に、前記格納容器空気再循環系冷却設備の冷凍機と、前
記格納容器空気再循環系冷却設備と建屋換気系との共通
予備機としての冷凍機とが配管で接続され、前記配管に
遮断弁を介して前記建屋換気系の冷凍機を連絡用配管で
配管し、前記遮断弁よりも前記建屋換気系の冷凍機より
の前記連絡用配管に建屋換気系ローカルクーラーが他の
配管により接続されていることを特徴とした原子炉格納
容器空気再循環系冷却設備。
2. A containment air recirculation system cooling equipment for a nuclear reactor, wherein a cooler of said containment air recirculation system cooling equipment is provided with a refrigerator of said containment air recirculation system cooling equipment and said containment air. A refrigerator as a common standby machine for the recirculation system cooling equipment and the building ventilation system is connected by a pipe, and the refrigerator of the building ventilation system is piped by a connecting pipe through a shutoff valve to the pipe, and the shutoff is performed. A reactor containment vessel air recirculation system cooling equipment, wherein a building ventilation system local cooler is connected to the communication pipe from the building ventilation system refrigerator rather than a valve by another pipe.
【請求項3】請求項2において、前記連絡用配管と前記
他の配管に流量調整弁が設けられると共に、全冷凍機は
容量が平準化されていることを特徴とした原子炉格納容
器空気再循環系冷却設備。
3. A reactor containment vessel air re-cooling system according to claim 2, wherein a flow rate adjusting valve is provided in the connecting pipe and the other pipe, and the capacity of all the refrigerators is leveled. Circulation cooling equipment.
JP6023966A 1994-02-22 1994-02-22 Cooling facility for air recirculation system of reactor containment vessel Pending JPH07229992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023966A JPH07229992A (en) 1994-02-22 1994-02-22 Cooling facility for air recirculation system of reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023966A JPH07229992A (en) 1994-02-22 1994-02-22 Cooling facility for air recirculation system of reactor containment vessel

Publications (1)

Publication Number Publication Date
JPH07229992A true JPH07229992A (en) 1995-08-29

Family

ID=12125300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023966A Pending JPH07229992A (en) 1994-02-22 1994-02-22 Cooling facility for air recirculation system of reactor containment vessel

Country Status (1)

Country Link
JP (1) JPH07229992A (en)

Similar Documents

Publication Publication Date Title
US8042343B2 (en) Cooling of avionics using a fuel tank and refrigerant source
US9617006B2 (en) Emergency power system for an aircraft
JP2008203023A (en) Cooling system of nuclear power plant
JPH07229992A (en) Cooling facility for air recirculation system of reactor containment vessel
JPS62206260A (en) Dual-purpose electricity and steam generation device
WO2023125009A1 (en) Data center
CN109159883B (en) Marine nuclear power platform reactor cabin refrigerating system
JPH1054619A (en) Air conditioning method and air conditioning system
JP2019031158A (en) Cooling system for vessel
CN114076341A (en) Data center heat recovery system
JP3889607B2 (en) Cooling water distribution system for ventilation air conditioning equipment in nuclear power plants
JP2016070579A (en) Air conditioning system
JP2001188094A (en) Cooling facility for reactor and the like
JP3089679B2 (en) Reactor coolant supply system
JP3878325B2 (en) Cold water equipment for ventilation and air conditioning in nuclear facilities
JP2012072975A (en) System and method for ventilation air conditioning
JP2003207590A (en) Atmosphere cooling equipment in reactor containment vessel
JP2533097B2 (en) Auxiliary equipment cooling facility for nuclear power plants
JP2006162207A (en) Ground heat utilizing water cooled heat pump air conditioning system
KR102199280B1 (en) Water heat storage system switchable between open and closed type and its control method
CN116176825A (en) Fresh air preheating and equipment heat dissipation heat recovery system
JPH08327783A (en) Auxiliaries-cooling device in reactor power plant
JPH0236198B2 (en)
JP2012112804A (en) Cooling facility for nuclear power plant
JP3607096B2 (en) Auxiliary cooling system for nuclear power plant