JPH07229608A - Multi-tube type once-through boiler - Google Patents
Multi-tube type once-through boilerInfo
- Publication number
- JPH07229608A JPH07229608A JP6019396A JP1939694A JPH07229608A JP H07229608 A JPH07229608 A JP H07229608A JP 6019396 A JP6019396 A JP 6019396A JP 1939694 A JP1939694 A JP 1939694A JP H07229608 A JPH07229608 A JP H07229608A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- flame
- boiler
- tube
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有炎燃焼バーナを用い
た多管式貫流ボイラに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-tube type once-through boiler using a flammable combustion burner.
【0002】[0002]
【従来の技術】図4は従来例に係る気体燃料を用いた多
管式貫流ボイラの一部縦断正面図、図5は同横断平面図
であり、多管式貫流ボイラは、ボイラ本体1と、該ボイ
ラ本体1の一端側に設けられ燃料ガスと燃焼用空気とが
予め十分に混合された予混合燃料2aを供給する燃料供
給ダクト2と、他端側に設けられた排気ダクト3を有し
ている。2. Description of the Related Art FIG. 4 is a partially longitudinal front view of a multi-tube type once-through boiler using a gas fuel according to a conventional example, and FIG. 5 is a cross-sectional plan view of the same. , A fuel supply duct 2 provided on one end side of the boiler body 1 for supplying a premixed fuel 2a in which fuel gas and combustion air are sufficiently mixed in advance, and an exhaust duct 3 provided on the other end side. is doing.
【0003】ボイラ本体1は、その下端部に給水ヘッダ
部4を有し、また上部にはこの給水ヘッダ部4と平行な
蒸気ヘッダ部5を有している。両ヘッダ部4,5間に
は、起立状態の伝熱管9が平行に多数密に設けられて両
ヘッダ部4,5を連通している。The boiler body 1 has a water supply header section 4 at its lower end and a steam header section 5 parallel to the water supply header section 4 at its upper part. A large number of standing heat transfer tubes 9 are densely provided in parallel between the header portions 4 and 5 to communicate the header portions 4 and 5.
【0004】また、燃焼ガス流通方向Aの左右両側部に
配置される側部伝熱管6には、隣接する側部伝熱管6同
士互いにフィン6aで接続することにより、伝熱管壁8
を形成している。Further, the side heat transfer tubes 6 arranged on both left and right sides in the combustion gas flow direction A are connected to each other by the fins 6a, so that the heat transfer tube wall 8 is formed.
Is formed.
【0005】ボイラ本体1の燃料供給ダクト2側端部に
は、バーナ板7aが取り付けられており、該バーナ板7
aには、多数の炎孔7bが形成されて、有炎燃焼バーナ
7となっている。A burner plate 7a is attached to an end of the boiler main body 1 on the fuel supply duct 2 side.
A large number of flame holes 7b are formed in a to form a flammable combustion burner 7.
【0006】上記伝熱管壁8を構成する両側部の側部伝
熱管6の内側に配置される伝熱管9は、図5に示すよう
に、バーナ板7aに近接する位置まで所定の間隔で緊密
に配置されている。As shown in FIG. 5, the heat transfer tubes 9 arranged inside the side heat transfer tubes 6 on both sides of the heat transfer tube wall 8 are arranged at predetermined intervals up to a position close to the burner plate 7a. Closely arranged.
【0007】このような構成において、燃料ガスと燃焼
用空気が十分に予混合された予混合燃料2aを燃料供給
ダクト2から有炎燃焼バーナ7に供給して着火すると、
伝熱管壁8で囲まれたボイラ本体1の内部に向けて火炎
Fを形成して燃焼する。In such a configuration, when the premixed fuel 2a in which the fuel gas and the combustion air are sufficiently premixed is supplied from the fuel supply duct 2 to the flammable combustion burner 7 and ignited,
The flame F is formed and burned toward the inside of the boiler body 1 surrounded by the heat transfer tube wall 8.
【0008】この火炎Fによる燃焼ガスは、矢印A方向
に流通するが、その過程で伝熱管9及び側部伝熱管6に
よって熱が吸収され、温度が低下された状態となって排
気ダクト3から排気ガスとして外部に排出される。The combustion gas produced by the flame F flows in the direction of the arrow A, but heat is absorbed by the heat transfer tube 9 and the side heat transfer tube 6 in the process, and the temperature is lowered to the exhaust duct 3 through the exhaust duct 3. Exhausted as exhaust gas.
【0009】給水ヘッダ部4から伝熱管9及び側部伝熱
管6に供給される水は、伝熱管9及び側部伝熱管6が加
熱されることにより温度が上昇し、蒸気となって蒸気ヘ
ッダ部5から外部に取り出される。The water supplied from the water supply header section 4 to the heat transfer tubes 9 and the side heat transfer tubes 6 rises in temperature as the heat transfer tubes 9 and the side heat transfer tubes 6 are heated, and becomes steam to become a steam header. It is taken out from the part 5.
【0010】ところで、上述した従来の気体燃料を用い
た多管式貫流ボイラにおいて、図5に示すように、バー
ナ板7aに近接した位置から伝熱管9群を密に配置する
と、バーナ板7aから内部に向けて形成される火炎F
は、火炎Fの先端部よりかなり手前で伝熱管9に触れて
連続的に冷却されるために火炎温度が低くなり、このた
めに火炎温度が約1000℃以下に低下されると、不完
全燃焼によってCO(一酸化炭素)の発生が増加すると
いう問題があり、またこのために、バーナ板7aに対向
する位置に伝熱管9を有しない火炎燃焼空間部Sを大き
く形成して完全燃焼させる構造とすることが考えられる
が、このようにした構成では火炎Fの先端部付近から急
激に冷却しようとしても裸管の伝熱管9では熱交換面積
が小さいために急激な冷却が困難であり、よって火炎F
の温度をNOx(窒素酸化物)の発生が抑えられる15
00℃以下に保持することが困難になって、NOxの低
減を図ることが困難になる問題があった。By the way, in the above-mentioned conventional multi-tube once-through boiler using gaseous fuel, when the heat transfer tubes 9 are densely arranged from a position close to the burner plate 7a as shown in FIG. Flame F formed toward the inside
Is in contact with the heat transfer tube 9 far before the tip of the flame F and is continuously cooled, so that the flame temperature becomes low. Therefore, when the flame temperature is lowered to about 1000 ° C. or less, incomplete combustion occurs. There is a problem that CO (carbon monoxide) is increased due to this, and for this reason, a flame combustion space S having no heat transfer tube 9 at a position facing the burner plate 7a is largely formed to completely burn the structure. However, in such a configuration, even if an attempt is made to cool rapidly from the vicinity of the tip of the flame F, it is difficult to perform rapid cooling because the heat transfer area of the bare heat transfer tube 9 is small. Flame F
NOx (nitrogen oxide) generation is suppressed at the temperature of 15
There is a problem that it becomes difficult to maintain the temperature below 00 ° C. and it becomes difficult to reduce NOx.
【0011】又、上記問題を解決する手段として、火炎
温度がNOxの発生を抑え得る1500℃以下になるよ
うに火炎燃焼空間部Sの大きさを決めることも考えられ
るが、この場合には完全燃焼されない燃焼ガスが下流の
密に配置された伝熱管9によって連続的に冷却され続け
ることにより、不完全燃焼のままCOが排出される問題
がある。Further, as a means for solving the above problem, it is conceivable to determine the size of the flame combustion space S so that the flame temperature becomes 1500 ° C. or less which can suppress the generation of NOx. Since the combustion gas that is not burned is continuously cooled by the downstream densely arranged heat transfer tubes 9, there is a problem that CO is discharged with incomplete combustion.
【0012】本出願人は、上記NOxとCOの低減を同
時に達成することができる多管式貫流ボイラの発明を既
に提案した(特願平5−286793号)。The present applicant has already proposed an invention of a multi-tube once-through boiler capable of simultaneously achieving the above-mentioned reduction of NOx and CO (Japanese Patent Application No. 5-286793).
【0013】この発明は、図6及び図7に示すように、
空気供給管10の先端部に、一体的に取付けた箱型の燃
料分配室11が形成されており、該燃料分配室11がバ
ーナ板7aの周囲を取り囲むように開口している。The present invention, as shown in FIGS. 6 and 7,
An integrally attached box-shaped fuel distribution chamber 11 is formed at the tip of the air supply pipe 10, and the fuel distribution chamber 11 is opened so as to surround the burner plate 7a.
【0014】また、空気供給管10とは別系統の燃料ガ
ス供給管12から燃料分配室11内に燃料ガスが供給さ
れるようになっている。即ち、燃料ガス供給管12のヘ
ッド部12aが燃料分配室11内に配置されており、こ
のヘッド部12aには、燃焼ガスの流通方向Aと直交す
る方向の複数個所(図7では2個所)に燃料ガス供給口
12bが形成されている。Further, the fuel gas is supplied into the fuel distribution chamber 11 from a fuel gas supply pipe 12 of a system different from the air supply pipe 10. That is, the head portion 12a of the fuel gas supply pipe 12 is arranged in the fuel distribution chamber 11, and the head portion 12a has a plurality of locations (two locations in FIG. 7) in a direction orthogonal to the flow direction A of the combustion gas. A fuel gas supply port 12b is formed in the.
【0015】また、図7に示すように、バーナ板7aの
下流側に火炎燃焼空間部Sを形成するように上流側の伝
熱管9aを配置して、火炎冷却部13を構成する。ここ
で火炎Fは、その先端部近傍に火炎形成を妨げるものが
ない場合は、完全燃焼して1800℃程度の温度になる
が、1500℃を超える高温になると、NOxの発生が
増大する。従って、火炎Fの温度をNOxが発生しない
ように、1500℃以下に抑えなければならない。そこ
でこの条件が満足される位置に所要数の上流側の伝熱管
9aを配置することにより火炎冷却部13を構成する。Further, as shown in FIG. 7, the heat transfer tube 9a on the upstream side is arranged so as to form the flame combustion space S on the downstream side of the burner plate 7a, and the flame cooling section 13 is constituted. Here, the flame F is completely combusted to a temperature of about 1800 ° C. when there is no obstacle near the tip of the flame F, but when the temperature exceeds 1500 ° C., NOx generation increases. Therefore, the temperature of the flame F must be suppressed to 1500 ° C. or lower so that NOx is not generated. Therefore, the flame cooling unit 13 is configured by arranging a required number of upstream heat transfer tubes 9a at positions where this condition is satisfied.
【0016】一方、1500℃以下に温度制御された火
炎Fは、完全燃焼しているとは言えない状態にあり、火
炎中には若干のCOが残る。この状態で図5のように伝
熱管9群によって連続的に熱を奪うと、燃焼ガスの温度
が1000℃以下に低下し、発生したCOは燃焼(酸
化)することなくそのまま外部に排出されてしまうこと
になる。On the other hand, the flame F whose temperature is controlled to 1500 ° C. or lower is in a state where it cannot be said that it is completely combusted, and some CO remains in the flame. In this state, when heat is continuously taken by the heat transfer tube group 9 as shown in FIG. 5, the temperature of the combustion gas is lowered to 1000 ° C. or less, and the generated CO is discharged to the outside as it is without burning (oxidizing). Will end up.
【0017】これを防止するためには、未燃分の燃料ガ
スを完全燃焼させ、COをCO2に変成してやる必要が
あり、このために図7に示すように前記火炎冷却部13
の下流に、断熱空間部14を形成し、該断熱空間部14
において1000℃〜1500℃の範囲で未燃COの酸
化を行わせた後、断熱空間部14の下流側に配置された
伝熱管9bからなる対流伝熱部15に導くようにしてい
る。In order to prevent this, it is necessary to completely burn the unburned fuel gas and convert CO into CO 2. For this reason, as shown in FIG. 7, the flame cooling unit 13 is used.
A heat insulating space 14 is formed downstream of the heat insulating space 14
In the above, after the unburned CO is oxidized in the range of 1000 ° C. to 1500 ° C., the unburned CO is guided to the convection heat transfer section 15 composed of the heat transfer tube 9 b arranged on the downstream side of the heat insulating space section 14.
【0018】[0018]
【発明が解決しようとする課題】しかし、上記特願平5
−286793号の発明においても、バーナ板7aの下
流に配置される火炎冷却部13の伝熱管9aは裸管によ
って構成されているために、冷却性能が比較的低く、火
炎Fの温度を急激に低下させるように冷却することが困
難であり、従ってNOxを生成する高温滞留時間が長く
なってNOxの抑制が難かしくなる場合があり、更に冷
却性能が低いために多数の伝熱管9aを配置する必要が
生じて火炎冷却部13が大型化し、延いてはボイラ全体
が大型化してしまう問題を有する。However, the above-mentioned Japanese Patent Application No.
Also in the invention of -286793, since the heat transfer tube 9a of the flame cooling section 13 arranged downstream of the burner plate 7a is composed of a bare tube, the cooling performance is relatively low, and the temperature of the flame F rapidly increases. It may be difficult to cool so as to lower the temperature, and thus the high temperature residence time for generating NOx may become long and it may be difficult to suppress NOx. Further, since the cooling performance is low, a large number of heat transfer tubes 9a are arranged. There is a problem that the flame cooling unit 13 becomes large in size due to the necessity, and eventually the entire boiler becomes large in size.
【0019】また、対流伝熱部15の断熱空間部14に
対向する伝熱管9bの燃焼ガス導入位置X1−X1には、
図8に示すように左右幅方向内側位置16に燃焼ガスの
局所的に高温T1となる高温部が生じて、伝熱管9bが
過熱により焼損する問題がある。Further, at the combustion gas introduction positions X 1 -X 1 of the heat transfer tube 9b facing the heat insulating space 14 of the convective heat transfer section 15,
As shown in FIG. 8, there is a problem in that a high temperature portion where the combustion gas locally reaches a high temperature T 1 is generated at the inner position 16 in the left-right width direction, and the heat transfer tube 9b is burned due to overheating.
【0020】本発明はこのような背景に基づいてなされ
たものであり、NOxとCOの発生を抑制して低公害化
を図ることができ、且つ多管式貫流ボイラのNOx発生
量が火炎温度を如何に短時間に冷却するかという冷却度
に大きく影響されるという事実に着目して火炎冷却部に
冷却促進手段を提供することにより更なるNOxの低下
と装置の小型化を図り、またCO低減のために設けられ
る断熱空間部の下流側に配置される対流伝熱部の入口部
に局所的な高温部が生じるのを防止して伝熱管の過熱に
よる焼損を防止するようにした多管式管流ボイラを提供
することを目的とする。The present invention has been made on the basis of such a background. It is possible to suppress the generation of NOx and CO to achieve low pollution, and the NOx generation amount of the multi-tube once-through boiler is the flame temperature. Focusing on the fact that it is greatly affected by the degree of cooling that cools CO in a short time, by providing a cooling accelerating means in the flame cooling section, further reduction of NOx and downsizing of the device can be achieved. A multi-tube structure that prevents local high temperature from occurring at the inlet of the convective heat transfer section located downstream of the heat insulation space provided for reduction, and prevents burnout due to overheating of the heat transfer tube. An object is to provide a tubular flow boiler.
【0021】[0021]
【課題を解決するための手段】本発明は、バーナ板に多
数の炎孔を有する有炎燃焼バーナを用い、該有炎燃焼バ
ーナに近い位置に、縦方向に延びて多数平行に配列され
前記有炎燃焼バーナからの燃焼ガスを交叉方向に流通さ
せるようにした伝熱管による火炎冷却部を備え、該火炎
冷却部の下流側に、断熱空間部を隔てて、縦方向に延び
て多数平行に配列された伝熱管による対流伝熱部を備え
た多管式貫流ボイラであって、前記火炎冷却部を、冷却
促進フィンを取付けたフィン付伝熱管により構成したこ
とを特徴とする多管式貫流ボイラ、及び、火炎冷却部の
火炎温度を1500℃以下に保持し且つ断熱空間部の燃
焼ガス温度を1000℃以上に保持するようフィン付伝
熱管を配置したことを特徴とする多管式貫流ボイラ、及
び、対流伝熱部の断熱空間部に面する左右幅方向内側位
置の伝熱管の相互間に閉塞フィンを取付けたことを特徴
とする多管式貫流ボイラ、に係るものである。SUMMARY OF THE INVENTION The present invention uses a flammable combustion burner having a large number of flame holes in a burner plate, and a plurality of them are arranged in parallel in the longitudinal direction at a position close to the flammable combustion burner. A flame cooling section is provided by a heat transfer tube that allows combustion gas from a flammable combustion burner to flow in an intersecting direction, and a large number of heat sinks are provided on the downstream side of the flame cooling section and extend in the longitudinal direction in parallel. A multi-tube once-through boiler provided with a convection heat transfer section by arranged heat transfer tubes, wherein the flame cooling section is constituted by a heat transfer tube with fins to which cooling promoting fins are attached. A boiler and a multi-tube once-through boiler characterized in that a heat transfer tube with fins is arranged so that the flame temperature of a flame cooling section is maintained at 1500 ° C or lower and the combustion gas temperature of an adiabatic space is maintained at 1000 ° C or higher. Of the convection heat transfer section Those of the multitubular boiler, characterized in that attaching the closure fin therebetween of the heat transfer tube of the left-right width direction inside position facing the thermal space.
【0022】[0022]
【作用】本発明の第1の手段では、火炎冷却部を、冷却
促進フィンを取付けたフィン付伝熱管にて構成している
ので、有炎燃焼バーナの火炎を急激に確実に冷却するこ
とができ、よってNOxを生成する高温滞留時間を短く
することができてNOxの発生の抑制を更に促進させる
ことができる。また、火炎を急激に効率良く冷却できる
ので、火炎冷却部を小型化し、延いては多管式管流ボイ
ラ全体の小型化を図ることができる。According to the first means of the present invention, since the flame cooling section is constituted by the finned heat transfer tube to which the cooling promoting fins are attached, the flame of the flammable combustion burner can be cooled rapidly and surely. Therefore, the high temperature residence time for generating NOx can be shortened, and the suppression of NOx generation can be further promoted. Further, since the flame can be cooled rapidly and efficiently, the flame cooling unit can be downsized, and the overall multi-tube type tubular flow boiler can be downsized.
【0023】本発明の第2の手段では、火炎冷却部の火
炎温度を1500℃以下に保持し、断熱空間部の燃焼ガ
ス温度を1000℃以上に保持するようフィン付伝熱管
の有炎燃焼バーナに対する配設位置、設置数を選定して
いるので、NOxとCOの発生を同時に防止することが
できる。In the second means of the present invention, the flaming combustion burner of the finned heat transfer tube is maintained so that the flame temperature of the flame cooling section is maintained at 1500 ° C. or lower and the combustion gas temperature of the heat insulating space is maintained at 1000 ° C. or higher. Since the arrangement position and the number of installations are selected for NOx, it is possible to prevent the generation of NOx and CO at the same time.
【0024】本発明の第3の手段では、対流伝熱部の断
熱空間部に面する左右幅方向内側位置の伝熱管の相互間
に閉塞フィンを取付けているので、左右幅方向内側に向
かう燃焼ガスが閉塞フィンによって直進することなく左
右側方に迂回するようになり、よって対流伝熱部を流動
する燃焼ガスの左右幅方向温度の分布を均等化すること
ができる。In the third means of the present invention, since the closing fins are mounted between the heat transfer tubes at the inner positions in the left-right width direction facing the heat insulating space of the convective heat transfer section, the combustion heading in the left-right width direction is combusted. The gas is bypassed by the closing fins to the left and right sides without going straight, so that the temperature distribution in the left-right width direction of the combustion gas flowing through the convection heat transfer section can be equalized.
【0025】[0025]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、従来例と同一個所には同一符号を付して重
複する説明は省略する。Embodiments of the present invention will be described below with reference to the drawings. The same parts as those in the conventional example are designated by the same reference numerals, and duplicate description will be omitted.
【0026】図1は本発明に係る多管式貫流ボイラの一
例を示す横断平面図であり、図示するように、バーナ板
7aに多数の炎孔7bを有する有炎燃焼バーナ7を用
い、該有炎燃焼バーナ7に近い位置に、縦方向に延びて
多数平行に配列され前記有炎燃焼バーナ7からの燃焼ガ
スを交叉方向に流通させるようにした上流側の伝熱管
(図7の9a参照)による火炎冷却部13を備え、該火
炎冷却部13の下流側に、断熱空間部14を隔てて、縦
方向に延びて多数平行に配列された下流側の伝熱管9b
による対流伝熱部15を備えている多管式貫流ボイラに
おいて、前記火炎冷却部13を、冷却促進フィン17を
取付けたフィン付伝熱管18によって構成する。FIG. 1 is a cross-sectional plan view showing an example of a multi-tube type once-through boiler according to the present invention. As shown, a burner plate 7a uses a flammable combustion burner 7 having a large number of flame holes 7b. Upstream heat transfer tubes (indicated by 9a in FIG. 7) that extend in the vertical direction and are arranged in parallel at a position near the flammable combustion burner 7 so that the combustion gas from the flammable combustion burner 7 flows in the crossing direction. ), The downstream heat transfer tubes 9b arranged in parallel in the longitudinal direction with a heat insulating space 14 at the downstream side of the flame cooling section 13.
In the multi-tube once-through boiler having the convection heat transfer section 15 according to the above, the flame cooling section 13 is constituted by the finned heat transfer tube 18 to which the cooling promoting fins 17 are attached.
【0027】この時、前記有炎燃焼バーナ7からの火炎
Fの温度が1500℃以下に保持され、且つ断熱空間部
14での燃焼ガスの温度が1000℃以上に保持される
ように、前記火炎冷却部13のフィン付伝熱管18の有
炎燃焼バーナ7に対する設置位置(火炎燃焼空間部Sの
大きさ)、及び設置数を適宜選定する。At this time, the temperature of the flame F from the flammable combustion burner 7 is kept at 1500 ° C. or lower, and the temperature of the combustion gas in the heat insulating space 14 is kept at 1000 ° C. or higher. The installation position (size of the flame combustion space S) of the heat transfer tube with fins 18 of the cooling unit 13 (size of the flame combustion space S) and the number of installations are appropriately selected.
【0028】また、対流伝熱部15の断熱空間部14に
面する左右幅方向内側位置16の伝熱管9b’の相互間
に、閉塞フィン19を取付ける。Further, the blocking fins 19 are attached between the heat transfer tubes 9b 'at the inner positions 16 in the left-right width direction facing the heat insulating space 14 of the convective heat transfer section 15.
【0029】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.
【0030】火炎冷却部13を、冷却促進フィン17を
取付けたフィン付伝熱管18にて構成すると、有炎燃焼
バーナ7の火炎Fを急激に確実に冷却することができ
る。従って、NOxを生成する高温滞留時間を短くする
ことができるので、NOxの発生抑制効果を更に促進す
ることができる。When the flame cooling section 13 is constituted by the finned heat transfer tube 18 to which the cooling promotion fins 17 are attached, the flame F of the flammable combustion burner 7 can be cooled rapidly and surely. Therefore, since the high temperature residence time for producing NOx can be shortened, the NOx production suppressing effect can be further promoted.
【0031】即ち、図2に示すように、火炎冷却部13
をフィン付伝熱管18で構成するようにすると、図7の
発明のような裸管による伝熱管9aで火炎冷却部13を
構成する場合に比して、NOxの発生を著しく低減する
ことができる。That is, as shown in FIG. 2, the flame cooling section 13
When the heat transfer tube with fins 18 is used, the generation of NOx can be remarkably reduced as compared with the case where the flame cooling section 13 is composed of the heat transfer tube 9a of the bare tube as in the invention of FIG. .
【0032】また、フィン付伝熱管18によって火炎F
を急激に効率良く冷却できるので、火炎冷却部13を小
型化し、延いては多管式管流ボイラ全体の小型化を図る
ことができる。Further, the heat transfer tube 18 with fins causes the flame F
Since it can be cooled rapidly and efficiently, the flame cooling unit 13 can be downsized, and in turn, the multitubular tubular flow boiler as a whole can be downsized.
【0033】また、前記したように火炎冷却部13の火
炎Fの温度が1500℃以下に保持されるように、且つ
断熱空間部14の燃焼ガス温度が1000℃以上に保持
されるようにフィン付伝熱管18の有炎燃焼バーナに対
する配設位置、設置数を選定しているので、NOxとC
Oの発生を同時に防止して効果的な低公害化を図ること
ができる。Further, as described above, fins are attached so that the temperature of the flame F of the flame cooling section 13 is maintained at 1500 ° C. or lower and the combustion gas temperature of the heat insulating space section 14 is maintained at 1000 ° C. or higher. Since the position and number of heat transfer tubes 18 to be installed with respect to the flammable combustion burner are selected, NOx and C
It is possible to prevent the generation of O at the same time and effectively reduce pollution.
【0034】更に、対流伝熱部15の断熱空間部14に
面する左右幅方向内側位置16の伝熱管9b’の相互間
に閉塞フィン19を取付けたことにより、断熱空間部1
4から対流伝熱部15の左右幅方向内側に向かう燃焼ガ
スが閉塞フィン19によって直進することなく左右側方
に迂回するようになり、よって図3に示すように、対流
伝熱部15を流動する断熱空間部14に対向する伝熱管
9bの燃焼ガス導入位置X2−X2における燃焼ガスの左
右幅方向温度の分布が均等化して、局所的に高温となる
部分が生じることなく、中間温度T2となる。Furthermore, by installing the blocking fins 19 between the heat transfer tubes 9b 'at the inner position 16 in the left-right width direction facing the heat insulating space portion 14 of the convective heat transfer portion 15, the heat insulating space portion 1 is provided.
The combustion gas flowing from 4 to the inside of the convection heat transfer section 15 in the left-right width direction is diverted to the left and right sides by the closing fins 19 without going straight, so that the convection heat transfer section 15 flows as shown in FIG. The temperature distribution in the left-right width direction of the combustion gas at the combustion gas introduction position X 2 -X 2 of the heat transfer tube 9 b facing the heat insulating space 14 is equalized, and a locally high temperature portion does not occur, and the intermediate temperature It becomes T 2 .
【0035】従って、図8に示したように、左右幅方向
内側位置16に燃焼ガスの局所的に高温T1となる高温
部が生じて、伝熱管9bが過熱により焼損するというよ
うな問題の発生を防止することができる。Therefore, as shown in FIG. 8, there is a problem that a high temperature portion where the combustion gas locally becomes high temperature T 1 is generated at the inner position 16 in the left-right width direction, and the heat transfer tube 9b is burned by overheating. Occurrence can be prevented.
【0036】[0036]
【発明の効果】請求項1の発明では、火炎冷却部を、冷
却促進フィンを取付けたフィン付伝熱管にて構成してい
るので、有炎燃焼バーナの火炎を急激に確実に冷却する
ことができ、よってNOxを生成する高温滞留時間を短
くすることができてNOxの発生防止効果を更に促進さ
せることができる。また、火炎を急激に効率良く冷却で
きるので、火炎冷却部を小型化し、延いては多管式管流
ボイラ全体の小型化を図ることができる。According to the first aspect of the present invention, since the flame cooling section is composed of the heat transfer tube with fins to which the cooling promoting fins are attached, the flame of the flammable combustion burner can be cooled rapidly and surely. Therefore, the high temperature residence time for producing NOx can be shortened, and the NOx generation preventing effect can be further promoted. Further, since the flame can be cooled rapidly and efficiently, the flame cooling unit can be downsized, and the overall multi-tube type tubular flow boiler can be downsized.
【0037】請求項2の発明では、火炎冷却部の火炎温
度を1500℃以下に保持し、断熱空間部の燃焼ガス温
度を1000℃以上に保持するようフィン付伝熱管の有
炎燃焼バーナに対する配設位置、設置数を選定している
ので、NOxとCOの発生を同時に効果的に防止するこ
とができる。According to the second aspect of the present invention, the finned heat transfer tubes are arranged with respect to the flammable combustion burner so that the flame temperature of the flame cooling section is maintained at 1500 ° C. or lower and the combustion gas temperature of the heat insulating space is maintained at 1000 ° C. or higher. Since the installation position and the number of installations are selected, the generation of NOx and CO can be effectively prevented at the same time.
【0038】請求項3の発明では、対流伝熱部の断熱空
間部に面する左右幅方向内側位置の伝熱管の相互間に閉
塞フィンを取付けているので、左右幅方向内側に向かう
燃焼ガスが閉塞フィンによって直進することなく左右側
方に迂回するようになり、対流伝熱部を流動する燃焼ガ
スの左右幅方向温度の分布が均等化されるので、左右幅
方向内側位置に燃焼ガスの局所的な高温部が生じて、伝
熱管が過熱により焼損するというような問題の発生を防
止することができる。According to the third aspect of the present invention, since the closing fins are mounted between the heat transfer tubes at the inner positions in the left-right width direction facing the heat insulating space of the convection heat transfer section, the combustion gas flowing inward in the left-right width direction is By the blocking fins, it does not go straight and detours to the left and right, and the temperature distribution of the combustion gas flowing in the convection heat transfer section is equalized. It is possible to prevent the occurrence of a problem in which the heat transfer tube is burnt out due to overheating due to the generation of a high temperature portion.
【図1】請求項1〜3の発明の実施例に係る多管式貫流
ボイラの横断平面図である。1 is a cross-sectional plan view of a multi-tube once-through boiler according to an embodiment of the present invention.
【図2】請求項1のフィン付伝熱管の設置によるNOx
の低減効果を示す線図である。FIG. 2 NOx by installing the heat transfer tube with fins according to claim 1.
FIG. 6 is a diagram showing the effect of reducing
【図3】請求項3の閉塞フィンの設置による対流伝熱部
における左右幅方向の燃焼ガス温度の均等化効果を示す
線図である。FIG. 3 is a diagram showing the effect of equalizing the combustion gas temperatures in the left-right width direction in the convection heat transfer section by installing the closing fins of claim 3;
【図4】従来例に係る多管式貫流ボイラの縦断正面図で
ある。FIG. 4 is a vertical sectional front view of a multi-tube once-through boiler according to a conventional example.
【図5】図4の横断平面図である。5 is a cross-sectional plan view of FIG.
【図6】既に提案された発明の構成を示す縦断正面図で
ある。FIG. 6 is a vertical sectional front view showing the configuration of the already proposed invention.
【図7】図6の横断平面図である。7 is a cross-sectional plan view of FIG.
【図8】図7の装置の対流伝熱部における左右幅方向内
側位置に燃焼ガスの高温部が生じることを示す線図であ
る。8 is a diagram showing that a high temperature portion of a combustion gas is generated at an inner position in a lateral width direction in a convection heat transfer portion of the apparatus of FIG.
7 有炎燃焼バーナ 7a バーナ板 7b 炎孔 9b 下流側の伝熱管 9b’ 下流側の伝熱管 13 火炎冷却部 14 断熱空間部 15 対流伝熱部 16 左右幅方向内側位置 17 冷却促進フィン 18 フィン付伝熱管 19 閉塞フィン 7 Flame Combustion Burner 7a Burner Plate 7b Flame Hole 9b Downstream Heat Transfer Tube 9b 'Downstream Heat Transfer Tube 13 Flame Cooling Section 14 Insulation Space Section 15 Convection Heat Transfer Section 16 Left / Right Width Inner Position 17 Cooling Promotion Fin 18 With Fin Heat transfer tube 19 Blocking fin
Claims (3)
バーナを用い、該有炎燃焼バーナに近い位置に、縦方向
に延びて多数平行に配列され前記有炎燃焼バーナからの
燃焼ガスを交叉方向に流通させるようにした伝熱管によ
る火炎冷却部を備え、該火炎冷却部の下流側に、断熱空
間部を隔てて、縦方向に延びて多数平行に配列された伝
熱管による対流伝熱部を備えた多管式貫流ボイラであっ
て、前記火炎冷却部を、冷却促進フィンを取付けたフィ
ン付伝熱管により構成したことを特徴とする多管式貫流
ボイラ。1. A flammable combustion burner having a large number of flame holes in a burner plate is used, and a plurality of combustion gases from the flammable combustion burner are arranged in parallel at a position close to the flammable combustion burner so as to extend in the longitudinal direction. Is provided in a cross-direction through a heat transfer tube, and downstream of the flame cooling section, a convection transfer is performed by a plurality of heat transfer tubes that extend in the vertical direction and have a heat insulating space between them. A multi-tube once-through boiler having a heat section, wherein the flame cooling section is constituted by a heat transfer tube with fins to which cooling promoting fins are attached.
に保持し且つ断熱空間部の燃焼ガス温度を1000℃以
上に保持するようフィン付伝熱管を配置したことを特徴
とする請求項1に記載の多管式貫流ボイラ。2. The heat transfer tube with fins is arranged so that the flame temperature of the flame cooling part is maintained at 1500 ° C. or lower and the combustion gas temperature of the heat insulating space part is maintained at 1000 ° C. or higher. The described multi-tube once-through boiler.
方向内側位置の伝熱管の相互間に閉塞フィンを取付けた
ことを特徴とする請求項1又は2に記載の多管式貫流ボ
イラ。3. The multi-tube flow-through according to claim 1 or 2, characterized in that a closing fin is attached between the heat transfer tubes located in the left and right widthwise inner positions facing the heat insulating space of the convective heat transfer section. boiler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6019396A JPH07229608A (en) | 1994-02-16 | 1994-02-16 | Multi-tube type once-through boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6019396A JPH07229608A (en) | 1994-02-16 | 1994-02-16 | Multi-tube type once-through boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07229608A true JPH07229608A (en) | 1995-08-29 |
Family
ID=11998121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6019396A Pending JPH07229608A (en) | 1994-02-16 | 1994-02-16 | Multi-tube type once-through boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07229608A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0774629A2 (en) | 1995-11-20 | 1997-05-21 | Tokyo Gas Co., Ltd. | Water tube boiler and its combustion method |
JP2006349255A (en) * | 2005-06-15 | 2006-12-28 | Miura Co Ltd | Boiler |
-
1994
- 1994-02-16 JP JP6019396A patent/JPH07229608A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0774629A2 (en) | 1995-11-20 | 1997-05-21 | Tokyo Gas Co., Ltd. | Water tube boiler and its combustion method |
US5894819A (en) * | 1995-11-20 | 1999-04-20 | Tokyo Gas Company Limited | Water tube boiler and it's combustion method |
JP2006349255A (en) * | 2005-06-15 | 2006-12-28 | Miura Co Ltd | Boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0124381B1 (en) | METHOD AND APPARATUS OF LOW NOx AND CO | |
US6792895B2 (en) | Combustion method and apparatus for NOx reduction | |
JPH07229608A (en) | Multi-tube type once-through boiler | |
JP2000314502A (en) | Water tube boiler | |
JP2000249427A (en) | LOW NOx SYSTEM IN HIGH TEMPERATURE REGENERATOR FOR ABSORPTION TYPE COLD/HOT WATER HEATER | |
JP3662599B2 (en) | Water tube boiler | |
JPH07318003A (en) | Multi-tube once-through boiler | |
JPH10132202A (en) | Once-through boiler | |
JP2698887B2 (en) | Gas combustion equipment | |
JPH07139702A (en) | Multi-tube type once-through boiler | |
JPH07145901A (en) | Multitubular once-through boiler | |
JP3185792B2 (en) | boiler | |
JP2004060984A (en) | Low nox combustor | |
JPH09145001A (en) | Water tube boiler and combustion method thereof | |
JPH0791601A (en) | Water-tube boiler | |
JP3310932B2 (en) | boiler | |
JP2824619B2 (en) | Square multi-tube type once-through boiler | |
JPH07139701A (en) | Annular once-through boiler | |
JP3883735B2 (en) | Liquid heating equipment | |
JP4075798B2 (en) | Two-stage combustion device | |
JP2933055B2 (en) | Square multi-tube type once-through boiler | |
KR100353761B1 (en) | Heat exchanger structure of condensing gas boiler | |
JP2005016827A (en) | Boiler | |
JPH09257207A (en) | Cylindrical once-through boiler | |
JPH08110002A (en) | Water tube boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040729 |
|
A131 | Notification of reasons for refusal |
Effective date: 20041124 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051011 |