JPH07229133A - Precast underground multi-purpose duct construction method - Google Patents

Precast underground multi-purpose duct construction method

Info

Publication number
JPH07229133A
JPH07229133A JP6022942A JP2294294A JPH07229133A JP H07229133 A JPH07229133 A JP H07229133A JP 6022942 A JP6022942 A JP 6022942A JP 2294294 A JP2294294 A JP 2294294A JP H07229133 A JPH07229133 A JP H07229133A
Authority
JP
Japan
Prior art keywords
joint
equation
amount
stress
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6022942A
Other languages
Japanese (ja)
Other versions
JP3644981B2 (en
Inventor
Masanori Hamada
政則 浜田
Tomoaki Ando
知明 安藤
Kenji Noda
憲治 野田
Hideto Tabata
英人 田端
Hiroaki Tsuchiya
弘明 土屋
Kiyoshi Morinaga
清 森永
Jiro Kondo
二郎 近藤
Hideaki Morita
秀明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP02294294A priority Critical patent/JP3644981B2/en
Publication of JPH07229133A publication Critical patent/JPH07229133A/en
Application granted granted Critical
Publication of JP3644981B2 publication Critical patent/JP3644981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To provide a precast underground multi-purpose duct construction method where a rational prestress on the basis of a economical and reasonable design technique is introduced. CONSTITUTION:In order to cope with the axial elongation and contraction deformation action force such as earthquake wave motion or the like and bending deformation action force perpendicular to the axis, a designated number of precast concrete building frames are disposed to give prestress by a post tension method, and if the axial elongation and contraction deformation action force is within the stress of prestress of a PC steel material, a joint part between the concrete building frames will not be opened. If the axial elongation and contraction deformation action force exceeds the initial introduction stress, the opening amount is obtained by the expression 1, and the stress of PC steel material is obtained by the expression 2. If the bending deformation action force perpendicular to the axis exceeds prestress, the opening amount is obtained by the expressions 3, 4, and the stress of PC steel material is obtained by the expression 5. The allowable value of PC steel material is confirmed, and the allowable value of the opening amount of the joint part of the precast concrete building frames is set 20mm or below, whereby the amount of PC steel material used can be decreased. A waterproof joint material according to the performance of a joint material to be required in the joint part for waterproofness and expansible performance is selected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は市街地の路面地下等に函
路を形成するためのプレキャスト共同溝施工法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precast joint ditch construction method for forming a cavern in the underground of a road surface in an urban area.

【0002】[0002]

【従来の技術】一般に、ガス管や電線・電話等のケーブ
ルを共に収納するため、市街地の路面地下等に共同溝が
埋設されることがあり、この共同溝には、開削した地中
溝に型枠を用いた現場打ちで鉄筋コンクリートの函路を
形成する現場打ち施工法と、開削した地中溝に所定規格
の函体ブロックを列状に敷き並べ、かつ、PC鋼材等に
より一体連結して函路を形成するプレキャスト共同溝施
工法との二つがある。
2. Description of the Related Art Generally, since a gas pipe, a cable such as an electric wire and a telephone are stored together, a joint groove may be buried under the road surface underground in an urban area. In-situ construction method to form a reinforced concrete box by in-situ casting using a frame, and box blocks of a specified standard are laid out in a line in the excavated underground trench, and are integrally connected with PC steel etc. There are two methods, namely, the precast joint groove construction method for forming.

【0003】共同溝は耐震構造が要求されるが、この耐
震設計には、現場打ち施工法を対象とした設計指針が既
に確立されている。しかしながら、プレキャスト共同溝
施工法を対象とした設計指針は未だなく、したがって、
現場打ち施工法の設計指針に準拠しているのが現状であ
る。
A seismic resistant structure is required for the joint groove, but for this seismic resistant design, design guidelines have already been established for the field casting method. However, there is still no design guideline for the precast joint groove construction method.
The current situation is that it complies with the design guidelines of the in-situ construction method.

【0004】また、共同溝は地下水等が浸入すると不都
合を生じるから水密性が要求されるが、この設計・施工
に際し、所定長さの共同溝間に継手を用いることが前記
設計指針では示されている。しかし、この継手にあって
も耐震構造の一例として可撓性継手が使用される。
Further, the common groove is required to be watertight because it causes inconvenience if groundwater or the like enters, but the design guideline shows that a joint is used between the common grooves of a predetermined length in this design and construction. ing. However, even in this joint, a flexible joint is used as an example of an earthquake-resistant structure.

【0005】ところで、プレキャスト共同溝は、図3に
示すように、所定形状の函体ブロック1の複数個を縦列
状に敷き並べ、かつ、PC鋼材2を軸方向に挿通し一体
連結して所定長さの函路3を形成し、この函路3の複数
個の間はそれぞれ可撓性継手6にて接続される。
By the way, as shown in FIG. 3, the precast joint groove has a predetermined shape in which a plurality of box blocks 1 having a predetermined shape are laid out in a row and the PC steel material 2 is axially inserted and integrally connected. A box 3 having a length is formed, and a plurality of the boxes 3 are connected by flexible joints 6, respectively.

【0006】なお、函体ブロック1は、鉄筋コンクリー
ト、又は、プレストレスコンクリートからなる断面四角
形等の筒状体であり、プレキャストコンクリート躯体と
して工場等にて製造され、現場まで運搬されることが多
いものである。
The box block 1 is a tubular body made of reinforced concrete or prestressed concrete and having a rectangular cross section, and is often manufactured as a precast concrete skeleton at a factory or the like and transported to the site. Is.

【0007】また、PC鋼材2で各函体ブロック1を一
体連結して函路3を形成するのは、各函体ブロック1の
不同沈下の防止や漏水の防止等を考慮して縦連結を行
い、各函体ブロック1の一体化を図るためである。
The box blocks 3 are integrally connected with the PC steel material 2 to form the box paths 3. The box blocks are connected vertically in consideration of prevention of differential sinking and leakage of water. This is for the purpose of performing the integration of each box block 1.

【0008】ここで従来のPC鋼材使用量について言及
すると、図4に示すような例においては、函体ブロック
1の断面内に約32本のPC鋼材(鋼棒)2が挿通され
ている。このPC鋼棒2の径寸法は従来では26mm等
が通例であった。
Referring to the conventional amount of PC steel used, about 32 PC steels (steel rods) 2 are inserted in the cross section of the box block 1 in the example shown in FIG. Conventionally, the diameter of the PC steel rod 2 is 26 mm or the like.

【0009】そして、函路3の水密性を確保するため、
各函体ブロック1間に形成される目地1aにシール材を
用いると共に、長さLを略30m程度とした函路3間に
は、図5に示すように、合成ゴム等からなる可撓性継手
6を用いている。可撓性継手6の両側端部は函体ブロッ
ク1の内端部に固定したアンカーボルト7にナット8又
はインサート9にボルト10を挿入し締結して押板11
で水密的に固定される。
In order to secure the watertightness of Hakoji 3,
As shown in FIG. 5, a flexible material made of synthetic rubber or the like is used between the boxes 3 having the joints 1a formed between the box blocks 1 and having the length L of about 30 m. The joint 6 is used. At both ends of the flexible joint 6, bolts 10 are inserted into the anchor bolts 7 fixed to the inner ends of the box block 1 and the nuts 8 or the inserts 9 are fastened to push the plate 11.
It is fixed watertightly.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、プレキ
ャスト共同溝施工法の設計に、現場打ち施工法の設計指
針を適用すると、地震により発生する断面力に対して函
体ブロック1間の目地1aの開きを発生させないように
するため、巨大なプレストレスの導入が必要となる。
However, when the design guideline of the in-situ construction method is applied to the design of the precast joint groove construction method, the joint 1a between the box blocks 1 is opened against the sectional force generated by the earthquake. It is necessary to introduce a huge prestress in order to prevent the occurrence of

【0011】したがって、予めプレキャストコンクリー
ト躯体に多数のPC鋼材挿通孔を設けることが必要(図
4参照)となるために、製造コストの上昇を来すほか、
PC鋼材2や可撓性継手6の多大な投入とその経費及び
作業が必要である。
Therefore, it is necessary to previously provide a large number of PC steel material insertion holes in the precast concrete frame (see FIG. 4), which causes an increase in manufacturing cost.
A large amount of input of the PC steel material 2 and the flexible joint 6 and its cost and work are required.

【0012】これはプレキャスト共同溝の特徴に着目す
れば不合理な設計思想と言い得るものである。そのた
め、従来の不合理な設計思想に対し、プレキャスト共同
溝の特徴に着目し、函体ブロック1間の目地1aの開き
を踏まえた上でこれを許容することにより、合理的なプ
レストレスの導入が可能となる。
This can be said to be an irrational design concept if attention is paid to the characteristics of the precast joint groove. Therefore, in contrast to the conventional irrational design concept, by paying attention to the characteristics of the precast joint groove and allowing this after considering the opening of the joint 1a between the box blocks 1, a rational introduction of prestress is introduced. Is possible.

【0013】この合理的なプレストレスの導入により、
PC鋼材2の規模(所要径・本数)の低減が図れ、か
つ、同一地盤における地震力に対し従来の可撓性継手6
の間隔の延長をも可能とし、したがって、極めて経済的
・合理的な設計手法が確立されるものと見込まれる。
By the introduction of this rational prestress,
The size (required diameter and number) of PC steel 2 can be reduced, and the conventional flexible joint 6 against seismic force on the same ground
It is also possible to extend the interval between, and therefore, it is expected that a very economical and rational design method will be established.

【0014】そこで、本発明は、経済的・合理的な設計
手法に基づく合理的なプレストレスを導入したプレキャ
スト共同溝施工法を提供する。
Therefore, the present invention provides a precast joint groove construction method in which a rational prestress is introduced based on an economical and rational design method.

【0015】[0015]

【課題を解決するための手段】本発明にかかるプレキャ
スト共同溝施工法は、請求項1によれば、地震波動等の
軸方向伸縮変形作用力及び軸直角方向の曲げ変形作用力
に対応するため、プレキャストコンクリート躯体を所定
数配設し、ポストテンション方式にてプレストレスを与
え、軸方向伸縮変形作用力がPC鋼材のプレストレスに
よる応力以内は、コンクリート躯体間の接合部が開かな
いものとし、軸方向伸縮変形作用力が初期導入応力を越
えた場合は、式1によりその開き量を、式2によりPC
鋼材の応力を求めるとともに、軸直角方向の曲げ変形作
用力がプレストレスを越えた場合は、式3,4によりそ
の開き量を、式5によりPC鋼材の応力を求め、かつ、
PC鋼材の許容値確認とプレキャストコンクリート躯体
の接合部開き量の許容値を20mm以下とすることによ
り、PC鋼材の使用量を低減し、かつ、接合部に用いる
防水型で伸縮性能をもつ接合材の性能に応じた防水型接
合材を選定することを特徴とする。
According to the first aspect of the present invention, the precast joint groove construction method is adapted to deal with the axial expansion / contraction deformation force and the axis-perpendicular bending deformation action force such as seismic waves. , A predetermined number of precast concrete skeletons are arranged and prestressed by the post-tension method, and the joint between concrete skeletons shall not be opened when the axial expansion / contraction deformation force is within the stress due to the prestress of the PC steel material, When the axial stretching deformation acting force exceeds the initial introduction stress, the opening amount is calculated by the formula 1 and PC is calculated by the formula 2.
In addition to obtaining the stress of the steel material, when the bending deformation acting force in the direction perpendicular to the axis exceeds the prestress, the opening amount is obtained by the equations 3 and 4, and the stress of the PC steel material is obtained by the equation 5, and
By checking the allowable value of PC steel and setting the allowable value of the opening of the joint of the precast concrete frame to 20 mm or less, the amount of PC steel used is reduced, and the waterproof and stretchable joint used for the joint The feature is that a waterproof bonding material is selected according to the performance of.

【0016】また、請求項2によれば、地震波動等の軸
方向作用力及び軸直角方向の曲げ変形作用力に対応する
ため、プレキャストコンクリート躯体を所定数配設し、
ポストテンション方式にてPC鋼材によりプレストレス
を与えて棒状の梁となし、連結梁間での軸方向伸縮変形
作用力による開き量、変位量は地震波動・棒状の梁とし
た長さ・埋設地盤の種別により式6により継手材性能に
応じた最適な可撓性継手間隔を求めるとともに、連結梁
間での軸直角方向の曲げ変形作用力による開き量、変位
量は地震波動・棒状の梁とした長さ・埋設地盤の種別に
より式7,8により求め、また、連結梁間での軸直角方
向のせん断変形作用力による変位量は式9により継手材
性能に応じた最適な可撓性継手間隔を求め、設置間隔・
伸び量に応じた可撓性継手材を選定する。
According to claim 2, a predetermined number of precast concrete skeletons are provided in order to deal with the axial action force such as seismic waves and the bending deformation action force in the direction perpendicular to the axis,
Pre-stressed by PC steel material by post-tension method to form a bar-shaped beam, the opening and displacement due to the axial expansion and contraction deformation acting force between the connecting beams are seismic waves, the length of the bar-shaped beam, and the buried ground The optimum flexible joint spacing according to the joint material performance is calculated according to the type according to the type, and the opening amount and displacement amount due to the bending deformation acting force between the connecting beams in the direction perpendicular to the axis are the seismic wave length・ Determined by equations 7 and 8 according to the type of buried ground, and the displacement amount due to the shear deformation action force in the direction perpendicular to the axis between the connecting beams is determined by equation 9 to find the optimum flexible joint spacing according to the joint material performance. , Installation interval
Select a flexible joint material according to the amount of elongation.

【0017】[0017]

【作用】PC鋼材の規模(所要径・本数)の低減が図れ
るとともに、同一地盤における地震力に対し可撓性継手
間隔の延長が可能となる。
[Function] The scale (required diameter and number) of PC steel can be reduced, and the flexible joint space can be extended against seismic force on the same ground.

【0018】したがって、プレキャストコンクリート躯
体の製造、PC鋼材と可撓性継手の低減及び作業性の容
易化により、極めて経済的・合理的なプレキャスト共同
溝を得ることができる。
Therefore, by manufacturing the precast concrete frame, reducing the PC steel material and the flexible joint, and facilitating the workability, a very economical and rational precast joint groove can be obtained.

【0019】[0019]

【実施例】プレキャスト共同溝の長手方向の耐震設計の
主眼は、地震動の強さ、地盤種別、液状化の有無及び構
造寸法に応じて、最適な可撓性継手間隔と合理的なプレ
ストレス初期導入力を決定することにある。
[Example] The main purpose of the seismic design in the longitudinal direction of the precast joint groove is to optimize the optimum flexible joint spacing and rational prestress initial stage according to the strength of earthquake motion, ground type, presence or absence of liquefaction, and structural dimensions. It is to decide the introduction power.

【0020】耐震設計では地震の影響として地震波動の
伝播による地盤変位及び液状化による浮き上がり、沈
下、側方移動を考慮するが、コンクリート、PC鋼材の
応力とひずみ及び可撓性継手と一般継手の変位について
以下の項目を照査する。
In the seismic design, ground displacement due to propagation of seismic waves and uplifting, subsidence, and lateral movement due to liquefaction are taken into consideration as the influence of the earthquake, but stress and strain of concrete and PC steel and flexible joints and general joints are considered. Check the following items for displacement.

【0021】(1)コンクリート躯体応力が許容応力あ
るいは限界応力以下であること (2)PC鋼材の応力が許容応力あるいは限界応力以下
であること、または、ひずみが限界ひずみ以下であるこ
と (3)可撓性継手の長手方向開き量及び水平・鉛直方向
曲げによる開き量が、許容変位あるいは限界変位以下で
あること (4)一般継手の長手方向開き量および、水平・鉛直方
向曲げによる開き量が、許容変位あるいは限界変位以下
であること 可撓性継手の限界変位は製品規格にとらわれず、可撓性
継手の限界伸び量、また、変形を受けた状態における継
手の耐久性および安全性などを考慮して決定されなけれ
ばならない。
(1) The concrete skeleton stress is less than the allowable stress or the critical stress (2) The stress of the PC steel material is less than the allowable stress or the critical stress, or the strain is less than the critical strain (3) The amount of opening of the flexible joint in the longitudinal direction and the amount of opening due to horizontal / vertical bending are less than the allowable displacement or the limit displacement. (4) The amount of opening of the general joint in the longitudinal direction and the amount of opening due to horizontal / vertical bending are The allowable displacement is not more than the allowable displacement or the limit displacement.The limit displacement of the flexible joint is not restricted by the product standard, and the limit elongation of the flexible joint and the durability and safety of the joint in a deformed state can be determined. It must be decided in consideration.

【0022】また、一般継手の限界変位は目地開きによ
る土砂の流入量、および地震後の復旧の難易度を考慮し
て設定する必要がある。
Further, it is necessary to set the limit displacement of the general joint in consideration of the inflow amount of earth and sand due to the joint opening and the difficulty of recovery after the earthquake.

【0023】以上は、プレキャスト共同溝施工に当た
り、可撓性継手を有するプレキャスト共同溝の耐震設計
のガイドラインとして示す内容における耐震設計の目的
と流れである。
The above is the purpose and flow of the seismic design in the content shown as the guideline for the seismic design of the precast joint groove having the flexible joint upon the construction of the precast joint groove.

【0024】そこで、これに準拠して、プレキャスト共
同溝の新しい耐震設計を以下のように行うものである。
Accordingly, in accordance with this, a new seismic design of the precast joint groove is performed as follows.

【0025】A.耐震設計の基礎 地震による断面力を計算するには、地震波動の性質を知
ることが第1段階でこれは長年の研究から工学的に理論
付けされた「応答変位法」を用いる点では現状の耐震設
計基準と全く変わりはない。
A. Basics of seismic design In order to calculate the cross-sectional force due to an earthquake, it is the first step to know the nature of seismic waves. This is the current situation in terms of using the "response displacement method" that has been theoretically engineered from many years of research. It is no different from the seismic design standard.

【0026】B.耐震設計の条件 1.設定断面形状 図1に示す形状とし、必要諸寸法については図面中に記
載した。
B. Conditions for seismic design 1. Set cross-sectional shape The shape shown in FIG. 1 was used, and necessary dimensions are shown in the drawing.

【0027】2.構造断面諸元2. Structural section specifications

【0028】[0028]

【表1】 [Table 1]

【0029】3.地域区分 A地域 4.土質条件3. Area classification A area 4. Soil condition

【0030】[0030]

【表2】 [Table 2]

【0031】5.地盤種別 TG≧0.6[S] より 4
種地盤 C.地震波動の性質
5. From ground type T G ≧ 0.6 [S] 4
Seed ground C. Properties of seismic waves

【0032】[0032]

【表3】 [Table 3]

【0033】D.耐震設計に用いる地震波動の振幅 1)軸方向伸縮変形の耐震計算における重ね合わせD. Amplitude of seismic waves used for seismic design 1) Superposition of axial expansion and contraction in seismic calculation

【0034】[0034]

【数10】 [Equation 10]

【0035】2)曲げ変形の耐震計算における振幅 共同溝軸方向に伝播し振動方向は水平面内で軸直交方向 a=Uh 共同溝軸方向に伝播し振動方向は鉛直面内で軸直交方向 a=UV E.PC鋼材の配置 PC鋼材の配置と断面図は図2のように設定する F.軸方向伸縮変形の耐震設計 1.函体応力の計算2) Amplitude in the seismic calculation of bending deformation Propagation in the axial direction of the common groove and the vibration direction is the axis orthogonal direction in the horizontal plane a = U h Propagation in the axial direction of the common groove and the vibration direction is the direction orthogonal to the axis in the vertical plane a = U V E. Arrangement of PC steel material Arrangement and sectional view of PC steel material are set as shown in Fig. 2. F. Seismic design of axial expansion and contraction 1. Calculation of box stress

【0036】[0036]

【数11】 [Equation 11]

【0037】函体応力は圧縮を正としている。計算結果
より負の値(引張応力)が生じることから、目地開きが
起こる。よって、次に目地開き量と目地が開く場合のP
C鋼棒の応力を計算し、安全性を考慮する。
The box stress is positive for compression. Since a negative value (tensile stress) is generated from the calculation result, joint opening occurs. Therefore, the joint opening amount and P when the joint is opened next
Calculate the stress of C steel bar and consider safety.

【0038】2.目地の開き量の計算 一般継手の目地開き量δjGは前式1により算定する 3.一般継手の目地が開く場合のPC鋼材の応力 一般継手の目地が開く場合のPC鋼材の応力は前式2に
より算定する 4.可撓性継手の開き量の計算 可撓性継手の開き量δjFは前式6により計算する。
2. Calculation of joint opening amount The joint opening amount δ jG of the general joint is calculated by the above formula 1. 3. Stress of PC steel material when joint of general joint opens When stress of PC steel material when joint of general joint opens is calculated by the previous formula 2. Calculation of Opening Amount of Flexible Joint The opening amount δ jF of the flexible joint is calculated by the above equation 6.

【0039】G.軸直角方向の曲げ変形の耐震設計 1.函体応力の計算 1)水平面内G. Seismic design for bending deformation in the direction perpendicular to the axis 1. Calculation of box stress 1) In horizontal plane

【0040】[0040]

【数12】 [Equation 12]

【0041】2)鉛直面内2) Within the vertical plane

【0042】[0042]

【数13】 [Equation 13]

【0043】尚、水平・鉛直面内の最大曲げモーメント
は次式による。
The maximum bending moment in the horizontal / vertical plane is given by the following equation.

【0044】[0044]

【数14】 [Equation 14]

【0045】函体応力は圧縮を正としている。計算結果
より負の値(引張応力)が生じることら、目地開きが起こ
る。よって、次に目地開き量と目地が開く場合のPC鋼棒
の応力を計算し、安全性を照査する。
For the box stress, compression is positive. From the calculation results, a negative value (tensile stress) is generated, which causes joint opening. Therefore, the joint opening amount and the stress of the PC steel bar when the joint is opened are calculated next, and safety is checked.

【0046】2.目地の開き量の計算 一般継手の目地開き量δjGは次式により算定する。2. Calculation of joint opening amount The joint opening amount δ jG of a general joint is calculated by the following formula.

【0047】1)水平面内 δJG=h・θ ここに、h:函体幅(625cm) θ:開き角(rad) 2)鉛直面内 δJG=h・θ ここに、h:函体幅(330cm) θ:開き角(rad) 函体の開き角は、1) in the horizontal plane δ JG = h · θ where h: box width (625 cm) θ: opening angle (rad) 2) in the vertical plane δ JG = h · θ, where h: box width (330 cm) θ: Opening angle (rad) The opening angle of the box is

【0048】[0048]

【数15】 [Equation 15]

【0049】ここで、 e : 一函の長さ (m) L : 地震波の波長 (m) a : 地盤変位振幅 (m) a": 曲げ変形によるコンクリート縁応力・引張応力が
プレストレスと等しくなる地盤変位振幅(m)
Here, e: length of one box (m) L: wavelength of seismic wave (m) a: ground displacement amplitude (m) a ": concrete edge stress and tensile stress due to bending deformation equal to prestress Ground displacement amplitude (m)

【0050】[0050]

【数16】 [Equation 16]

【0051】ここで、 Ec:コンクリートのヤング率 (t/m2) Ac:コンクリート全断面積 (m2) P : プレストレス導入力 (t) 3.一般継手の目地が開く場合のPC鋼材の応力 一般継手の目地が開く場合のPC鋼材の応力は次式によ
り算定する 1)水平面内
Here, E c : Young's modulus of concrete (t / m 2 ) A c : Total cross-sectional area of concrete (m 2 ) P: Prestressing force (t) 3. Stress of PC steel when joint of joint is opened Calculate stress of PC steel when joint of joint is opened by the following formula 1) In horizontal plane

【0052】[0052]

【数17】 [Equation 17]

【0053】2)鉛直面内2) Within the vertical plane

【0054】[0054]

【数18】 [Equation 18]

【0055】但し σp1 :PC鋼材の初期応力 δv jg:鉛直面内の一般目地の開き量 δh JG:水平面内の一般目地の開き量 Ep :PC鋼材のヤング係数 M"v : 鉛直面内の曲げ変形による応力がプレストレス
と等しくなる地盤変位振幅a”による曲げモーメント M”h:水平面内の曲げ変形による応力がプレストレス
と等しくなる地盤変位振幅a”による曲げモーメント
Where σ p1 : initial stress of PC steel δ v jg : opening of general joint in vertical plane δ h JG : opening of general joint in horizontal plane E p : Young's modulus of PC steel M ” v : vertical Bending moment due to ground displacement amplitude a "at which stress due to in-plane bending deformation equals prestress M" h : Bending moment due to ground displacement amplitude a "at which stress due to bending deformation in the horizontal plane becomes equal to prestress

【0056】[0056]

【数19】 [Formula 19]

【0057】4.可撓性継手の開き量の計算 可撓性継手の開き量δjFは次式により算定する 1)水平面内 δJF=h・θmax ここに、h :函体幅 (625 cm) θmax: 開き角 (rad) 2)鉛直面内 δJF=h・θmax ここに、h :函体高 (330 cm) θmax: 開き角 (rad)4. Calculation of the opening amount of the flexible joint The opening amount δ jF of the flexible joint is calculated by the following formula: 1) In the horizontal plane δ JF = h ・ θ max where h: Box width (625 cm) θ max : Opening Angle (rad) 2) In the vertical plane δ JF = h · θ max where, h: height of the box (330 cm) θmax: opening angle (rad)

【0058】[0058]

【数20】 [Equation 20]

【0059】以上の計算結果より、下記の設定により安
定する ・可撓性継手間隔 30m ・使用PC鋼棒 φ23mm−6本 ここで、次の段階として、設定を下記のように変更し、
再度計算を行う。
From the above calculation results, the following settings are stable: Flexible joint spacing 30 m PC steel rod φ23 mm-6 used Here, in the next step, the settings are changed as follows:
Calculate again.

【0060】・可撓性継手間隔 60m 以下にその主要設計計算結果の数値を示す。Flexible joint spacing 60 m or less The numerical values of the main design calculation results are shown below.

【0061】H.最適可撓性継手間隔の設定 主要設計計算結果数値 1) 函体応力H. Optimal flexible joint spacing setting Numerical result of main design calculation 1) Box stress

【0062】[0062]

【表4】 [Table 4]

【0063】2)可撓性継手・ 軸方向変位 δjF = 9.11 cm・ 最大回転角:水平断面内 θhmax =0.0008rad 鉛直断面内 θvmax =0.0002rad 3)一般継手・ 目地開き:軸方向 δjG = 0.15cm 曲げ方向水平断面内 δhjG =0.02cm 曲げ方向鉛直断面内 δvjG =0.00cm 上記計算により、再設定の状態でも安定することから、
継手間隔30mにとらわれず、60mに決定する。
2) Flexible joint-Axial displacement δj F = 9.11 cm-Maximum rotation angle: Horizontal section θhmax = 0.0008rad Vertical section θvmax = 0.0002rad 3) General joint-Joint opening: Axial δj G = 0.15cm Bending direction horizontal section δhj G = 0.02cm Bending direction vertical section δvj G = 0.00cm By the above calculation, it will be stable even in the reset state,
Regardless of the joint distance of 30 m, it is decided to be 60 m.

【0064】上記設計に基づくプレキャスト共同溝は、
図2に示すように、例えば径寸法が23mmの少なくと
も6本のPC鋼材(鋼棒)12をプレキャストコンクリ
ート躯体11の断面内に挿通するだけで足り、また、可
撓性継手も、従来の約2倍、即ち約60m間隔で設置す
れば足りることとなる。
The precast joint groove based on the above design is
As shown in FIG. 2, it suffices to insert at least six PC steel materials (steel rods) 12 having a diameter dimension of 23 mm into the cross section of the precast concrete skeleton 11, for example, and the flexible joint also has a conventional It is sufficient to install them twice, that is, at intervals of about 60 m.

【0065】なお、PC鋼棒12の径寸法を適宜選択す
ることにより、プレキャストコンクリート躯体11の断
面内に6本以上のPC鋼棒12を配置し、若しくは、4
本のPC鋼棒12を挿通するだけで足りることもある。
By appropriately selecting the diameter of the PC steel rod 12, six or more PC steel rods 12 are arranged within the cross section of the precast concrete skeleton 11, or 4
It may be sufficient to insert the PC steel rod 12 of the book.

【0066】したがって、上記設計思想に基づきプレキ
ャスト共同溝を施工した場合の試算をすると、PC鋼材
量が従来の約1/5程度、可撓性継手材量が従来の約1
/2程度にそれぞれ削減しても、既存の現場打ち施工法
の設計指針を充足する合理的な耐震設計のプレキャスト
共同溝施工が可能となる。
Therefore, when the pre-cast joint groove is constructed based on the above design concept, the amount of PC steel material is about 1/5 of the conventional amount, and the amount of flexible joint material is about 1 of the conventional amount.
Even if each is reduced to about 1/2, it is possible to construct a precast joint groove with a reasonable seismic design that satisfies the design guidelines of the existing in-situ construction method.

【0067】以上、本発明はプレキャスト共同溝につい
て説明したが、これに限定されるものではなく、プレキ
ャストコンクリート躯体にはボックスカルバート、アー
チカルバート及び卵形等の地中に埋設する暗渠を含むも
のである。
Although the present invention has been described with respect to the precast common groove, the present invention is not limited to this, and the precast concrete skeleton includes box culverts, arch culverts, oval shapes, and other underground conduits buried in the ground.

【0068】[0068]

【発明の効果】以上説明した本発明によれば、PC鋼材
量が従来の約1/5程度、可撓性継手材量が従来の約1
/2程度に削減しても、既存の現場打ち溝方式の設計指
針を充足する合理的な耐震設計のプレキャスト共同溝施
工が可能となり、したがって、プレキャスト共同溝施工
における資材コストや経費の低減、作業性の簡便・迅速
かつ容易化、並びに工期の短縮を図ることができ、極め
て経済的・合理的なプレキャスト共同溝施工法である。
According to the present invention described above, the amount of PC steel material is about 1/5 of the conventional amount, and the amount of flexible joint material is about 1 of the conventional amount.
Even if it is reduced to about 1/2, it is possible to construct a precast joint groove with a rational seismic design that satisfies the existing design guidelines for the in-situ casting groove method. Therefore, the material cost and cost for precast joint groove construction can be reduced. It is a very economical and rational precast joint ditch construction method that is simple, quick and easy, and can shorten the construction period.

【図面の簡単な説明】[Brief description of drawings]

【図1】プレキャスト共同溝の設定形状の断面図FIG. 1 is a sectional view of a set shape of a precast joint groove.

【図2】PC鋼材配置断面図[Fig. 2] PC steel material arrangement cross section

【図3】プレキャスト共同溝の平面図[Fig. 3] Plan view of precast joint groove

【図4】従来のPC鋼材配置断面図[Fig. 4] Conventional PC steel material arrangement cross-sectional view

【図5】(A),(B),(C)はそれぞれプレキャス
ト共同溝の可撓性継手の断面図
5 (A), (B), and (C) are cross-sectional views of a flexible joint having a precast joint groove.

【符号の説明】[Explanation of symbols]

11…プレキャストコンクリート躯体 12…PC鋼材 11 ... Precast concrete frame 12 ... PC steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田端 英人 千葉県柏市あけぼの1−6−14 (72)発明者 土屋 弘明 神奈川県横浜市鶴見区上の宮1−8−22− 305 (72)発明者 森永 清 埼玉県川越市砂新田2555−26 (72)発明者 近藤 二郎 千葉県市川市菅野4−8−18−206 (72)発明者 森田 秀明 千葉県野田市山崎1623−4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideto Tabata 1-6-14 Akebono, Kashiwa City, Chiba Prefecture (72) Inventor Hiroaki Tsuchiya 1-8-22-305 (72) Invention, Kamimiya Tsurumi Ward, Yokohama City, Kanagawa Prefecture Person Kiyoshi Morinaga 2555-26 Sunadata, Kawagoe City, Saitama Prefecture (72) Inventor Jiro Kondo 4-8-18-206 Kanno, Ichikawa City, Chiba Prefecture (72) Hideaki Morita 1623-4 Yamazaki, Noda City, Chiba Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地震波動等の軸方向伸縮変形作用力及び
軸直角方向の曲げ変形作用力に対応するため、プレキャ
ストコンクリート躯体を所定数配設し、ポストテンショ
ン方式にてプレストレスを与え、軸方向伸縮変形作用力
がPC鋼材のプレストレスによる応力以内は、コンクリ
ート躯体間の接合部が開かないものとし、軸方向伸縮変
形作用力が初期導入応力を越えた場合は、式1によりそ
の開き量を、式2によりPC鋼材の応力を求めるととも
に、軸直角方向の曲げ変形作用力がプレストレスを越え
た場合は、式3,4によりその開き量を、式5によりP
C鋼材の応力を求め、かつ、PC鋼材の許容値確認とプ
レキャストコンクリート躯体の接合部開き量の許容値を
20mm以下とすることにより、PC鋼材の使用量を低
減し、かつ、接合部に用いる防水型で伸縮性能をもつ接
合材の性能に応じた防水型接合材を選定することを特徴
とするプレキャスト共同溝施工法。 【数1】 【数2】 【数3】 【数4】 【数5】
1. A predetermined number of precast concrete skeletons are provided to pre-stress by a post-tensioning method in order to deal with axial stretching deformation acting force such as seismic waves and bending deformation acting force in a direction perpendicular to the axis. It is assumed that the joint between the concrete frames does not open when the directional elastic deformation acting force is within the stress due to the prestressing of the PC steel material, and when the axial extensible deformation acting force exceeds the initial introduction stress, the opening amount is calculated by Equation 1. When the stress of the PC steel is calculated by the formula 2, when the bending deformation acting force in the direction perpendicular to the axis exceeds the prestress, the opening amount is calculated by the formulas 3 and 4, and the opening amount is calculated by the formula 5
By determining the stress of the C steel material, checking the allowable value of the PC steel material, and setting the allowable value of the opening amount of the joint portion of the precast concrete frame to 20 mm or less, the usage amount of the PC steel material can be reduced and used for the joint portion. A precast joint groove construction method characterized in that a waterproof type joint material is selected according to the performance of a waterproof type and stretchable joint material. [Equation 1] [Equation 2] [Equation 3] [Equation 4] [Equation 5]
【請求項2】 地震波動等の軸方向作用力及び軸直角方
向の曲げ変形作用力に対応するため、プレキャストコン
クリート躯体を所定数配設し、ポストテンション方式に
てPC鋼材によりプレストレスを与えて棒状の梁とな
し、連結梁間での軸方向伸縮変形作用力による開き量、
変位量は地震波動・棒状の梁とした長さ・埋設地盤の種
別により式6により継手材性能に応じた最適な可撓性継
手間隔を求めるとともに、連結梁間での軸直角方向の曲
げ変形作用力による開き量、変位量は地震波動・棒状の
梁とした長さ・埋設地盤の種別により式7,8により求
め、また、連結梁間での軸直角方向のせん断変形作用力
による変位量は式9により継手材性能に応じた最適な可
撓性継手間隔を求め、設置間隔・伸び量に応じた可撓性
継手材を選定することを特徴とするプレキャスト共同溝
施工法。 【数6】 【数7】 【数8】 【数9】
2. A predetermined number of precast concrete skeletons are provided and prestressed with a PC steel material by a post-tension method in order to cope with the axial action force such as seismic waves and the bending deformation action force in the direction perpendicular to the axis. Without a bar-shaped beam, the amount of opening due to the axial stretching deformation acting force between the connecting beams,
The amount of displacement is calculated based on the seismic wave, the length of a bar-shaped beam, and the type of buried ground, using Equation 6 to find the optimum flexible joint spacing according to the joint material performance, and the bending deformation action between the connecting beams in the direction perpendicular to the axis. The amount of opening and the amount of displacement due to the force are determined by the formulas 7 and 8 according to the seismic wave, the length of the bar-shaped beam, and the type of the buried ground, and the amount of displacement due to the shear deformation acting force between the connecting beams is expressed by the formula. The precast joint groove construction method characterized in that the optimum flexible joint spacing according to the joint material performance is obtained according to 9, and the flexible joint material is selected according to the installation spacing and the amount of extension. [Equation 6] [Equation 7] [Equation 8] [Equation 9]
JP02294294A 1994-02-22 1994-02-22 Precast joint groove construction method Expired - Fee Related JP3644981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02294294A JP3644981B2 (en) 1994-02-22 1994-02-22 Precast joint groove construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02294294A JP3644981B2 (en) 1994-02-22 1994-02-22 Precast joint groove construction method

Publications (2)

Publication Number Publication Date
JPH07229133A true JPH07229133A (en) 1995-08-29
JP3644981B2 JP3644981B2 (en) 2005-05-11

Family

ID=12096687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02294294A Expired - Fee Related JP3644981B2 (en) 1994-02-22 1994-02-22 Precast joint groove construction method

Country Status (1)

Country Link
JP (1) JP3644981B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152036A (en) * 2017-06-07 2017-09-12 扬州工业职业技术学院 A kind of pipe gallery and its construction method
CN107268680A (en) * 2017-08-09 2017-10-20 中冶京诚工程技术有限公司 Prefabricated pair of storehouse underground pipe gallery
CN108797638A (en) * 2018-06-01 2018-11-13 中国建筑股份有限公司 Integrated assembled piping lane based on composite bottom board and its construction method
JP2020180677A (en) * 2019-04-26 2020-11-05 株式会社ホクコン Pipe conduit structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152036A (en) * 2017-06-07 2017-09-12 扬州工业职业技术学院 A kind of pipe gallery and its construction method
CN107268680A (en) * 2017-08-09 2017-10-20 中冶京诚工程技术有限公司 Prefabricated pair of storehouse underground pipe gallery
CN108797638A (en) * 2018-06-01 2018-11-13 中国建筑股份有限公司 Integrated assembled piping lane based on composite bottom board and its construction method
JP2020180677A (en) * 2019-04-26 2020-11-05 株式会社ホクコン Pipe conduit structure

Also Published As

Publication number Publication date
JP3644981B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR20030019937A (en) Device of Innovative Prestressed Scaffolding System for Improving Workability
KR101255027B1 (en) Precast rahmen type box culvert
Li et al. Case study of courtyard house damaged by expansive soils
KR102357963B1 (en) Earthquake resistant slurry wall structure
JPH07229133A (en) Precast underground multi-purpose duct construction method
JPH1018308A (en) Liquefaction prevention structure for building ground
US6540445B1 (en) Concrete silt fence
EP0051091B1 (en) Riser pipe assembly for use in production systems
JP3001086B2 (en) Column structure in underground structure
김낙경 et al. Development of innovative prestressed support earth retention system
JPH07317087A (en) Connecting structure of wall made of steel and reinforced concrete floor slab
JP3364432B2 (en) Stone retaining wall
JP3063673B2 (en) Foundation structure of building with soil cement pillar row retaining wall tied to frame
JP2885090B2 (en) Construction method of the head of the retaining wall which also serves as the underground external wall of the permanent structure in the reverse-casting method
JP2792554B2 (en) Installation method of caisson for breakwater
JPH02243822A (en) Reinforced soil retaining wall
JP2847694B2 (en) Breakwater caisson and method of connecting them
JPH09296427A (en) Structure in water area and construction method thereof
JPS621339Y2 (en)
JPS6172126A (en) Method of building protection wall body
JP2987371B2 (en) Underground diaphragm wall
JP3049347B2 (en) Earth retaining wall
JPH0432892B2 (en)
JP2003147778A (en) Concrete structure and its design method
JPH08134849A (en) Raising type guard fence construction method of retaining wall and raising type guard fence structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees