JPH07228934A - Titanium material for soda electrolysis anode - Google Patents

Titanium material for soda electrolysis anode

Info

Publication number
JPH07228934A
JPH07228934A JP6021133A JP2113394A JPH07228934A JP H07228934 A JPH07228934 A JP H07228934A JP 6021133 A JP6021133 A JP 6021133A JP 2113394 A JP2113394 A JP 2113394A JP H07228934 A JPH07228934 A JP H07228934A
Authority
JP
Japan
Prior art keywords
corrosion resistance
titanium
alkali
soda
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6021133A
Other languages
Japanese (ja)
Other versions
JP2943594B2 (en
Inventor
Tatsuo Nagata
辰夫 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6021133A priority Critical patent/JP2943594B2/en
Publication of JPH07228934A publication Critical patent/JPH07228934A/en
Application granted granted Critical
Publication of JP2943594B2 publication Critical patent/JP2943594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain a titanium material for soda electrolysis anode, excellent in alkali corrosion resistance as well as in crevice corrosion resistance in a neutral chloride environment, by specifying the composition of an alloy consisting of Pd, Ru, Fe, O, and Ti. CONSTITUTION:This material is a titanium material for soda electrolysis anode having an alloy composition consisting of, by weight, 0.01-0.10% each of Pd and/or Ru, <=0.20% Fe, <=0.30% O, and the balance Ti with inevitable impurities. This titanium material can be suitably used for a soda electrolysis plant where the material is brought into contact with high temp. salt water of about 80-100 deg.C and the possibility of contamination with alkali, such as NaOH, is present.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、80〜100 ℃の高温塩水
に接し、かつ水酸化ナトリウムのようなアルカリの混入
の可能性のあるソーダ電解プラントの陽極用チタン材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium material for an anode of a soda electrolysis plant which is in contact with hot salt water of 80 to 100 ° C. and may contain an alkali such as sodium hydroxide.

【0002】[0002]

【従来の技術】今日、ソーダ (食塩) 電解は、殆どが隔
膜法によって行われている。隔膜法は、イオン交換膜で
ある隔膜で区画された陽極室と陰極室とを用い、食塩水
を陽極室に連続的に供給してまず陽極表面で塩素を放出
し、次いで陰極室に送って今度は陰極面で水素を発生さ
せ、陽極室から隔膜で隔てられた陰極室に蓄積された水
酸化ナトリウムを回収する方法である。この陽極室には
80〜100 ℃、10〜25%NaCl水溶液が入れられ、操業中は
塩素ガス発生電位 (約+1.2 〜1.4 V 標準水素電極基
準) になるように外部電源から電圧が加えられているた
め、環境としては中性での塩素腐食性高温環境である。
2. Description of the Related Art Today, soda electrolysis is mostly carried out by the diaphragm method. The diaphragm method uses an anode chamber and a cathode chamber, which are partitioned by a diaphragm that is an ion exchange membrane, and continuously supplies saline to the anode chamber to release chlorine on the anode surface first and then to send it to the cathode chamber. This time, it is a method of generating hydrogen on the cathode surface and recovering sodium hydroxide accumulated in the cathode chamber separated from the anode chamber by the diaphragm. In this anode chamber
Since a 10 to 25% NaCl aqueous solution is placed at 80 to 100 ° C and a voltage is applied from an external power source so that the chlorine gas generation potential (about +1.2 to 1.4 V standard hydrogen electrode reference) is obtained during operation, The environment is a chlorine-corrosive high temperature environment that is neutral.

【0003】この陽極純チタン材の表面には白金、ロジ
ウム、パラジウム、イリジウム等の金属の酸化物が被覆
され電解効率が改善されているが、陽極寿命向上のため
にはその母材となるチタン材自体の耐食性向上が必要と
なっている。
The surface of this anode pure titanium material is coated with an oxide of a metal such as platinum, rhodium, palladium, iridium or the like to improve the electrolysis efficiency. Titanium, which is the base material for improving the life of the anode, is used. It is necessary to improve the corrosion resistance of the material itself.

【0004】そこで、このような高温腐食環境に耐える
陽極として、その本体を構成する耐食性材料には、従来
より、塩素ガス、塩素イオン等に対するすぐれた耐食性
を示す材料として知られている純チタンが広く使われて
いる。
Therefore, as the anode which can withstand such a high temperature corrosive environment, pure titanium, which has been known as a material having excellent corrosion resistance against chlorine gas, chlorine ions, etc., has been used as the corrosion resistant material constituting the body. Widely used.

【0005】しかしながら、電極表面のように露出面の
腐食に関しては純チタンはすぐれた耐食性を示すが、電
極支持部などのように電極面を適宜把持手段で支持・固
定するときのように、固定部材と電極面との間に非常に
微細な隙間が存在するとNaCl溶液中といえども純チタン
の耐食性劣化は避けられないことが判明した。
However, although pure titanium shows excellent corrosion resistance with respect to corrosion of exposed surfaces such as the electrode surface, it is fixed as in the case where the electrode surface is appropriately supported / fixed by the gripping means such as the electrode supporting portion. It was found that the deterioration of the corrosion resistance of pure titanium is unavoidable even in a NaCl solution if a very fine gap exists between the member and the electrode surface.

【0006】ところで、従来より一般的な高温、中性塩
化物環境における耐隙間腐食性の良好な材料としては、
チタン合金が使用されることがあり、そのような合金と
しては、Ti−0.15Pd (ASTM、Grade 7)、Ti−0.8 Ni−0.
3 Mo合金 (ASTM、Grade 12)、Ti−(0.005〜0.2 %) Ru
−(0.01 〜2.0 %) Ni合金 (特開昭61−127844号公報参
照) 、Ti− (0.03〜0.1 %) Pd合金 (特開昭63−118034
号公報参照) が開発されている。特に、上記特開昭61−
127844号公報に開示されたTi−0.05%Ru−0.5%Niは、
ソーダ電解陽極環境である80〜100 ℃、10〜25%NaCl溶
液中においても良好な耐隙間腐食性を示すことが報告さ
れている (「ソーダと塩素」No.12,1987年、pp.21 〜2
3) 。
By the way, as a material having good crevice corrosion resistance in a high temperature and neutral chloride environment which is more general than conventional materials,
Titanium alloys may be used and such alloys include Ti-0.15Pd (ASTM, Grade 7), Ti-0.8 Ni-0.
3 Mo alloy (ASTM, Grade 12), Ti- (0.005-0.2%) Ru
-(0.01-2.0%) Ni alloy (see JP-A-61-127844), Ti- (0.03-0.1%) Pd alloy (JP-A-63-118034)
(See Japanese Patent Publication) is being developed. In particular, the above-mentioned JP-A-61-1
The Ti-0.05% Ru-0.5% Ni disclosed in 127844 is:
It has been reported that it exhibits good crevice corrosion resistance even in a 10-25% NaCl solution at 80-100 ° C, which is an environment for soda electrolytic anodes ("Soda and Chlorine" No. 12, 1987, pp. 21). ~ 2
3).

【0007】[0007]

【発明が解決しようとする課題】したがって、純チタン
に代えてチタン合金をソーダ電解用陽極材料として使用
することが考えられるが、今度は、アルカリ環境下での
腐食という問題が生じた。以下、このアルカリ環境下で
の耐食性を耐アルカリ腐食性という。
Therefore, it is conceivable to use a titanium alloy as an anode material for soda electrolysis in place of pure titanium, but this time, a problem of corrosion in an alkaline environment occurred. Hereinafter, the corrosion resistance in this alkaline environment is referred to as alkali corrosion resistance.

【0008】すなわち、ソーダ電解槽運転時には陰極室
と陽極室との境界にあるイオン交換膜の経時劣化により
陰極室から陽極室へのアルカリ成分の流入が生じること
がしばしばあり、このような正電圧がかかった状態のア
ルカリ環境下では、今度は、純チタン材ばかりでなく、
Ti−0.05%Ru−0.5 %Ni合金も腐食してしまうという問
題があった。
That is, when the soda electrolyzer is operated, the alkaline component often flows from the cathode chamber to the anode chamber due to the deterioration of the ion exchange membrane at the boundary between the cathode chamber and the anode chamber, and such a positive voltage is generated. In an alkaline environment with a buildup, this time, not only pure titanium material,
There is a problem that the Ti-0.05% Ru-0.5% Ni alloy is also corroded.

【0009】したがって、ソーダ電解に際しての陽極電
極材の寿命改善のためには、従来の耐隙間腐食性で評価
される耐食性ばかりでなく耐アルカリ耐食性も同時に必
要とされるが、このような特性を有する材料は知られて
いなかった。
Therefore, in order to improve the life of the anode electrode material during soda electrolysis, not only the conventional corrosion resistance evaluated by crevice corrosion resistance, but also alkali corrosion resistance is required at the same time. The material it had was unknown.

【0010】ここに、本発明の目的は、中性塩化物環境
での耐隙間腐食性に優れるとともに、かつ耐アルカリ腐
食性にも優れたソーダ電解用チタン材を提供することに
ある。
It is an object of the present invention to provide a titanium material for soda electrolysis which is excellent in crevice corrosion resistance in a neutral chloride environment and also excellent in alkali corrosion resistance.

【0011】[0011]

【課題を解決するための手段】本発明者らはソーダ電解
環境におけるチタン材の耐食性、特に耐隙間腐食性を検
討し、以下の知見を得て、本発明を完成した。
The present inventors have examined the corrosion resistance of titanium materials in a soda electrolysis environment, especially the crevice corrosion resistance, and obtained the following findings to complete the present invention.

【0012】耐隙間腐食性は、純チタンでは不十分で
あるが、PdやNiを単独で添加あるいはNiとMoまたはNiと
Ru同時にチタンに添加することによりチタンの耐隙間腐
食性は改善され、適正な添加量であればソーダ電解環境
において十分な耐隙間腐食性が得られた。
Although crevice corrosion resistance is insufficient with pure titanium, Pd and Ni are added alone or Ni and Mo or Ni are added.
The crevice corrosion resistance of titanium was improved by adding it to titanium at the same time as Ru, and sufficient crevice corrosion resistance was obtained in a soda electrolysis environment with an appropriate amount of addition.

【0013】一方、正電圧がかかった状態での耐アル
カリ腐食性 (アルカリ環境での耐食性) は、チタン合金
と比較してむしろ純Tiが良好であり、Fe、Ni、Moを添加
すると、この耐アルカリ腐食性は低下する傾向を示し、
Fe、Ni量が増えた場合に特に顕著な劣化が認められ、Pd
はほとんど耐アルカリ腐食性に影響を与えないだけでな
く、微量添加した場合にはより改善されることがわかっ
た。
On the other hand, as for the alkali corrosion resistance under a positive voltage (corrosion resistance in an alkaline environment), pure Ti is better than the titanium alloy, and when Fe, Ni and Mo are added, Alkali corrosion resistance tends to decrease,
Especially when the Fe and Ni contents were increased, remarkable deterioration was observed.
It has been found that not only has little effect on the alkali corrosion resistance, but it is further improved when a small amount is added.

【0014】また正電圧がかかった状態での耐アルカ
リ腐食性は、市販材Ti−0.15Pd (ASTMGrade 7) も良好
であったが、Pdを添加しすぎると僅かではあるが腐食速
度の増加が認められたため、Pd添加量は0.15%未満の方
が好ましく、Pd添加量をGrade7 よりも抑えて添加した
耐食性材料がソーダ電解用の陽極材として適正である。
The commercial material Ti-0.15Pd (ASTM Grade 7) was also good in alkali corrosion resistance under a positive voltage, but if Pd was added too much, the corrosion rate increased slightly. Since it was observed, the Pd addition amount is preferably less than 0.15%, and the corrosion-resistant material added with the Pd addition amount being suppressed as compared to Grade 7 is suitable as an anode material for soda electrolysis.

【0015】また、前記を満たす材料は高価なPd添
加量がGrade 7 よりも少量であり、より低コストの材料
であるメリットもみられる。 Pdと同時にRu添加も検討した結果、Pdよりは効果が低
いもののRu添加によっても、Pdと同様な効果が得られる
ことが分かった。
Further, the material satisfying the above conditions has a small amount of expensive Pd added as compared to Grade 7, and there is an advantage that it is a lower cost material. As a result of examining addition of Ru at the same time as Pd, it was found that although the effect is lower than that of Pd, the effect similar to that of Pd can be obtained by adding Ru.

【0016】前述の特開昭63−118034号公報には、Ti
−(0.03 〜0.1%) Pd合金が開示されているが、その用途
は発電所の復水器のように中性環境下での耐隙間腐食性
を示す用途について記載されているだけである。このよ
うな耐アルカリ腐食性は予想外といえる。
In the above-mentioned Japanese Patent Laid-Open No. 63-118034, Ti
Although-(0.03-0.1%) Pd alloys are disclosed, their use is only described for crevice corrosion resistance in neutral environments such as power plant condensers. It can be said that such alkali corrosion resistance is unexpected.

【0017】よって、本発明の要旨とするところは、重
量%で、PdおよびRuの1種または2種それぞれ: 0.01〜
0.10%、Fe:0.20%以下、酸素:0.30%以下、残部不可
避的不純物およびチタンからなる合金組成を有すること
を特徴とするソーダ電解陽極用チタン材である。
Therefore, the gist of the present invention is that, in% by weight, one or two of Pd and Ru are each: 0.01 to
A titanium material for a soda electrolytic anode, which has an alloy composition of 0.10%, Fe: 0.20% or less, oxygen: 0.30% or less, and the balance unavoidable impurities and titanium.

【0018】[0018]

【作用】本発明において合金組成を上述のごとく限定し
た理由を述べる。なお、本明細書において「%」は特に
ことわりがない限り、「重量%」である。
The reason why the alloy composition is limited as described above in the present invention will be described. In the present specification, “%” is “% by weight” unless otherwise specified.

【0019】Pd、Ru:Pd、Ruは、いずれもチタンの耐隙
間腐食性と耐アルカリ耐食性を向上させるが、耐隙間腐
食性と耐アルカリ耐食性を向上するには、それらの1種
または2種を、それぞれ、0.01%以上の添加が必要であ
り、一方、0.10%を越えるPdまたはRuを添加しても耐隙
間腐食性は飽和するだけでなく、アルカリ腐食量も増加
する傾向にあるため、本発明においては、それらの1種
又は2種をそれぞれ0.10%以下に制限する。好ましく
は、それぞれ、0.03〜0.07%である。
Pd and Ru: Pd and Ru all improve the crevice corrosion resistance and alkali corrosion resistance of titanium, but in order to improve the crevice corrosion resistance and alkali corrosion resistance, one or two of them can be used. Respectively, it is necessary to add 0.01% or more.On the other hand, addition of Pd or Ru exceeding 0.10% not only saturates the crevice corrosion resistance but also tends to increase the alkali corrosion amount. In the present invention, each of one or two of them is limited to 0.10% or less. Preferably, each is 0.03 to 0.07%.

【0020】Fe:Feにはチタンの結晶粒微細化効果によ
る機械的性質の改善効果があるが、0.20%を越えると耐
隙間腐食性、耐アルカリ耐食性ともに劣化するために、
本発明においては0.20%を上限とする。好ましくは、0.
15%以下である。
Fe: Fe has the effect of improving the mechanical properties by the grain refinement effect of titanium, but if it exceeds 0.20%, both crevice corrosion resistance and alkali corrosion resistance deteriorate.
In the present invention, the upper limit is 0.20%. Preferably, 0.
It is less than 15%.

【0021】酸素:酸素は機械的強度を増大させる効果
があるが、冷間加工性を低下させない範囲である0.30%
を上限とする。好ましくは、0.10%以下である。
Oxygen: Oxygen has the effect of increasing the mechanical strength, but does not deteriorate the cold workability. 0.30%
Is the upper limit. It is preferably 0.10% or less.

【0022】通常、チタンおよびチタン合金には不純物
として一般にCおよびNが含まれるが、成分制御が困難
であり、市販板材に含まれる程度の量 (0.005 〜0.015
%)であれば、本発明においては特に問題とならない。
Normally, titanium and titanium alloys generally contain C and N as impurities, but it is difficult to control the components and the amount (0.005 to 0.015) that is contained in a commercially available sheet material is used.
%), There is no particular problem in the present invention.

【0023】中性腐食環境とアルカリ腐食環境:すでに
述べたように、従来の純チタンは、ソーダ電解陽極用と
しては、中性腐食環境下で用いられるかぎり、十分に実
用的な耐食性を示すが、製造コスト低減が強く求められ
る現在は、耐隙間腐食性の改善が求められ、純チタンに
代えてチタン合金が使用される傾向にある。しかし、そ
の後の研究開発の結果、隔膜劣化に伴うアルカリ液流入
により陽極室がアルカリ化した場合にはそれまで十分な
耐食性を示しているチタン合金でも著しい寿命劣化が見
られる。この原因についてはまだ十分に解明されておら
ず、例えばNiとTiの金属間化合物による不働態膜の破壊
のためと考えている。しかし、本発明にあっては、チタ
ン合金であっても前述のように、成分組成を特定したチ
タン合金を用いることで耐隙間腐食性および耐アルカリ
腐食性にみられる耐食性劣化の問題回避を図っているの
であり、これは予想外といえる。次に、本発明の作用に
ついて実施例によってさらに具体的に説明する。
Neutral Corrosion Environment and Alkali Corrosion Environment : As described above, conventional pure titanium exhibits sufficient practical corrosion resistance as long as it is used in a neutral corrosion environment for a soda electrolytic anode. Currently, there is a strong demand for manufacturing cost reduction, and there is a demand for improvement in crevice corrosion resistance, and a titanium alloy tends to be used instead of pure titanium. However, as a result of subsequent research and development, when the anode chamber is alkalized due to the inflow of alkaline liquid due to the deterioration of the diaphragm, even titanium alloys that have shown sufficient corrosion resistance up to that point show a marked deterioration in life. The cause has not been fully clarified yet, and it is considered that this is because, for example, the passivation film is destroyed by the intermetallic compound of Ni and Ti. However, in the present invention, even if it is a titanium alloy, as described above, by using a titanium alloy having a specified component composition, it is possible to avoid the problem of deterioration in corrosion resistance, which is seen in crevice corrosion resistance and alkali corrosion resistance. This is unexpected. Next, the operation of the present invention will be described more specifically by way of examples.

【0024】[0024]

【実施例】表1に示す合金組成を有する材料を溶製し
た。製造にあたっては非消耗電極式プラズマアーク溶解
炉を用いて、厚さ20mm×幅75mm×長さ95mmの角型インゴ
ットを溶製した。その後、真空中で1100℃×24hrの均質
化熱処理を行い、熱間鍛造、熱間圧延、機械加工、真空
焼鈍 (720 ℃×0.5hr)を行った。
Example A material having an alloy composition shown in Table 1 was melted. In manufacturing, using a non-consumable electrode type plasma arc melting furnace, a square ingot having a thickness of 20 mm, a width of 75 mm and a length of 95 mm was melted. After that, homogenization heat treatment was performed in vacuum at 1100 ° C. for 24 hours, and hot forging, hot rolling, machining, and vacuum annealing (720 ° C. × 0.5 hr) were performed.

【0025】このようにして得た供試材からそれぞれ厚
さ2mm×一辺30mm正方形ならびに厚さ2mm×直径15mm円
形の試験片を作製し、前者を隙間腐食試験に、後者をア
ルカリ腐食試験にそれぞれ供した。いずれの場合も試験
片表面をエメリー紙#320で研磨後、アセトンで脱脂洗浄
後乾燥し、各試験に供した。
From the test material thus obtained, test pieces having a thickness of 2 mm × a side of 30 mm and a square of a thickness of 2 mm × diameter of 15 mm were prepared, the former for the crevice corrosion test and the latter for the alkali corrosion test, respectively. I served. In each case, the surface of the test piece was polished with emery paper # 320, degreased and washed with acetone, and then dried, and subjected to each test.

【0026】隙間腐食試験は試験片と同サイズのテフロ
ン板を試験片−テフロン板−試験片の順に並べて、一辺
30mmの正方形の中央の穴に純Tiボルトを通し、大気焼鈍
により酸化処理した純チタン製ナットで締め付けること
で隙間を形成させた試験片を、ガラス容器に入れた90℃
の25%NaCl溶液中に浸漬し、720hr 腐食試験後、隙間部
の腐食を目視観察し腐食の有無を調べた。
In the crevice corrosion test, a Teflon plate of the same size as the test piece is arranged in the order of test piece-Teflon plate-test piece, and one side
A pure Ti bolt was passed through the hole in the center of a 30 mm square, and a test piece with a gap formed by tightening it with a nut made of pure titanium that had been oxidized by atmospheric annealing was placed in a glass container at 90 ° C.
It was dipped in a 25% NaCl solution of No. 2 and subjected to a 720-hour corrosion test, and the corrosion in the gap was visually observed to check the presence or absence of corrosion.

【0027】なお、純チタン製ボルト、ナットと試験片
とはテフロン製ブッシュで絶縁しており、締め付け力は
トルクレンチを用いて10 kgf-cm 一定とし、NaCl溶液は
非脱気状態で用いた。1材質につき3組の試験片を用
い、それぞれの結果を求めた。
The pure titanium bolts and nuts and the test piece were insulated with a Teflon bush, the tightening force was kept constant at 10 kgf-cm using a torque wrench, and the NaCl solution was used in a non-deaerated state. . Three sets of test pieces were used for each material, and the respective results were obtained.

【0028】耐アルカリ腐食試験は、ポテンショセット
電源を用い90℃、30%NaOH水溶液中で試験片がアノード
分極されるように+1.3 V (標準水素電極基準) に設定
し、200hr 保持した後の重量変化より試験片腐食速度を
計算した。なお、NaOH溶液は非脱気状態で試験した。従
来材として JIS2種純チタン市販材、ASTM Grade 7、12
市販材を用いた。
The alkali corrosion resistance test was carried out by using a potentioset power source at 90 ° C. in a 30% NaOH aqueous solution so that the test piece was anodically polarized, set to +1.3 V (standard hydrogen electrode standard), and after holding for 200 hours. The corrosion rate of the test piece was calculated from the weight change of the test piece. The NaOH solution was tested in a non-degassed state. As conventional materials, JIS Grade 2 pure titanium commercial materials, ASTM Grade 7, 12
A commercially available material was used.

【0029】これらの試験結果を表1にまとめて示す。
実施例No.1〜10は本発明材、No.11〜12は従来材、No.13
〜21は比較材である。耐隙間腐食性については腐食な
し (○印) 、耐アルカリ腐食性については腐食量0.10mm
/y以下である場合、合格とする。
The results of these tests are summarized in Table 1.
Examples No. 1 to 10 are materials of the present invention, Nos. 11 to 12 are conventional materials, No. 13
-21 are comparative materials. No crevice corrosion resistance (○), alkali corrosion resistance 0.10 mm
If it is less than / y, it passes.

【0030】表1に示す結果から次のことが分かる。従
来材No.11 は純チタン材であり耐隙間腐食性が不十分で
あり、同じく従来材No.12 のASTM Grade7 は耐隙間腐食
性に優れるが耐アルカリ腐食性はやや不十分であり、従
来材No.13 のASTM Grade 12 は耐アルカリ腐食性が不十
分である。
The following can be seen from the results shown in Table 1. Conventional material No. 11 is a pure titanium material and its crevice corrosion resistance is insufficient. Similarly, conventional material No. 12 ASTM Grade 7 has excellent crevice corrosion resistance, but its alkali corrosion resistance is somewhat insufficient. Material No. 13, ASTM Grade 12, has insufficient alkali corrosion resistance.

【0031】比較材No.14 、15の結果より、Pd量につい
ては0.01%以下では耐隙間腐食性改善が不十分であり、
0.25%では耐アルカリ腐食性が比較材No.18 の場合より
やや低下し、Pdを多く添加するメリットが全くないこと
が分かる。
From the results of comparative materials Nos. 14 and 15, if the Pd content is 0.01% or less, the improvement in crevice corrosion resistance is insufficient,
At 0.25%, the alkali corrosion resistance is slightly lower than that of comparative material No. 18, and it can be seen that there is no merit of adding a large amount of Pd.

【0032】比較材No.16 、17の結果より、Ru量もPd量
の場合と同様、0.01%以下では耐隙間腐食性が不十分で
あり、0.24%では耐隙間腐食性は飽和し耐アルカリ腐食
性に低下が認められるために0.10%超の添加はメリット
ないことが分かる。
From the results of comparative materials Nos. 16 and 17, the crevice corrosion resistance was insufficient at 0.01% or less and the crevice corrosion resistance was saturated at 0.24% as in the case of the Pd amount. It can be seen that addition of more than 0.10% has no merit because a decrease in corrosiveness is observed.

【0033】比較材No.19 はFeの影響を示しており、Fe
量が多すぎると耐隙間腐食性と耐アルカリ腐食性のいず
れも劣化する。比較材No.20 、21はNiの影響を示してお
り、従来材No.13 の場合と同様、Niは耐隙間腐食性改善
には効果あるものの、耐アルカリ腐食性を顕著に低下さ
せることが分かる。これからも耐隙間腐食性および耐ア
ルカリ腐食性のいずれにもすぐれた効果を示すという、
本発明の予想外の効果が明らかである。
Comparative material No. 19 shows the effect of Fe.
If the amount is too large, both crevice corrosion resistance and alkali corrosion resistance deteriorate. Comparative materials No. 20 and 21 show the effect of Ni.As with the conventional material No. 13, although Ni is effective in improving crevice corrosion resistance, it can significantly reduce alkali corrosion resistance. I understand. From now on, it will show excellent effects on both crevice corrosion resistance and alkali corrosion resistance.
The unexpected effect of the present invention is clear.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上のように、本発明によれば高価なPd
量をむしろ低減することで電極寿命延長の阻害要因であ
る耐アルカリ腐食性を改善できるのであって、安価な手
段でもって耐隙間腐食性に優れかつ耐アルカリ腐食性に
も優れたソーダ電解陽極用チタン材が得られるというこ
とから、本発明の実用上の価値は大きい。
As described above, according to the present invention, expensive Pd
By reducing the amount, it is possible to improve the alkali corrosion resistance, which is a factor that hinders the extension of the electrode life, and is a soda electrolytic anode that has excellent crevice corrosion resistance and alkali corrosion resistance by an inexpensive means. Since a titanium material can be obtained, the practical value of the present invention is great.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 PdおよびRuの1種または2種それぞれ: 0.01〜0.10%、
Fe:0.20%以下、 酸素:0.30%以下、 残部不可避的不純物およびチタンからなる合金組成を有
することを特徴とするソーダ電解陽極用チタン材。
1. One or two each of Pd and Ru in weight%: 0.01 to 0.10%,
Fe: 0.20% or less, Oxygen: 0.30% or less, and a titanium material for a soda electrolytic anode, which has an alloy composition of the balance unavoidable impurities and titanium.
JP6021133A 1994-02-18 1994-02-18 Titanium material for soda electrolytic anode Expired - Lifetime JP2943594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021133A JP2943594B2 (en) 1994-02-18 1994-02-18 Titanium material for soda electrolytic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021133A JP2943594B2 (en) 1994-02-18 1994-02-18 Titanium material for soda electrolytic anode

Publications (2)

Publication Number Publication Date
JPH07228934A true JPH07228934A (en) 1995-08-29
JP2943594B2 JP2943594B2 (en) 1999-08-30

Family

ID=12046403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021133A Expired - Lifetime JP2943594B2 (en) 1994-02-18 1994-02-18 Titanium material for soda electrolytic anode

Country Status (1)

Country Link
JP (1) JP2943594B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041190A (en) * 2018-09-11 2020-03-19 日本製鉄株式会社 Titanium alloy and manufacturing method therefor
EP4023782A4 (en) * 2019-10-30 2022-08-17 Nippon Steel Corporation Titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041190A (en) * 2018-09-11 2020-03-19 日本製鉄株式会社 Titanium alloy and manufacturing method therefor
EP4023782A4 (en) * 2019-10-30 2022-08-17 Nippon Steel Corporation Titanium alloy

Also Published As

Publication number Publication date
JP2943594B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
WO2008018262A1 (en) Aluminum alloy for anodizing having durability, contamination resistance and productivity, method for producing the same, aluminum alloy member having anodic oxide coating, and plasma processing apparatus
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
US20060003174A1 (en) Titanium material and method for manufacturing the same
US11958140B2 (en) Aluminum welding alloys with improved performance
CN113412339B (en) Titanium alloy with improved corrosion resistance, strength, ductility and toughness
JP2000512345A (en) Nickel-chromium-molybdenum-alloy
JP4287191B2 (en) Nickel-chromium-molybdenum alloy with corrosion resistance to local corrosion due to wet-processed phosphoric acid and chloride
JPH01168837A (en) High molybdenum base alloy
EP1806799B1 (en) Titanium based material for fuel cell separator and process for producing same
JP2943594B2 (en) Titanium material for soda electrolytic anode
WO2004015151A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
CN1036605C (en) 550MPa grade nitric acid rust resisting titanium alloy
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
JPH0754081A (en) High corrosion-resistant titanium alloy excellent in cold processibility and weldability
CN111270118A (en) Corrosion-resistant ternary magnesium alloy and preparation method thereof
JP4360229B2 (en) Pharmaceutical manufacturing plant components
US20060086697A1 (en) Welding electrode material and an electrode made of the material
JP2013047369A (en) Titanium alloy
CN108396175A (en) A kind of high strength and low cost titanium alloy and the preparation method and application thereof
JP2800651B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
JPS6256219B2 (en)
JPH0457735B2 (en)
JPH06128669A (en) Anode member made of titanium alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term