JPH07227673A - High-efficiency tig welding method - Google Patents

High-efficiency tig welding method

Info

Publication number
JPH07227673A
JPH07227673A JP4176294A JP4176294A JPH07227673A JP H07227673 A JPH07227673 A JP H07227673A JP 4176294 A JP4176294 A JP 4176294A JP 4176294 A JP4176294 A JP 4176294A JP H07227673 A JPH07227673 A JP H07227673A
Authority
JP
Japan
Prior art keywords
gas
welding
primary
shield
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4176294A
Other languages
Japanese (ja)
Inventor
Shinji Kodama
真二 児玉
Rokuro Kono
六郎 河野
Iwao Shimizu
巖 清水
Norimitsu Baba
則光 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4176294A priority Critical patent/JPH07227673A/en
Publication of JPH07227673A publication Critical patent/JPH07227673A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide a method for executing high-efficiency TIG welding while well maintaining the shielding performance. CONSTITUTION:Gaseous He is used at a flow rate 6 to 10 liter/min as a primary shielding gas and gaseous Ar at a flow rate 10 to 30 liter/min as a secondary shielding gas in double shielded TIG welding using the primary shielding gas to enclose a tungsten electrode 1 and the secondary shielding gas to enclose the primary shielding gas. A primary shielding nozzle 2 is extended to a range of <=20mm from a secondary shielding nozzle 3 according to the shape of a groove. An effect of the high potential tendency of the gaseous He and an effect of the good shielding performance of the gaseous Ar are obtd. in combination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種金属材料の構造物
における高能率TIG溶接法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high efficiency TIG welding method for structures of various metal materials.

【0002】[0002]

【従来の技術】これまでのTIG溶接法において溶接能
率を上げるための方法は、(1)特開昭51−1286
51号公報に示されるようにシールドガスにHeガス、
He、Ar混合ガスを用いる。(2)例えば、中村吉
宗,実務展望,No.82,1981,p.20に示さ
れるように添加ワイヤに通電してワイヤ溶融量を増加さ
せる。(3)特開昭59−118274号公報等に示す
2重シールド法を用いてアークを絞り高温化させるなど
の方法が行われてきた。
2. Description of the Related Art A conventional method for increasing the welding efficiency in the TIG welding method is described in (1) JP-A-51-1286.
As disclosed in Japanese Patent Publication No. 51, the shield gas is He gas,
A mixed gas of He and Ar is used. (2) For example, Yoshimune Nakamura, Business Outlook, No. 82, 1981, p. The addition wire is energized to increase the amount of wire melting as shown at 20. (3) A method of narrowing the arc to raise the temperature using the double shield method disclosed in JP-A-59-118274 has been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記
(1)のHeガスを用いる方法では溶接金属に対するシ
ールド性が悪くなる。またHe、Ar混合ガスを用いる
方法は、例えば図2のAr、He混合ガス中のHe量の
アーク電圧に及ぼす影響を示すグラフ(HeatTra
nsport during Gas Tungste
n Arc Welding,J.P.Zijp,19
90,学位論文から引用)からわかるように、純Heガ
スにArガスが25%混ざるだけでほとんど純Arガス
のアーク電圧になってしまうため、これ以上のAr混合
率ではHeガスの効果が発揮されない。一方逆にこれ以
上のAr混合率ではHe濃度が高すぎるためシールド性
が悪くなる。また前記(2)の添加ワイヤに通電して溶
接能率を上げる方法は、溶接アークが不安定になり制御
が難しくなる。また前記(3)の2重シールド法では飛
躍的な溶接効率の増加が望めない。また、実開先に合わ
せて1次ノズルと母材間の距離を長くすると1次、2次
シールドガスが混合してしまい、アークを高温化できな
いという問題がある。
However, in the method (1) using the He gas, the shield property against the weld metal deteriorates. The method using the He / Ar mixed gas is, for example, a graph (HeatTra) showing the influence of the He amount in the Ar / He mixed gas on the arc voltage in FIG.
nspurt burning Gas Tungste
n Arc Welding, J.M. P. Zijp, 19
90, quoted from a dissertation), the arc voltage of almost pure Ar gas is almost reached when only 25% of Ar gas is mixed with pure He gas. Not done. On the other hand, on the contrary, if the Ar mixing ratio is higher than this, the He concentration is too high, and the shielding property is deteriorated. In the method (2) of energizing the additive wire to increase the welding efficiency, the welding arc becomes unstable and control becomes difficult. Further, in the double shield method of (3) above, a dramatic increase in welding efficiency cannot be expected. Further, if the distance between the primary nozzle and the base material is increased according to the actual groove, the primary and secondary shield gases are mixed, and there is a problem that the arc cannot be heated to a high temperature.

【0004】そこで本発明は、開先形状によらず溶融金
属に対するシールド性を従来のArシールド程度に保っ
たまま、溶接アークの電位傾度を高くして高能率TIG
溶接を行うことを目的としてなされたものである。
Therefore, in the present invention, the potential gradient of the welding arc is increased and the high efficiency TIG is maintained while maintaining the shielding property against the molten metal to the extent of the conventional Ar shield regardless of the groove shape.
It was made for the purpose of welding.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
本発明の高能率TIG溶接法は、溶接アークを1次シー
ルドガスであるHeで作り、溶融金属に対するシールド
を2次シールドガスであるArで行うことによって、溶
融金属に対するシールド性を保ったまま、純Heの高い
電位傾度を利用して、高能率TIG溶接を実現すること
を特徴とする。また深い開先に対しては1次シールドノ
ズルを2次シールドノズルよりも長くのばすことによっ
てHeガスとArガスの混合を防ぐことを特徴とする。
In order to achieve the above object, in the high efficiency TIG welding method of the present invention, a welding arc is made of He which is a primary shield gas, and a shield for molten metal is Ar which is a secondary shield gas. By carrying out the method (1), high efficiency TIG welding is realized by utilizing the high potential gradient of pure He while maintaining the shielding property against molten metal. Further, for deep grooves, the primary shield nozzle is made longer than the secondary shield nozzle to prevent mixing of He gas and Ar gas.

【0006】すなわち本発明の要旨とするところは、タ
ングステン電極を囲む1次シールドガス、および1次シ
ールドガスを囲む2次シールドガスを用いて溶接する2
重シールドTIG溶接において、1次シールドガスにH
eガスを流量6〜10リットル/min、2次シールド
ガスにArガスを流量10〜30リットル/minで使
用し、溶接すること特徴とする高能率TIG溶接法、ま
た1次シールドノズルを2次シールドノズルより20m
m以下の範囲で伸ばすことを特徴とする上記の高能率T
IG溶接法、またさらにタングステン電極を1次シール
ドノズルの先端より3〜10mm伸ばすことを特徴とす
る上記の高能率TIG溶接法にある。
That is, the gist of the present invention is that welding is performed using a primary shield gas that surrounds the tungsten electrode and a secondary shield gas that surrounds the primary shield gas.
In heavy shield TIG welding, H is used as the primary shield gas.
A high-efficiency TIG welding method characterized by welding using e gas at a flow rate of 6 to 10 liters / min and secondary shield gas at a flow rate of 10 to 30 liters / min. 20m from the shield nozzle
The above-mentioned high efficiency T characterized by being stretched in a range of m or less
The high-efficiency TIG welding method is characterized in that the tungsten electrode is extended by 3 to 10 mm from the tip of the primary shield nozzle.

【0007】[0007]

【作用】本発明者等は様々なTIG溶接実験を繰り返
し、溶接能率を上げるための要因について検討した結
果、Heシールドによる溶接アーク電位傾度上昇が最も
支配的であるという知見を得た。そこでシールドガスの
効果について注目することにした。先に図2で示したよ
うに、HeガスにArガスを混合させて溶接を行うと、
少ないAr濃度でもほとんどArアークの電圧になって
しまう。そこで1次シールドガスに純He、2次シール
ドガスにArを用いて、溶接アークの電位傾度(アーク
電圧/アーク長)を上げ高能率溶接を行うための多くの
実験を行った。
As a result of repeating the various TIG welding experiments and examining the factors for increasing the welding efficiency, the present inventors have found that the increase in the welding arc potential gradient due to the He shield is the most dominant. Therefore, we decided to pay attention to the effect of the shielding gas. As shown in FIG. 2, when He gas is mixed with Ar gas and welding is performed,
Even if the Ar concentration is low, the voltage of the Ar arc is almost reached. Therefore, many experiments were performed to increase the potential gradient (arc voltage / arc length) of the welding arc and perform high-efficiency welding by using pure He as the primary shield gas and Ar as the secondary shield gas.

【0008】図1は本発明で使用した2重構造のノズル
を示す縦断面図である。溶接トーチはタングステン電極
1、1次シールドノズル2、2次シールドノズル3で構
成されている。図中4は母材開先部、5は溶融池であ
る。深い開先形状を持つ溶接部に対しては、1次シール
ドノズルの突き出し長さd1 を伸ばすことによって電極
突き出し長さd2 を伸ばさずに溶接することが可能とな
る。
FIG. 1 is a longitudinal sectional view showing a double structure nozzle used in the present invention. The welding torch is composed of a tungsten electrode 1, a primary shield nozzle 2 and a secondary shield nozzle 3. In the figure, 4 is a base material groove, and 5 is a molten pool. For a weld having a deep groove shape, it is possible to perform welding without extending the electrode protrusion length d 2 by extending the protrusion length d 1 of the primary shield nozzle.

【0009】図3は1次シールドガスにHe、2次シー
ルドガスにArを流した場合の1次シールドガスである
Heの流域をシュリーレン法によって観察した結果を示
すノズル部の縦断面図である。図3(a)は電極突き出
し長さが短い状態(d1 =0mm、d2 =5mm)で1
次シールドガスの純Heだけを流し2次シールドガスを
流さない場合であるが、Heガスが浮き上がってしまい
母材付近はシールドされていない。しかし2次シールド
ガスの純Arを流すと、同図(b)に示すように1次シ
ールドガスのHeが2次シールドガスのArによって閉
じ込められ、母材付近までHeによってシールドされて
いることがわかる。また図3(c)に示すように内ノズ
ルを短くしたまま電極突き出しを長くした状態(d1
0mm、d2 =20mm)では1次、2次シールドガス
が混合してしまうが、1次シールドノズルを細長く伸ば
す(d1 =15mm、d2 =5mm)ことによって同図
(d)に示すように1次、2次シールドガスがうまく分
離され母材付近までHeでシールドされるようになる。
FIG. 3 is a vertical cross-sectional view of the nozzle portion showing the result of observing the flow region of He, which is the primary shield gas when He is the primary shield gas and Ar is the secondary shield gas, by the Schlieren method. . FIG. 3 (a) shows a case where the electrode protrusion length is short (d 1 = 0 mm, d 2 = 5 mm).
This is a case where only pure He of the secondary shield gas is flowed and the secondary shield gas is not flowed, but the He gas floats up and the vicinity of the base material is not shielded. However, when pure Ar of the secondary shield gas is flowed, He of the primary shield gas is confined by Ar of the secondary shield gas and shielded by He to the vicinity of the base material as shown in FIG. Recognize. Further, as shown in FIG. 3 (c), the state where the electrode protrusion is lengthened while the inner nozzle is shortened (d 1 =
At 0 mm and d 2 = 20 mm), the primary and secondary shield gases are mixed, but by extending the primary shield nozzle elongated (d 1 = 15 mm, d 2 = 5 mm), as shown in FIG. Then, the primary and secondary shield gases are separated well, and He is shielded to the vicinity of the base material.

【0010】上記のように1次シールドノズルを伸ばす
ことによって1次、2次シールドガスの混合は防げるよ
うになったが、1次シールドノズルを長くしすぎると2
次シールドガスによるシールド効果が減少する。そのた
め、様々な条件でシールド性を確認した結果、1次シー
ルドノズルの突き出し長さは20mm以下の範囲が好ま
しいことが判明した。またタングステン電極の突き出し
長さに対しても様々な条件でシュリーレン法によるガス
流域の観察を行い、上限としては1次、2次シールドガ
スの混合がほとんど起こらないd2 =10mmまでが、
下限は実用性を考えるとd2 =3mmまでが好ましいこ
とが判明した。
By extending the primary shield nozzle as described above, it has become possible to prevent mixing of the primary and secondary shield gases, but if the primary shield nozzle is made too long, it becomes 2
The shield effect of the next shield gas is reduced. Therefore, as a result of confirming the shield property under various conditions, it was found that the protrusion length of the primary shield nozzle is preferably in the range of 20 mm or less. Also, the gas flow region by the Schlieren method was observed under various conditions with respect to the protruding length of the tungsten electrode, and as the upper limit, up to d 2 = 10 mm at which mixing of the primary and secondary shield gases hardly occurred,
It has been found that the lower limit is preferably up to d 2 = 3 mm in consideration of practicality.

【0011】図4は、溶接電流を220A、溶接電圧を
16Vに設定したまま、1次シールドガス(純He)お
よび2次シールドガス(純Ar)の流量をそれぞれ変化
させた場合のアーク長を示している。参考のため1次シ
ールドガスおよび2次シールドガスともArまたはHe
を用いた場合のアーク長も示している。1次シールドガ
スの流量を増やしていくとアーク長は急激に短くなり1
次シールドガス流量8〜10リットル/minで飽和
し、1次シールドガス、2次シールドガスともHeの場
合のアーク長に近づくことがわかる。このことは1次シ
ールドガスに純Heを用いると少ないHe流量で溶接ア
ークの電位傾度を高くすることができることを示してい
る。純He流量の範囲は、上限として電位傾度の変化が
飽和する10リットル/min、下限としては電位傾度
が飽和値の80%以上となる6リットル/minが適当
である。
FIG. 4 shows the arc lengths when the flow rates of the primary shield gas (pure He) and the secondary shield gas (pure Ar) were changed while the welding current was set to 220 A and the welding voltage was set to 16 V. Shows. For reference, both primary shield gas and secondary shield gas are Ar or He.
The arc length when is used is also shown. When the flow rate of the primary shield gas is increased, the arc length decreases rapidly.
It is found that the secondary shield gas is saturated at a flow rate of 8 to 10 liters / min, and both the primary shield gas and the secondary shield gas approach the arc length in the case of He. This indicates that if pure He is used as the primary shield gas, the potential gradient of the welding arc can be increased with a small He flow rate. The range of the pure He flow rate is suitably 10 liters / min as the upper limit at which the change in the potential gradient is saturated, and 6 liters / min as the lower limit at which the potential gradient is 80% or more of the saturation value.

【0012】一方、2次シールドガスの流量を変化させ
た場合は、アーク長はほとんど変化しておらず、1次シ
ールドガスの流域と2次シールドガスの流域がうまく分
離されていることがわかる。またこのことから溶接金属
に対するシールド性を良くするため、2次シールドガス
のAr流量を増加したとしても電位傾度には影響無く高
能率溶接が行える。純Ar流量の範囲は、下限としては
溶融金属に対するシールド性を確保するため10リット
ル/min以上が適当である。一方、上限については、
高能率TIG溶接を行う観点からは上限無しといえる
が、経済性を考えると30リットル/minが適当であ
る。
On the other hand, when the flow rate of the secondary shield gas is changed, the arc length hardly changes, and it can be seen that the flow area of the primary shield gas and the flow area of the secondary shield gas are well separated. . Further, from this fact, in order to improve the shield property against the weld metal, even if the Ar flow rate of the secondary shield gas is increased, the potential gradient is not affected and high efficiency welding can be performed. As the lower limit of the pure Ar flow rate, 10 liters / min or more is appropriate in order to secure the shielding property against molten metal. On the other hand, regarding the upper limit,
It can be said that there is no upper limit from the viewpoint of performing high-efficiency TIG welding, but 30 L / min is appropriate in view of economy.

【0013】[0013]

【実施例】実施例として水平すみ肉溶接に本発明を適用
した例を示す。母材には9%Ni鋼、ワイヤにはFil
ler 196を用いた。図5は水平すみ肉溶接時の溶
接トーチの配置図を示している。溶接トーチは下板6に
対して50°の角度で傾斜させ、1次ノズル突き出し長
さはd1 =12mm、電極突き出し長さはd2 =7mm
で配置させた。また1次ガス流量は6リットル/mi
n、2次ガス流量は20リットル/minとしトーチの
揺動無しで溶接をした結果、溶接電流400Aで溶接速
度40cm/min、ワイヤ溶着量60g/minの高
能率溶接が達成できた。
EXAMPLE An example in which the present invention is applied to horizontal fillet welding will be shown as an example. Base material is 9% Ni steel, wire is Fil
Ler 196 was used. FIG. 5 shows a layout of the welding torch during horizontal fillet welding. The welding torch is inclined at an angle of 50 ° with respect to the lower plate 6, the primary nozzle protrusion length is d 1 = 12 mm, and the electrode protrusion length is d 2 = 7 mm.
Placed in. The primary gas flow rate is 6 liters / mi
n, the secondary gas flow rate was 20 liters / min, and welding was performed without swinging the torch, and as a result, high efficiency welding with a welding current of 400 A, a welding speed of 40 cm / min, and a wire deposition amount of 60 g / min was achieved.

【0014】また同溶接法で深さ50mmの狭開先に対
して横向き溶接を行った。開先奥ではd1 =20mm、
2 =5mmのノズル条件で溶接を行い、溶接電流35
0Aで40g/minのワイヤ溶着量が得られた。開先
中層から上層にかけてはd1=10mm、d2 =6mm
で溶接を行い、溶接電流400Aでトーチをウィービン
グさせることによって平均溶着量50g/minを達成
した。縦向き溶接に対しては、横向き溶接と同じ開先条
件、ノズル条件で溶接を行ったが溶融金属の溶け落ちが
問題となり溶着速度は30〜40g/min程度であっ
た。
In the same welding method, lateral welding was performed on a narrow groove having a depth of 50 mm. D 1 = 20 mm in the back of the groove,
Welding was performed under the nozzle condition of d 2 = 5 mm, and the welding current was 35
A wire deposition amount of 40 g / min was obtained at 0 A. From the middle layer of the groove to the upper layer, d 1 = 10 mm, d 2 = 6 mm
Welding was carried out with a welding current of 400 A, and an average deposition amount of 50 g / min was achieved by weaving the torch. For vertical welding, welding was performed under the same groove and nozzle conditions as those for horizontal welding, but melt-through of molten metal became a problem and the welding speed was about 30 to 40 g / min.

【0015】この様な高能率TIG溶接を行う一方で、
比較のため従来法によるTIG溶接で水平すみ肉溶接を
行った。シールドノズルには1重ノズルを、シールドガ
スにはArを用いた。溶接電流は400A程度の大電流
にするとアークの堀り下げ効果のため欠陥が生じてしま
うため300Aで行った。トーチ傾け角は50°とし電
極突き出し長さ15mmで溶接を行った結果、溶接速度
40cm/minではワイヤ溶着量30g/minしか
達成できなかった。
While performing such high efficiency TIG welding,
For comparison, horizontal fillet welding was performed by conventional TIG welding. A single nozzle was used as the shield nozzle and Ar was used as the shield gas. The welding current was set to 300 A because a large current of about 400 A causes defects due to the arc digging effect. As a result of welding with a torch tilt angle of 50 ° and an electrode protrusion length of 15 mm, only a wire deposition amount of 30 g / min could be achieved at a welding speed of 40 cm / min.

【0016】以上の溶接結果として表1に最大溶着量と
シールド性の評価を示す。本発明の方法を用いることに
より従来の溶接法の2倍以上の能率が得られることがわ
かる。また母材のシールド性については、すべての溶接
法において従来のArシールドと同程度のシールド性を
保っていた。
As a result of the above welding, Table 1 shows the evaluation of the maximum amount of welding and the shielding property. It can be seen that the efficiency of the present invention is more than double that of the conventional welding method. Regarding the shielding property of the base material, the same shielding property as the conventional Ar shield was maintained in all welding methods.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上説明したように、本発明の高能率T
IG溶接法は2重ノズルにおいて、1次シールドガスに
He、2次シールドガスにArを用いることによって、
Arガスの高いシールド性とHeガスの高い溶接アーク
電位傾度を有効に利用することができる。このように本
発明は従来のArを用いたTIG溶接と同程度のシール
ド性を確保したまま高能率溶接を可能にするものであ
る。
As described above, the high efficiency T of the present invention is obtained.
The IG welding method uses He as the primary shield gas and Ar as the secondary shield gas in the double nozzle,
The high shielding property of Ar gas and the high welding arc potential gradient of He gas can be effectively utilized. As described above, the present invention enables high-efficiency welding while securing a shield property comparable to that of the conventional TIG welding using Ar.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた2重構造のノズルを示す縦断面
FIG. 1 is a vertical cross-sectional view showing a double structure nozzle used in the present invention.

【図2】Ar、He混合ガス中のHe量のアーク電圧に
及ぼす影響を示すグラフ
FIG. 2 is a graph showing the influence of the amount of He in a mixed gas of Ar and He on the arc voltage.

【図3】2重ノズルにおけるHeの流域を示す図で、
(a)〜(d)はAr流量、d1、d2 の条件の組み合
わせの変化を示す
FIG. 3 is a diagram showing a basin of He in a double nozzle,
(A) to (d) show changes in the combination of Ar flow rate, d 1 and d 2 conditions.

【図4】1次シールドガスの純He流量および2次シー
ルドガスの純Ar流量をそれぞれ変化させた場合のアー
ク長を示すグラフ
FIG. 4 is a graph showing the arc length when the pure He flow rate of the primary shield gas and the pure Ar flow rate of the secondary shield gas are changed.

【図5】実施例における水平すみ肉溶接時のトーチの配
置図
FIG. 5 is a layout view of a torch during horizontal fillet welding in an example

【符号の説明】[Explanation of symbols]

1 タングステン電極 2 1次シールドノズル 3 2次シールドノズル 4 母材開先部 5 溶融池 6 縦板 7 下板 1 Tungsten Electrode 2 Primary Shield Nozzle 3 Secondary Shield Nozzle 4 Base Metal Bevel 5 Molten Pool 6 Vertical Plate 7 Lower Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 則光 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norimitsu Baba 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タングステン電極を囲む1次シールドガ
ス、および1次シールドガスを囲む2次シールドガスを
用いて溶接する2重シールドTIG溶接において、1次
シールドガスにHeガスを流量6〜10リットル/mi
n、2次シールドガスにArガスを流量10〜30リッ
トル/minで使用し、溶接することを特徴とする高能
率TIG溶接法。
1. In double shield TIG welding in which a primary shield gas surrounding a tungsten electrode and a secondary shield gas surrounding the primary shield gas are welded, He gas is supplied to the primary shield gas at a flow rate of 6 to 10 liters. / Mi
n A high-efficiency TIG welding method characterized by using Ar gas as a secondary shield gas at a flow rate of 10 to 30 liters / min and performing welding.
【請求項2】 1次シールドノズルを2次シールドノズ
ルより20mm以下の範囲で伸ばすことを特徴とする請
求項1記載の高能率TIG溶接法。
2. The high-efficiency TIG welding method according to claim 1, wherein the primary shield nozzle is extended within a range of 20 mm or less from the secondary shield nozzle.
【請求項3】 タングステン電極を1次シールドノズル
の先端より3〜10mm伸ばすことを特徴とする請求項
1または2記載の高能率TIG溶接法。
3. The high-efficiency TIG welding method according to claim 1, wherein the tungsten electrode is extended from the tip of the primary shield nozzle by 3 to 10 mm.
JP4176294A 1994-02-17 1994-02-17 High-efficiency tig welding method Withdrawn JPH07227673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176294A JPH07227673A (en) 1994-02-17 1994-02-17 High-efficiency tig welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176294A JPH07227673A (en) 1994-02-17 1994-02-17 High-efficiency tig welding method

Publications (1)

Publication Number Publication Date
JPH07227673A true JPH07227673A (en) 1995-08-29

Family

ID=12617422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176294A Withdrawn JPH07227673A (en) 1994-02-17 1994-02-17 High-efficiency tig welding method

Country Status (1)

Country Link
JP (1) JPH07227673A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764220A1 (en) * 1997-06-10 1998-12-11 Toshiba Kk Welding large structures with any torch orientation
JP2003053543A (en) * 2001-08-21 2003-02-26 Babcock Hitachi Kk Tig welding equipment
FR2877597A1 (en) * 2004-11-09 2006-05-12 Safmatic Sa DOUBLE FLOW TYPE ARC WELDING TORCH SUITABLE FOR TUBE WELDING
WO2013058321A1 (en) * 2011-10-19 2013-04-25 大陽日酸株式会社 Tig welding method for ferrite-based stainless steel plates
WO2013157036A1 (en) * 2012-04-18 2013-10-24 Murata Akihisa Constricting nozzle and tig welding torch using same
CN105121085A (en) * 2013-04-15 2015-12-02 丰田自动车株式会社 Welding torch with upper and lower shielding gas flow and welding method using welding torch for horizontal welding

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764220A1 (en) * 1997-06-10 1998-12-11 Toshiba Kk Welding large structures with any torch orientation
JP2003053543A (en) * 2001-08-21 2003-02-26 Babcock Hitachi Kk Tig welding equipment
JP4646464B2 (en) * 2001-08-21 2011-03-09 バブコック日立株式会社 TIG welding equipment
FR2877597A1 (en) * 2004-11-09 2006-05-12 Safmatic Sa DOUBLE FLOW TYPE ARC WELDING TORCH SUITABLE FOR TUBE WELDING
US9505075B2 (en) 2011-10-19 2016-11-29 Taiyo Nippon Sanso Corporation TIG welding method of ferrite stainless steel sheet
WO2013058321A1 (en) * 2011-10-19 2013-04-25 大陽日酸株式会社 Tig welding method for ferrite-based stainless steel plates
JP2013086136A (en) * 2011-10-19 2013-05-13 Taiyo Nippon Sanso Corp Tig welding method for ferritic stainless steel plate
CN103889633A (en) * 2011-10-19 2014-06-25 大阳日酸株式会社 Tig welding method for ferrite-based stainless steel plates
CN103889633B (en) * 2011-10-19 2017-01-18 大阳日酸株式会社 Tig welding method for ferrite-based stainless steel plates
WO2013157036A1 (en) * 2012-04-18 2013-10-24 Murata Akihisa Constricting nozzle and tig welding torch using same
JP5602974B2 (en) * 2012-04-18 2014-10-08 彰久 村田 Narrowing nozzle and TIG welding torch using the same
US9597745B2 (en) 2012-04-18 2017-03-21 Akihisa Murata Constricting nozzle and TIG welding torch using this nozzle
CN105121085A (en) * 2013-04-15 2015-12-02 丰田自动车株式会社 Welding torch with upper and lower shielding gas flow and welding method using welding torch for horizontal welding
CN105121085B (en) * 2013-04-15 2017-09-08 丰田自动车株式会社 Welding gun with upper and lower part protective gas stream and the welding method using the welding gun for being used for level welding

Similar Documents

Publication Publication Date Title
EP2781292B1 (en) Tandem gas-shielded arc welding method
CN105665897A (en) Duplex stainless steel submerged arc automatic welding method and application thereof
US20050006355A1 (en) Device and method for hybrid welding
EP0689896B1 (en) Plasma welding process
US9586293B2 (en) Welding gas and plasma welding method
JPH07227673A (en) High-efficiency tig welding method
US1911053A (en) Weld rod
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
JP2001276969A (en) Joint welding method
JPH07204854A (en) High speed gas shield arc welding equipment and method therefor
CN102317025B (en) Method for arc welding with a dual gas flow, with a central flow containing argon and hydrogen, and with a sheath flow including argon and either carbon dioxide or oxygen
JP3936342B2 (en) TIG welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JP2006075847A (en) Hybrid welding method by laser beam and arc
JPH0577047A (en) Method for butt-welding steel pipe
JP2000190076A (en) Tig welding method for pipe
Howse Developments in A-TIG welding
JP3120907B2 (en) Single-sided submerged arc welding method
JP2000084673A (en) Tig welding torch for horizontal welding
JPS598475B2 (en) High current MIG welding method
JPH0635067B2 (en) Welding method for high alloy clad steel pipe
SU1232416A1 (en) Method of automatic spot arc welding
JPH06297149A (en) Double shielded tig welding method
KR20230082369A (en) Clad pipe producting method using pulse wavedorm overlay welding
JPS6221479A (en) Laser beam welding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508