JPH07225777A - Method and device for determining inspection cycle - Google Patents

Method and device for determining inspection cycle

Info

Publication number
JPH07225777A
JPH07225777A JP1527094A JP1527094A JPH07225777A JP H07225777 A JPH07225777 A JP H07225777A JP 1527094 A JP1527094 A JP 1527094A JP 1527094 A JP1527094 A JP 1527094A JP H07225777 A JPH07225777 A JP H07225777A
Authority
JP
Japan
Prior art keywords
factor
temperature
evaluation
inspection cycle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1527094A
Other languages
Japanese (ja)
Inventor
Ken Takigawa
憲 滝川
Nobuteru Sawayama
信輝 澤山
Ryohei Kita
良平 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Solution Service Corp
Original Assignee
Yokogawa Engineering Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Engineering Service Corp filed Critical Yokogawa Engineering Service Corp
Priority to JP1527094A priority Critical patent/JPH07225777A/en
Publication of JPH07225777A publication Critical patent/JPH07225777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To determine an optimal maintenance inspection cycle by measuring various kinds of factors inside an electronic equipment, executing the processings at each step and determining the inspection cycle of the electronic equipment. CONSTITUTION:In the step 1, data is collected by measuring the temperature at a place where an electronic computer or other electronic equipment is installed, for instance, or inside the electronic equipment. In the step 2, the measured data is collated with the evaluation reference which is preliminarily fixed and stored in a temperature evaluation reference storage mans and evaluation points classified by factors are determined. In the step 3, arithmetic expressions digitizing the influence imparted by temperature environmental factors in the whole year are stored in a temperature acceleration coefficient arithmetic means according to the types of electronic equipments, the arithmetic result based on temperature measured data is integrated as the acceleration coefficient on the evaluation points classified by factors and the total of evaluation points according to the temperature factors are determined. Next, also as for temperature, etc., other than the temperature, the total evaluation point classified by factors is determined by a three-step method. The previously determined evaluation points are summed up, a comprehensive evaluation point is determined, the measured data is digitized and an inspection cycle is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子計算機、電子式計
測制御機器等の電子式機器の設置環境又は前記機器内部
の状態を測定し、測定結果に基づいて総合的な判断を加
えて最適な保守点検周期を決定する、或いは保守点検周
期を延長するために必要な設置環境の改善策を決定する
ための方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for measuring the installation environment of electronic equipment such as electronic calculators and electronic measurement control equipment, or the state inside the equipment, and making comprehensive judgments based on the measurement results. The present invention relates to a method and apparatus for determining a proper maintenance / inspection cycle, or determining an improvement measure for an installation environment necessary for extending the maintenance / inspection cycle.

【0002】[0002]

【従来の技術】従来プロセス産業等で使用されている電
子計算機、電子式計測制御機器等の電子式機器は、その
設置環境の如何を問わず一律の周期で点検や整備を行っ
ていた。この方法には以下のような問題があった。 良好な環境に設置されている機器に対しては保守点検
周期はより長くてよく、過剰点検の恐れがあり、保全費
用が無駄になる。
2. Description of the Related Art Conventionally, electronic devices such as electronic computers and electronic measurement and control devices used in the process industry have been inspected and maintained at a uniform cycle regardless of the environment in which they are installed. This method has the following problems. Maintenance intervals may be longer for equipment installed in a good environment, risking over-inspection and wasting maintenance costs.

【0003】劣悪な環境に設置されている機器に対し
ては、保守点検周期をより短くする必要があるが、一律
の周期では故障を未然に防ぐことができない恐れがあ
る。 点検整備を行う部門からみると、効果の少ない作業に
も工数を割くことになり不要コストを負担することにな
る。 機器に劣化や故障が発生した場合、環境要因を特定し
難いので、改善の方針を立てられない。
For equipment installed in a poor environment, it is necessary to shorten the maintenance and inspection cycle, but there is a possibility that failure cannot be prevented in advance with a uniform cycle. From the viewpoint of the inspection and maintenance department, man-hours are devoted to work that is less effective and unnecessary costs are incurred. When a device deteriorates or breaks down, it is difficult to identify the environmental factors, and it is not possible to make a policy for improvement.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するもので、種々の電子式機器について、保守
点検周期を左右する最も重要な環境因子を測定して、そ
れらの測定結果から最適な保守点検周期を決定する、或
いは保守点検周期を延長するために必要な設置環境の改
善策を決定するための方法及び装置を実現することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by measuring the most important environmental factors that affect the maintenance and inspection cycle of various electronic devices and measuring the results. It is an object of the present invention to realize a method and a device for determining an optimum maintenance inspection cycle from the above, or for determining an improvement measure of an installation environment necessary for extending the maintenance inspection cycle.

【0005】[0005]

【課題を解決するための手段】本発明は、保守点検周期
を決定する方法として、電子式機器が設置されている場
所又は電子式機器内部の各種の因子を測定して下記の各
段階の処理を実行して、電子式機器の点検周期を決定す
ることを特徴とする。即ち電子機器の所定の部位又は設
置環境の温度、湿度、塵埃及び腐食膜厚の少なくとも2
以上の測定データを収集して、それぞれその測定値の大
小に従がって一定の点数を与えた因子別評価点を求め
る。
According to the present invention, as a method for determining a maintenance / inspection cycle, various factors in a place where an electronic device is installed or inside the electronic device are measured and the following steps are performed. Is executed to determine the inspection cycle of the electronic device. That is, at least 2 of the temperature, humidity, dust and corrosive film thickness of a predetermined part of the electronic device or the installation environment.
The above measurement data is collected, and the evaluation score for each factor is calculated by giving a fixed score according to the magnitude of the measured value.

【0006】上記の方法で収集した各測定データについ
て、電子機器の機種別、測定因子別に測定因子が通年で
与える影響を数値化した加速係数を求め、因子別評価点
に積算して、因子別合計評価点を求める。次に前記の因
子別合計評価点を合計して総合評価点を求める。以上の
様にして各種の因子の測定データを客観的に数値化す
る。
For each measurement data collected by the above method, an acceleration coefficient that quantifies the effect of the measurement factor on the whole year for each type of electronic device and measurement factor is obtained, and the acceleration factor is added to the evaluation point for each factor to calculate by factor. Find the total score. Next, the total evaluation points for each factor are summed to obtain a total evaluation point. As described above, the measured data of various factors are objectively digitized.

【0007】他に電子機器の機種別に、予め当該機器を
試験し、過去の保守点検データも考慮して、総合評価点
に対応した点検周期を予め定めておいて、前段階で求め
た総合評価点をこれと照合して対応する点検周期を決定
するものである。一方保守点検周期を決定する装置は、
温度、湿度、塵埃及び腐食膜厚を含む、測定用センサー
及び信号変換器からなる測定手段と、温度、湿度、塵埃
及び腐食膜厚のそれぞれについての評価基準点を記憶す
る記憶手段と、前記測定結果と前記評価基準点とを照合
して因子別評価点として出力する第1判別手段〜第4判
別手段と、電子機器の機種別に、各因子が通年で与える
影響を温度、湿度、塵埃及び腐食膜厚それぞれの加速係
数として演算する演算手段と、前記因子別評価点に前記
加速係数を積算して因子別合計評価点として出力する第
1積算手段〜第4積算手段と、因子別合計評価点を合計
して総合評価点として出力する加算手段と、総合評価点
に対応する点検周期を機器別に予め設定して記憶させる
点検周期記憶手段と、前記測定データから求めた総合評
価点と、前記点検周期記憶手段に記憶させた総合評価点
を照合して、対応する点検周期を出力する点検周期判別
手段とから構成する。
In addition, the equipment is tested in advance for each model of the electronic equipment, the inspection cycle corresponding to the overall evaluation point is set in advance in consideration of past maintenance and inspection data, and the overall evaluation obtained in the previous stage. The points are collated with this to determine the corresponding inspection cycle. On the other hand, the device that determines the maintenance inspection cycle is
Measuring means including a sensor for measurement and a signal converter including temperature, humidity, dust and corrosive film thickness, storage means for storing evaluation reference points for each of temperature, humidity, dust and corrosive film thickness, and the measurement The 1st discriminating means to the 4th discriminating means for collating the results with the evaluation reference points and outputting them as the factor-based evaluation points, and the influences of each factor for the whole year according to the model of the electronic device are temperature, humidity, dust and corrosion. Calculation means for calculating the acceleration coefficient of each film thickness, first to fourth integration means for accumulating the acceleration coefficient to the factor-based evaluation points and outputting the result as a factor-based total evaluation point, and factor-based total evaluation points Summing and outputting as a total evaluation point, an inspection cycle storing means for presetting and storing an inspection cycle corresponding to the total evaluation point for each device, a total evaluation point obtained from the measurement data, and the inspection By matching overall score which has been stored in the period memory means, composed of a check cycle judging means for outputting a corresponding inspection period.

【0008】[0008]

【作用】本発明に関わる方法は、電子式機器の劣化及び
故障と大きく関わる環境因子として、電子式機器が設置
されている場所又は電子式機器内部の、温度、湿度、塵
埃及び腐食膜厚のうちの少なくとも2以上を選んで測定
を行いデータを収集する。その測定データから、予め定
めておいた評価基準にしたがって因子別評価点を求め
る。
The method according to the present invention, as environmental factors greatly related to deterioration and failure of electronic equipment, includes temperature, humidity, dust and corrosive film thickness at the place where the electronic equipment is installed or inside the electronic equipment. Select at least two of them and measure and collect data. From the measured data, factor-based evaluation points are obtained according to a predetermined evaluation standard.

【0009】一方電子機器の機種別、測定因子別に測定
因子が通年で与える影響を数値化した加速係数を求め、
前記の因子別評価点に積算して、因子別合計評価点を求
める。先に求めた各種の因子別合計評価点を合計して、
総合評価点を求める。以上の様にして環境因子の測定デ
ータを客観的に数値化することができる。従がってこれ
らのデータの蓄積と幅広い活用が可能となる。
On the other hand, the acceleration factor that quantifies the effect of the measurement factor on the whole year for each electronic device model and measurement factor is obtained,
The above-mentioned factor-based evaluation points are added up to obtain a factor-based total evaluation point. Sum the total evaluation points for each factor obtained earlier,
Obtain a comprehensive evaluation score. As described above, the measurement data of environmental factors can be objectively digitized. Therefore, it becomes possible to accumulate and widely utilize these data.

【0010】次に電子機器の機種別に、予め当該機器を
試験し、過去の保守点検データも考慮して、総合評価点
に対応する点検周期を予め定めておいて、先に求めた総
合評価点をこれと照合して対応する点検周期を決定する
ことができる。
Next, the electronic equipment is preliminarily tested for each type of electronic equipment, the inspection cycle corresponding to the overall evaluation point is set in advance in consideration of past maintenance and inspection data, and the overall evaluation point previously obtained. Can be compared with this to determine the corresponding inspection cycle.

【0011】[0011]

【実施例】以下図面を用いて本発明を説明する。図1は
本発明の方法を実施する一例を示すフローチャートであ
る。図2はその実施に使用する装置のブロック図であ
る。本装置は、各種のセンサー及びその計測信号を、内
部で処理するのに適した信号に変換する入力装置を含む
測定手段と、その他の手段により構成する。
The present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing an example of implementing the method of the present invention. FIG. 2 is a block diagram of the apparatus used for the implementation. This device is composed of various sensors and a measuring means including an input device for converting the measurement signals of the sensors into signals suitable for internal processing, and other means.

【0012】図2において、21は温度検出センサー及
び信号変換器からなる温度測定手段であって、その出力
信号をa1で示す。22は湿度検出センサー及び信号変
換器からなる湿度測定手段であって、その出力信号をb
1で示す。
In FIG. 2, reference numeral 21 is a temperature measuring means consisting of a temperature detecting sensor and a signal converter, the output signal of which is indicated by a 1 . Reference numeral 22 is a humidity measuring means including a humidity detecting sensor and a signal converter, and outputs the output signal b
Shown with 1 .

【0013】23は塵埃検出センサー及び信号変換器か
らなる塵埃測定手段であって、その出力信号をc1で示
す。24は腐食膜厚検出センサー及び信号変換器からな
る腐食膜厚測定手段であって、その出力信号をd1で示
す。尚測定手段は自動検出または人手により個別に検出
してキー操作により信号を入力するものを含む。
Reference numeral 23 is a dust measuring means comprising a dust detecting sensor and a signal converter, and its output signal is indicated by c 1 . Reference numeral 24 is a corrosive film thickness measuring means including a corroded film thickness detection sensor and a signal converter, and the output signal thereof is indicated by d 1 . The measuring means includes automatic detection or means for individually detecting manually and inputting a signal by key operation.

【0014】25は温度評価基準記憶手段であって、評
価基準表図3の温度T欄に示すように、測定因子である
温度の測定範囲をこの例では低い温度から高い温度へ5
段階に分割して評価点1乃至16点を割付け記憶させて
いる。26は湿度評価基準記憶手段であって、評価基準
表図3の湿度H欄に示すように、測定因子である湿度の
測定範囲をこの例では低い湿度から高い湿度へ5段階に
分割して評価点1乃至32点を割付け記憶させている。
Reference numeral 25 is a temperature evaluation standard storage means, and as shown in the temperature T column of the evaluation standard table FIG. 3, the measurement range of the temperature which is the measurement factor is 5 from low temperature to high temperature in this example.
The evaluation points 1 to 16 are divided and divided into stages and stored. Reference numeral 26 denotes a humidity evaluation standard storage means, and as shown in the humidity H column of the evaluation standard table FIG. 3, in this example, the measurement range of the humidity as a measurement factor is divided into five stages from low humidity to high humidity for evaluation. Points 1 to 32 are assigned and stored.

【0015】27は塵埃評価基準記憶手段であって、評
価基準表図3の塵埃D欄に示すように、測定因子である
塵埃の測定範囲をこの例では低い塵埃から高い塵埃へ5
段階に分割して評価点1乃至48点を割付け記憶させて
いる。28は腐食度評価基準記憶手段であって、評価基
準表図3の腐食度欄に示すように、測定因子である腐食
膜厚の測定範囲をこの例では低い腐食度から高い腐食度
へ5段階に分割して評価点1乃至64点を割付け記憶さ
せている。
Numeral 27 is a dust evaluation standard storage means, and as shown in the dust D column of the evaluation standard table FIG. 3, the measurement range of dust which is a measurement factor is 5 from low to high in this example.
The evaluation points 1 to 48 are divided and divided into stages and stored. Reference numeral 28 denotes a corrosion degree evaluation standard storage means, and as shown in the corrosion degree column of the evaluation standard table FIG. 3, in this example, the measurement range of the corrosion film thickness is 5 steps from low corrosion degree to high corrosion degree. The evaluation points 1 to 64 are allocated and stored by being divided into.

【0016】29は第1判別手段であって、温度測定手
段21の出力である温度信号a1と温度評価基準記憶手
段25に記憶させてある評価基準表図3の温度T欄の測
定値とを照合して評価点を見いだして信号a3として出
力する。30は第2判別手段であって、湿度測定手段2
2の出力である湿度信号b1と湿度評価基準記憶手段2
6に記憶させてある評価基準表図3の湿度H欄の測定値
とを照合して評価点を見いだして信号b3として出力す
る。
Reference numeral 29 denotes a first discriminating means, which is the temperature signal a 1 output from the temperature measuring means 21 and the measured value in the temperature T column of the evaluation standard table FIG. 3 stored in the temperature evaluation standard storage means 25. To find an evaluation point and output it as a signal a 3 . Reference numeral 30 denotes a second determining means, which is the humidity measuring means 2
The humidity signal b 1 which is the output of 2 and the humidity evaluation reference storage means 2
The evaluation reference table stored in FIG. 6 is collated with the measured value in the humidity H column of FIG. 3 to find an evaluation point and output as a signal b 3 .

【0017】31は第3判別手段であって、塵埃測定手
段23の出力である塵埃信号c1と塵埃評価基準記憶手
段27に記憶させてある評価基準表図3の塵埃D欄の測
定値とを照合して評価点を見いだして信号c3として出
力する。32は第4判別手段であって、腐食膜厚測定手
段24の出力である腐食膜厚信号d1と腐食度評価基準
記憶手段28に記憶させてある評価基準表図3の腐食度
欄の測定値とを照合して評価点を見いだして信号d3
して出力する。
Reference numeral 31 denotes a third discriminating means, which is the dust signal c 1 output from the dust measuring means 23 and the measured value in the dust D column of the evaluation standard table FIG. 3 stored in the dust evaluation standard storage means 27. To find an evaluation point and output it as a signal c 3 . Reference numeral 32 denotes a fourth discriminating means, which is the output of the corroded film thickness measuring means 24 and the corrosive film thickness signal d 1 and the corrosiveness evaluation standard stored in the corrosiveness evaluation standard storage means 28. The value is collated to find the evaluation point and output as a signal d 3 .

【0018】33,34,35,36は電子機器の機種
ごとに、温度、湿度、塵埃及び腐食膜厚それぞれの測定
因子別に、測定因子が通年で与える影響を演算する加速
係数演算手段である。図4の加速係数欄にそれぞれの数
値例を示している。37は第1積算手段であって、第1
判別手段29の出力信号a3と温度加速係数演算手段3
3で演算させた因子別の加速係数(信号a4)を読みだ
して積算して、因子別合計評価点a5として出力する。
Reference numerals 33, 34, 35, and 36 are acceleration coefficient calculation means for calculating the influence of the measurement factors throughout the year for each measurement factor of temperature, humidity, dust, and corrosion film thickness for each model of electronic equipment. Numerical examples of each are shown in the acceleration coefficient column of FIG. 37 is a first integrating means, which is a first
Output signal a 3 of the discrimination means 29 and temperature acceleration coefficient calculation means 3
The acceleration coefficient (signal a 4 ) for each factor calculated in step 3 is read out, integrated, and output as a total evaluation point a 5 for each factor.

【0019】38は第2積算手段であって、第2判別手
段30の出力信号b3と湿度加速係数演算手段34で演
算させた因子別の加速係数(信号b4)を読みだして積
算して、因子別合計評価点b5として出力する。39は
第3積算手段であって、第3判別手段31の出力信号c
3と塵埃加速係数演算手段35で演算させた因子別の加
速係数(信号c4)を読みだして積算して、因子別合計
評価点c5として出力する。
Reference numeral 38 denotes a second integrating means which reads out and integrates the output signal b 3 of the second discriminating means 30 and the acceleration coefficient (signal b 4 ) for each factor calculated by the humidity acceleration coefficient calculating means 34. Then, the total evaluation score b 5 for each factor is output. 39 is a third integrating means, which is an output signal c of the third discriminating means 31.
The acceleration coefficient (signal c 4 ) for each factor calculated by 3 and the dust acceleration coefficient calculation means 35 is read out and integrated, and the result is output as a total evaluation point c 5 for each factor.

【0020】40は第4積算手段であって、第4判別手
段32の出力信号d3と腐食膜厚加速係数演算手段36
で演算させた因子別の加速係数(信号d4)を読みだし
て積算して、因子別合計評価点d5として出力する。4
1は加算手段であって、第1〜第4積算手段の出力を加
算して、信号eとして出力する。
Reference numeral 40 denotes a fourth integrating means, which is an output signal d 3 of the fourth determining means 32 and a corrosion film thickness acceleration coefficient calculating means 36.
The acceleration coefficient (signal d 4 ) for each factor calculated in step S4 is read out, integrated, and output as a total evaluation point d 5 for each factor. Four
Reference numeral 1 denotes an adding means, which adds the outputs of the first to fourth integrating means and outputs the result as a signal e.

【0021】42は点検周期記憶手段であって、電子機
器の機種別に、予め当該機器を試験し、過去の保守点検
データも考慮して、総合評価点に対応する点検周期(図
5)を予め定めて記憶させる。43は点検周期判別手段
であって、加算手段の出力である総合評価点と点検周期
記憶手段42に記憶させてある、合計評価点に対応する
点検周期(図5)とを照合して点検周期を見いだして信
号gとして出力する。
Reference numeral 42 denotes an inspection cycle storage means, which preliminarily tests the electronic equipment according to the model of the electronic equipment, and in consideration of past maintenance and inspection data, the inspection cycle (FIG. 5) corresponding to the comprehensive evaluation point is given in advance. Determine and store. Reference numeral 43 denotes an inspection cycle discriminating means, which compares the total evaluation point output from the adding means with the inspection cycle (FIG. 5) corresponding to the total evaluation point stored in the inspection cycle storage means 42. It is found and is output as a signal g.

【0022】44は点検周期表示部であって信号gを受
けて、点検対象とした電子機器の点検周期を表示する。
次に本装置の動作内容を図1のフローチャートに従い説
明する。段階1では、例えば電子計算機或いはその他の
電子式機器が設置されている場所又は電子式機器内部の
温度を測定手段21用いて測定しデータを収集する。
Reference numeral 44 denotes an inspection cycle display section which receives the signal g and displays the inspection cycle of the electronic equipment to be inspected.
Next, the operation contents of this apparatus will be described with reference to the flowchart of FIG. In Step 1, for example, the temperature at the place where the electronic computer or other electronic equipment is installed or the temperature inside the electronic equipment is measured by the measuring means 21 and data is collected.

【0023】段階2では、前記の測定データについて、
温度評価基準記憶手段25に予め定めて記憶させておい
た評価基準(図3)と照合して因子別評価点を求める。
段階3では、温度の環境因子が通年で与える影響を数値
化する演算式を温度加速係数演算手段33に、電子機器
の機種別に予め記憶させておき、温度測定データに基づ
く演算結果を加速係数(図4)として前記の因子別評価
点に積算して、温度の因子別合計評価点(信号a5)を
求める。
In step 2, for the above measurement data,
The factor-based evaluation points are obtained by collating with the evaluation standard (FIG. 3) which is predetermined and stored in the temperature evaluation standard storage means 25.
In step 3, an arithmetic expression for quantifying the effect of environmental factors of temperature on the whole year is stored in advance in the temperature acceleration coefficient calculating means 33 for each model of the electronic device, and the calculation result based on the temperature measurement data is calculated as the acceleration coefficient ( As shown in FIG. 4), the above-mentioned factor-specific evaluation points are integrated to obtain a temperature-factor-specific total evaluation point (signal a 5 ).

【0024】次に同様にして、温度以外の湿度、塵埃、
腐食膜厚についても温度と同様に3段階の方法により少
なくとも1以上の因子別合計評価点を求める。先に求め
た2以上の因子別合計評価点を加算演算手段41により
合計して、総合評価点(信号e)をもとめる。以上の様
にして環境因子の測定データを客観的に数値化する。
Next, in the same manner, humidity other than temperature, dust,
As for the corroded film thickness, at least one or more factor-wise total evaluation points are obtained by the three-step method like the temperature. The above-obtained two or more factor-specific total evaluation points are summed by the addition calculation means 41 to obtain a total evaluation point (signal e). As described above, the measured data of environmental factors are objectively digitized.

【0025】更に電子機器の機種別に、予め当該機器を
試験し、過去の保守点検データも考慮して、総合評価点
に対応する点検周期を定めて点検周期記憶手段42に記
憶させておき、点検周期判別手段43により、先に求め
た総合評価点と点検周期記憶手段42に記憶させた総合
評価点とを照合して対応する点検周期を決定する。
Further, the equipment is tested in advance for each model of the electronic equipment, and the inspection cycle corresponding to the total evaluation point is determined in consideration of past maintenance inspection data and stored in the inspection cycle storage means 42 for inspection. The cycle discriminating means 43 compares the comprehensive evaluation point obtained previously with the comprehensive evaluation point stored in the inspection cycle storing means 42 to determine the corresponding inspection cycle.

【0026】[0026]

【発明の効果】以上に説明したように本発明によれば、
電子式機器が設置されている環境毎に保守点検周期を決
定できるので、各機器に対して最適の周期で保全作業を
行うことができるので、 保全のためのコストの低減 機器の信頼性の向上 機器の連続運転期間の延長 機器の長寿命化が期待できる。
As described above, according to the present invention,
The maintenance inspection cycle can be determined for each environment in which electronic equipment is installed, so maintenance work can be performed at an optimal cycle for each equipment, reducing maintenance costs and improving equipment reliability. Extending the continuous operation period of equipment It is expected that the life of equipment will be extended.

【0027】そのためにシステムダウンの回数が減り、
生産性が向上するといった直接的効果が期待できる。ま
た、電子式機器の設置環境又は前記機器内部の温度、湿
度、塵埃及び腐食膜厚を測定して、測定結果を客観的に
評価して、そのデ−タを蓄積することにより、その機器
固有の耐環境特性の把握ができるほか、万一故障が発生
した際には、故障解析を的確に行うことができる効果が
ある。
Therefore, the number of system downs is reduced,
Direct effects such as improved productivity can be expected. In addition, by measuring the installation environment of the electronic device or the temperature, humidity, dust and corrosive film thickness inside the device, objectively evaluating the measurement results, and accumulating the data, the device specific In addition to being able to ascertain the environmental resistance characteristics of, it has the effect of being able to perform accurate failure analysis should a failure occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施方法の一例を示すフローチャート
である。
FIG. 1 is a flowchart showing an example of a method of implementing the present invention.

【図2】本発明の方法が適用される装置の一例を示すブ
ロック図である。
FIG. 2 is a block diagram showing an example of an apparatus to which the method of the present invention is applied.

【図3】各測定因子に対応する評価点を定めた評価基準
表の例である。
FIG. 3 is an example of an evaluation standard table that defines evaluation points corresponding to each measurement factor.

【図4】各測定因子に対応する加速係数を示す図であ
る。
FIG. 4 is a diagram showing acceleration factors corresponding to respective measurement factors.

【図5】合計評価点に対応する点検周期を定めた図であ
る。
FIG. 5 is a diagram that defines an inspection cycle corresponding to a total evaluation score.

【符号の説明】[Explanation of symbols]

21〜24 測定手段 25〜28,42 記憶手段 29〜32,43 判別手段 33〜36 演算手段 37〜40 積算手段 41 加算手段 44 表示部 a1〜a5 温度因子に関する信号 b1〜b5 湿度因子に関する信号 c1〜c5 塵埃因子に関する信号 d1〜d5 腐食膜厚因子に関する信号 e 各因子に関する信号の合計信号 f 点検周期参照に関する信号 g 点検周期表示信号21-24 Measuring Means 25-28,42 Storage Means 29-32,43 Discriminating Means 33-36 Computing Means 37-40 Accumulating Means 41 Adding Means 44 Display Parts a 1 -a 5 Temperature Factor Signals b 1 -b 5 Humidity Signals related to factors c 1 to c 5 Signals related to dust factor d 1 to d 5 Signals related to corrosion thickness factor e Total signal of signals related to each factor f Signal related to inspection period reference g Inspection period display signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の各段階の処理を実行することを特
徴とする電子式機器の点検周期を決定する方法。 段階1 電子機器の所定の部位又は設置環境の温度、湿
度、塵埃及び腐食膜厚のうち少なくとも2以上の測定デ
ータを収集し、 段階2 電子機器の機種別、測定因子別に、測定範囲を
区分して大小にしたがって定めた点数を照合して、段階
1で収集した各測定データについて因子別評価点を求
め、 段階3 段階1で収集した各測定データについて、電子
機器の機種別、測定因子別に測定因子が通年で与える影
響を数値化した加速係数を求め、段階2で求めた因子別
評価点に積算して、因子別合計評価点を求め、 段階4 段階3で得られた因子別合計評価点を合計して
総合評価点を求め、 段階5 段階4で求めた総合評価点と、電子機器の機種
別に予め当該機器を試験し、保守点検データも考慮して
定めておいた、総合評価点に対応する点検周期とを照合
することにより電子式機器の点検周期を決定する。
1. A method for determining an inspection cycle of an electronic device, which comprises performing the following steps. Stage 1 Collect the measurement data of at least two of the temperature, humidity, dust and corrosive film thickness of the predetermined part of the electronic equipment or installation environment, and divide the measurement range according to the type of electronic equipment and the measurement factor. By comparing the points determined according to the size, the evaluation score for each factor is obtained for each measurement data collected in step 1, and the measurement data collected in step 3 is measured according to the electronic device model and measurement factor. Calculate the acceleration factor that quantifies the effect of factors throughout the year, add up to the factor-specific evaluation score obtained in step 2 to obtain the factor-specific total evaluation score, and calculate the factor-specific total evaluation score in step 4 step 3 The total evaluation point is calculated by summing up the total evaluation points obtained in step 5 and step 4 and the total evaluation points that have been set in consideration of maintenance and inspection data by testing the equipment in advance for each model of electronic equipment. With corresponding inspection cycle Determining the inspection cycle of electronic equipment by collating.
【請求項2】 温度、湿度、塵埃及び腐食膜厚を含む、
測定用センサー及び信号変換器からなる測定手段と、 温度、湿度、塵埃及び腐食膜厚それぞれの評価基準点を
記憶する記憶手段と、 前記測定結果と前記評価基準点とを照合して因子別評価
点として出力する第1判別手段〜第4判別手段と、 温度、湿度、塵埃及び腐食膜厚それぞれの因子が通年で
与える影響を加速係数として演算する加速係数演算手段
と、 前記因子別評価点に前記加速係数を積算して因子別合計
評価点として出力する第1加算手段〜第4加算手段と、 前記第1加算手段〜第4加算手段の出力を合計して総合
評価点として出力する第5加算手段と、 総合評価点に対応する点検周期を、機器別に予め設定し
て記憶させる点検周期記憶手段と、 前記測定結果により求めた総合評価点と、前記点検周期
記憶手段に記憶させた総合評価点を照合して、対応する
点検周期を出力する点検周期判別手段とで構成したこと
を特徴とする請求項1の方法を実行するための点検周期
の決定装置。
2. Including temperature, humidity, dust and corrosive film thickness,
Measurement means consisting of a measurement sensor and a signal converter, storage means for storing evaluation reference points for temperature, humidity, dust and corrosive film thickness, and evaluation by factor by collating the measurement results with the evaluation reference points First to fourth discriminating means for outputting as points, acceleration coefficient computing means for computing the effect of temperature, humidity, dust, and corrosive film thickness factors throughout the year as acceleration factors, and the factor-based evaluation points Fifth addition means to fourth addition means for accumulating the acceleration factors and outputting as a total evaluation score for each factor, and output of the first addition means to the fourth addition means to be output as a total evaluation score. Addition means, inspection cycle storage means for presetting and storing the inspection cycle corresponding to the total evaluation point for each device, total evaluation point obtained from the measurement result, and total evaluation stored in the inspection cycle storage means An inspection cycle determining device for executing the method according to claim 1, wherein the inspection cycle determining means outputs a corresponding inspection cycle by collating the valuation points.
JP1527094A 1994-02-09 1994-02-09 Method and device for determining inspection cycle Pending JPH07225777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1527094A JPH07225777A (en) 1994-02-09 1994-02-09 Method and device for determining inspection cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1527094A JPH07225777A (en) 1994-02-09 1994-02-09 Method and device for determining inspection cycle

Publications (1)

Publication Number Publication Date
JPH07225777A true JPH07225777A (en) 1995-08-22

Family

ID=11884176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1527094A Pending JPH07225777A (en) 1994-02-09 1994-02-09 Method and device for determining inspection cycle

Country Status (1)

Country Link
JP (1) JPH07225777A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
JP2004310616A (en) * 2003-04-09 2004-11-04 Nihon Brain Ware Co Ltd Inspection system, server, terminal device, and storage medium
CN104078070A (en) * 2013-03-27 2014-10-01 日立乐金资料储存股份有限公司 Optical disc inspection method in optical disc library apparatus and optical disc library apparatus
DE102015001578A1 (en) 2014-02-17 2015-08-20 Fanuc Corporation Numerical control for a machine tool with an efficient regular component inspection function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
US6978226B2 (en) 2000-02-01 2005-12-20 Kabushiki Kaisha Toshiba Deterioration diagnostic method and equipment thereof
JP2004310616A (en) * 2003-04-09 2004-11-04 Nihon Brain Ware Co Ltd Inspection system, server, terminal device, and storage medium
CN104078070A (en) * 2013-03-27 2014-10-01 日立乐金资料储存股份有限公司 Optical disc inspection method in optical disc library apparatus and optical disc library apparatus
US20140293764A1 (en) * 2013-03-27 2014-10-02 Hitachi-Lg Data Storage, Inc. Optical disc inspection method in optical disc library apparatus and optical disc library apparatus
US9105274B2 (en) * 2013-03-27 2015-08-11 Hitachi-Lg Data Storage, Inc. Optical disc inspection method in optical disc library apparatus and optical disc library apparatus
DE102015001578A1 (en) 2014-02-17 2015-08-20 Fanuc Corporation Numerical control for a machine tool with an efficient regular component inspection function

Similar Documents

Publication Publication Date Title
CN107358018B (en) Early warning method and device for prenatal and postnatal care examination project
JP5116307B2 (en) Integrated circuit device abnormality detection device, method and program
WO2006014509A2 (en) Quantitative pcr data analysis system (qdas)
EP0453036A2 (en) Analytical instrument and method of calibrating an analytical instrument
CN102449645B (en) Product inspection device and product inspection method
JP3213097B2 (en) Particle analyzer and method
Wu et al. Optimal np control chart with curtailment
US7587279B2 (en) Method for quantitative PCR data analysis system (QDAS)
CN1161091A (en) Process for analysing a measurement and measurement analyser for implementing it
Li et al. Moving rate of positive patient results as a quality control tool for high-sensitivity cardiac troponin T assays
JPH07225777A (en) Method and device for determining inspection cycle
CN111562042A (en) Safety information monitoring method and system in underground garage construction
CN109357697B (en) Medical instrument calibration method, system and device based on quality evaluation target value calculation
CN110850043A (en) Grain temperature and humidity prediction method based on GRA-BPNN
Socie et al. A field recording system with applications to fatique analysis
JP3174188B2 (en) Gas identification device
Sayyed et al. Effect of inspection error on CUSUM control charts for the Erlang-truncated exponential distribution
JPH05151282A (en) Clinical inspection system
CN111881800A (en) Concrete filled steel tube void defect detection method based on AR model and self-service inspection
CN115308517B (en) Aging detection method and system for components, storage medium and equipment
CN116436166B (en) Electric power data analysis and monitoring method and system based on Internet of things
CN116817192B (en) Corrosion monitoring and alarming method and system for pipeline conveying equipment
CN116878728B (en) Pressure sensor fault detection analysis processing system
JP3923773B2 (en) Plant abnormal event diagnosis apparatus, diagnosis method therefor, and recording medium
JPH07181292A (en) Plant operation support system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041111