JPH07225055A - Heat refrigerant boiler - Google Patents

Heat refrigerant boiler

Info

Publication number
JPH07225055A
JPH07225055A JP4045894A JP4045894A JPH07225055A JP H07225055 A JPH07225055 A JP H07225055A JP 4045894 A JP4045894 A JP 4045894A JP 4045894 A JP4045894 A JP 4045894A JP H07225055 A JPH07225055 A JP H07225055A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer tube
combustion chamber
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045894A
Other languages
Japanese (ja)
Inventor
Hideo Tasaka
秀雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP4045894A priority Critical patent/JPH07225055A/en
Publication of JPH07225055A publication Critical patent/JPH07225055A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve miniaturization of a boiler by improving a heat transfer factor without increasing film temperature limited by deterioration temperature of a heat refrigerant fluid and reducing a heat transfer area (particularly a heat transfer area in a high temperature region). CONSTITUTION:A heat refrigerant boiler is constructed such that it has a can structure including a radiation transfer part for mainly receiving radiation transfer heat from hot gas produced by a burner 14 and it includes a heat transfer tube 1 located in a radiation heat transfer part as a grooved pipe having a groove 2 in an internal peripheral surface. Further the boiler has a can structure including a contact heat transfer part for receiving contact transfer heat mainly from hot gas derived from the radiation heat transfer part. At least the heat transfer tube 1 located in the radiation heat transfer part is constructed as a structure where it is a grooved pipe having a groove 2 in an internal peripheral surface. A more concrete can structure is provided such that the heat transfer pipe 1 is spiratlly wound into a single cylinder or multiple cylinders having different wind-up diameters, and an innermost peripheral space is constructed as a combustion chamber 13 and a heat transfer pipe part facing the combustion chamber 13 is constructed as the radiation heat transfer part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化学反応作業やプラ
スチック成形作業など、比較的高温の作業状態の下にお
いて使用される油などの熱媒液を加熱するボイラ、所謂
熱媒ボイラに関するもので、より具体的には、熱媒ボイ
ラの缶体構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called heat medium boiler, which heats a heat medium liquid such as oil used under relatively high temperature working conditions such as chemical reaction work and plastic molding work. More specifically, the present invention relates to a can body structure of a heating medium boiler.

【0002】[0002]

【従来の技術】一般のボイラは、水を加熱し、蒸気或は
温水としてこれを熱源として直接、或は、間接的に使用
するものであるが、熱媒ボイラは、油等の熱媒液を加熱
し、この熱媒液を熱源としている。これは、高温度の熱
源が必要な箇所に蒸気或は温水を供給すると高圧になり
すぎるため、高温度においても比較的圧力の低い熱媒を
用いて、低圧力で供給するためである。
2. Description of the Related Art A general boiler heats water and uses it as steam or hot water as a heat source directly or indirectly, but a heat medium boiler is a heat medium liquid such as oil. Is heated, and this heat transfer liquid is used as a heat source. This is because when steam or hot water is supplied to a place where a high temperature heat source is required, the pressure becomes too high, and therefore a heat medium having a relatively low pressure is used even at a high temperature to supply at a low pressure.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
熱媒液は、高温になると、酸化や重合により変質し、比
熱の低下や粘度の増加を生じるため、伝熱量の低下や、
伝熱管,配管等の熱媒液流路の閉塞等の問題を生じ、更
にはボイラの運転が不能となる。そのため、高価な熱媒
液を定期的に交換する必要があった。このような熱媒液
の劣化を防止するために、伝熱管内における熱媒液の流
速を速くしているが、それでも伝熱管表面における熱媒
液の境膜温度を抑えるため、伝熱面負荷の向上に限界が
ある。即ち、伝熱管の受熱面における単位面積当たりの
受熱量が、熱媒液の高温劣化という要因によって制限を
受ける。(尚、ここでいう境膜温度とは、伝熱面から熱
の授受を行う流体の伝熱面表面における温度のことで、
この境膜温度は、伝熱面の表面温度に極めて近く、伝熱
面から離れるに従って急速に変化している。)
By the way, such a heat medium liquid is deteriorated by oxidation or polymerization at a high temperature to cause a decrease in specific heat and an increase in viscosity.
Problems such as blockage of heat transfer medium flow passages such as heat transfer pipes and piping occur, and further, operation of the boiler becomes impossible. Therefore, it is necessary to regularly replace the expensive heat transfer fluid. In order to prevent such deterioration of the heat transfer fluid, the flow velocity of the heat transfer fluid in the heat transfer tube is increased.However, in order to suppress the film temperature of the heat transfer fluid on the surface of the heat transfer tube, There is a limit to the improvement of. That is, the amount of heat received per unit area on the heat receiving surface of the heat transfer tube is limited by the factor of high temperature deterioration of the heat transfer medium. (Here, the film temperature is the temperature at the surface of the heat transfer surface of the fluid that transfers heat from the heat transfer surface,
The boundary film temperature is extremely close to the surface temperature of the heat transfer surface, and changes rapidly as the distance from the heat transfer surface increases. )

【0004】このような伝熱面負荷の制限は、特に、熱
ガスを発生する燃焼室や、熱ガスの導入箇所のように高
温となる空間において著しく、その結果、この空間容積
を大きくせざるを得ない。(尚、ここでいう熱ガスと
は、燃焼火炎,燃焼ガスを含む比較的高温のガス体を含
み、更に燃焼ガスは、燃焼が完結するまでのものを含
む。)
Such a limitation of the heat transfer surface load is remarkable particularly in a combustion chamber for generating hot gas or in a space having a high temperature such as a place where the hot gas is introduced, and as a result, the space volume must be increased. I don't get. (Here, the hot gas includes a combustion flame and a relatively high-temperature gas body containing the combustion gas, and the combustion gas also includes those until the combustion is completed.)

【0005】即ち、伝熱管から熱媒液への熱伝達率には
上述のような制限があり、熱吸収部分の小型化を図るた
めに、境膜温度を上昇させることなく熱伝達率を向上す
ることは、実現不可能となっている。従って、在来の熱
媒ボイラにおいては伝熱面積、特に高温領域の伝熱面面
積を広くせざるを得ず、そのため燃焼室容積も大きくな
り、ボイラ缶体の小型化が不可能であった。
That is, the heat transfer coefficient from the heat transfer tube to the heat transfer liquid is limited as described above, and in order to miniaturize the heat absorbing portion, the heat transfer coefficient is improved without increasing the film temperature. It is impossible to do. Therefore, in the conventional heat medium boiler, the heat transfer area, particularly the heat transfer surface area in the high temperature region, has to be widened, which increases the volume of the combustion chamber, making it impossible to downsize the boiler can. .

【0006】[0006]

【課題を解決するための手段】この発明は、前記の課題
に鑑み、小型、高効率の熱媒ボイラを提供することを目
的としてなされたもので、バーナによって生成した熱ガ
スから、主として輻射伝熱を受ける輻射伝熱部を備えた
缶体構造を有し、前記輻射伝熱部に位置する伝熱管を内
周面に溝を有する溝付管としたことを第1の特徴とし、
更に、前記輻射伝熱部と、この輻射伝熱部から導出した
熱ガスより主として接触伝熱を受ける接触伝熱部とを備
えた缶体構造を有し、少なくとも輻射伝熱部に位置する
伝熱管を内周面に溝を有する溝付管としたことを第2の
特徴とする熱媒ボイラである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention has been made to provide a small-sized and highly efficient heat transfer medium boiler, which mainly emits radiation from hot gas generated by a burner. It has a can body structure having a radiant heat transfer section for receiving heat, and the heat transfer tube located in the radiant heat transfer section is a grooved tube having a groove on the inner peripheral surface, which is a first characteristic,
Further, it has a can body structure including the radiant heat transfer section and a contact heat transfer section that mainly receives contact heat from the hot gas derived from the radiant heat transfer section, and has a can structure located at least in the radiant heat transfer section. It is a heat medium boiler having a second feature that the heat pipe is a grooved pipe having a groove on its inner peripheral surface.

【0007】更に、前記熱媒ボイラの缶体構造が、伝熱
管を螺旋状に巻回した筒形状をなし、その最内周空間に
バーナを臨ませて配置してこの空間部を燃焼室とするこ
とによって、この燃焼室に対面する伝熱管部分を輻射伝
熱部とした構造であることを第3の特徴とし、伝熱管を
螺旋状に巻回した巻上直径の異なる多重の筒形状をな
し、その最内周空間部にバーナを臨ませて配置してこの
空間部を燃焼室とすることによって、この燃焼室に対面
する伝熱管部分を輻射伝熱部となし、多重の円筒状伝熱
管部分の間を前記燃焼室からの熱ガスの流通隙間とする
ことによって、この隙間に対面する伝熱管部分を接触伝
熱面となした構造であることを第4の特徴とする熱媒ボ
イラである。
Furthermore, the can body structure of the heat medium boiler has a tubular shape in which a heat transfer tube is spirally wound, and a burner is arranged so as to face the innermost peripheral space thereof, and this space is used as a combustion chamber. Thus, the third feature is that the heat transfer tube portion facing the combustion chamber is a radiant heat transfer section, and the heat transfer tube is spirally wound into a plurality of tubular shapes with different winding diameters. None, by arranging the burner in the innermost peripheral space part to make this space part a combustion chamber, the heat transfer pipe part facing this combustion chamber is made a radiant heat transfer part, and multiple cylindrical heat transfer parts are formed. A heat transfer medium boiler having a fourth feature that a heat transfer tube portion facing the clearance is a contact heat transfer surface by forming a gap between the heat tube portions for flowing hot gas from the combustion chamber. Is.

【0008】[0008]

【作用】この発明に係る熱媒ボイラによるときは、伝熱
管における熱媒液の接触面積を増大できるため、同一加
熱量に対しての境膜温度が低下する。換言すれば、境膜
温度を同一にした場合の伝熱面負荷を増大することがで
きる。また、輻射伝熱部と接触伝熱部を組込んでなる缶
体構造においては、熱ガスから輻射伝熱を受ける部分の
小型化により、熱ガスが大幅に温度低下することなく接
触伝熱部内に流入するため、接触伝熱部においても効率
的な熱回収が行うことができ、輻射伝熱部と接触伝熱部
における熱回収量がより平均化する。
With the heating medium boiler according to the present invention, since the contact area of the heating medium liquid in the heat transfer tube can be increased, the film temperature for the same heating amount is lowered. In other words, the heat transfer surface load can be increased when the film temperature is the same. In addition, in the can body structure that incorporates the radiant heat transfer part and the contact heat transfer part, the size of the part that receives the radiant heat transfer from the hot gas reduces the temperature of the hot gas without significantly decreasing the temperature inside the contact heat transfer part. Since it flows into, the heat recovery can be efficiently performed even in the contact heat transfer section, and the heat recovery amounts in the radiant heat transfer section and the contact heat transfer section are more averaged.

【0009】具体的には、伝熱管を螺旋状に巻回し、1
重又は、巻上直径の異なる多重の筒形状をなし、その最
内周空間部を前述の輻射伝熱部としての燃焼室とした缶
体構造の熱媒ボイラの場合には、燃焼室に面する輻射伝
熱部の伝熱面面積を縮小化できるため、燃焼室容積も必
然的に小容量化でき、更に、螺旋状に巻回した伝熱管が
多重の円筒形状をなし、各円筒形状部分間に接触伝熱部
分を形成してなる缶体構造の場合には、前記の燃焼室か
らの熱ガスが流入する接触伝熱部の伝熱面面積は拡大す
るが、全体としての伝熱面面積は縮小する。
Specifically, the heat transfer tube is spirally wound and
In the case of a heating medium boiler having a can structure having a heavy or multiple cylindrical shape with different winding diameters, and the innermost peripheral space portion thereof being the combustion chamber as the radiant heat transfer portion, the surface of the combustion chamber is Since the area of the heat transfer surface of the radiant heat transfer section can be reduced, the capacity of the combustion chamber can be inevitably reduced.Furthermore, the spirally wound heat transfer tube has a multiple cylindrical shape, and each cylindrical shape part In the case of a can body structure in which a contact heat transfer part is formed between them, the heat transfer surface area of the contact heat transfer part into which the hot gas from the combustion chamber flows is enlarged, but the heat transfer surface as a whole. Area shrinks.

【0010】[0010]

【実施例】この発明を、伝熱管を螺旋状に巻回してなる
缶体構造、所謂モノチューブ形式の缶体構造の熱媒ボイ
ラに適用した一実施例を図1,2を参照しながら説明す
る。先ず、図示する熱媒ボイラ(A) は、熱媒液を流通さ
せる伝熱管(1) を螺旋状に巻回することにより、2重の
円筒状伝熱管壁(11)(12)を備えた缶体(10)を構成してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a heating medium boiler having a can body structure formed by spirally winding a heat transfer tube, a so-called monotube type can body structure will be described with reference to FIGS. To do. First, the illustrated heat transfer medium boiler (A) is provided with double cylindrical heat transfer tube walls (11) and (12) by spirally winding a heat transfer tube (1) through which a heat transfer medium flows. It constitutes a can body (10).

【0011】前記の二重の円筒状伝熱管壁(11)(12)のう
ち、外方の伝熱管壁(12)の外周には、ボイラの外形を形
成するケーシング(16)を配置してある。このケーシング
(16)と上記缶体(K) との間には断熱材層(17)を形成し、
缶体(10)の上部並びに底部の開口を閉塞しており、更
に、内方の伝熱管壁(11)で囲まれる空間の一端(図示す
る実施例では上端)に、バーナ(14)を当該空間に略同軸
状に臨ませた状態で配置することによって、燃焼室(13)
を構成している。更に両伝熱管壁(11)(12)間に形成され
る筒状の隙間(15)は、前記の燃焼室(13)の下部と連通し
ており、燃焼室(13)におけるバーナ(14)によって発生し
た熱ガスが流入する。そして、前記熱ガスはこの隙間(1
5)を通過した後、煙突などの排気手段を介して系外に排
出するか、或は、エコノマイザー等の熱回収手段を経て
から系外に排出する。尚、この実施例においては、内方
の伝熱管壁(11)の下部における伝熱管(1) の巻回ピッチ
を広くとることによって伝熱管(1) 間に間隙を形成し、
熱ガスをこの間隙並びに内方の伝熱管壁(11)の下端と断
熱材層(17)との間隙を介して前記隙間(5) 内に流通する
構成となっているが、その他、熱ガスを内方の伝熱管壁
(11)の下端と断熱材層(17)との間隙のみを介して前記隙
間(5) 内に流通する構成としてもよい。従って、この燃
焼室(13)に対面する伝熱管壁(11)の伝熱管(1) 表面は、
主として輻射伝熱を受ける輻射伝熱部であり、前記隙間
(15)に対面する伝熱管壁(11)(12)の伝熱管(1) 表面は、
主として接触伝熱を受ける接触伝熱部となる。
Of the double cylindrical heat transfer tube walls (11) and (12), a casing (16) that forms the outer shape of the boiler is arranged on the outer circumference of the outer heat transfer tube wall (12). I am doing it. This casing
A heat insulating material layer (17) is formed between (16) and the can body (K),
The upper and bottom openings of the can body (10) are closed, and a burner (14) is attached to one end (upper end in the illustrated embodiment) of the space surrounded by the inner heat transfer tube wall (11). The combustion chamber (13) is arranged by arranging it so as to face the space substantially coaxially.
Are configured. Further, the cylindrical gap (15) formed between both heat transfer tube walls (11) and (12) communicates with the lower part of the combustion chamber (13), and the burner (14) in the combustion chamber (13) is The hot gas generated by) flows in. Then, the hot gas is
After passing 5), it is discharged to the outside of the system via an exhaust means such as a chimney, or is discharged to the outside of the system after passing through a heat recovery means such as an economizer. In addition, in this embodiment, a gap is formed between the heat transfer tubes (1) by widening the winding pitch of the heat transfer tubes (1) in the lower part of the inner heat transfer tube wall (11),
Heat gas is circulated into the gap (5) through this gap and the gap between the heat transfer tube wall (11) and the heat insulating material layer (17). Gas inner heat transfer tube wall
It may be configured to flow into the gap (5) only through the gap between the lower end of (11) and the heat insulating material layer (17). Therefore, the surface of the heat transfer tube (1) of the heat transfer tube wall (11) facing this combustion chamber (13) is
The radiant heat transfer section that mainly receives radiant heat transfer
The surface of the heat transfer tube (1) of the heat transfer tube wall (11) (12) facing (15) is
The contact heat transfer section mainly receives the contact heat transfer.

【0012】前記の伝熱管(1) は、図2に拡大して示す
ように、内部にその軸線方向に沿う溝(2) を多数形成し
た溝付管としてあり、この溝(2) は、伝熱管(1) の内周
面に対して同方向であっても、また、ライフル溝のよう
に適宜の旋回角をもって形成してあってもよく、後者の
場合は、伝熱管(1) 内部を流れる熱媒液に流れ方向に対
する旋回流を与えることができ、伝熱管(1) 内の熱媒液
をより均一に加熱することができる。更に、この溝は、
伝熱管の軸線方向に連続して形成したものであっても、
適宜、分断し、軸線に対する位相をずらせて形成したも
のであってもよい。前記の溝付き管とする伝熱管(1)
は、後述するように、少なくとも、前記の内側の伝熱管
壁(11)を構成する伝熱管(1) 、即ち、輻射伝熱部に位置
する伝熱管(1) の部分でよく、より好ましくは、輻射伝
熱部に該当する伝熱管部分に設けるのが良く、更に好ま
しくは、熱ガスから伝熱管への熱負荷の大きい箇所に設
け、伝熱管全体において、熱媒液の境膜温度が、熱媒液
の耐熱温度限界内において、略一定になるように設定す
るのが好ましく、また、このような構成によって伝熱管
全体を溝付き管とする場合よりもコストの低減が図れ
る。
As shown in the enlarged view of FIG. 2, the heat transfer tube (1) is a grooved tube in which a large number of grooves (2) along the axial direction thereof are formed, and the grooves (2) are It may be in the same direction as the inner peripheral surface of the heat transfer tube (1), or may be formed with an appropriate turning angle like a rifle groove. In the latter case, inside the heat transfer tube (1) A swirl flow in the flow direction can be given to the heat transfer liquid flowing in the heat transfer liquid, and the heat transfer liquid in the heat transfer tube (1) can be heated more uniformly. Furthermore, this groove
Even if it is formed continuously in the axial direction of the heat transfer tube,
It may be formed by appropriately dividing and shifting the phase with respect to the axis. Heat transfer tube with grooved tube (1)
As described later, may be at least the heat transfer tube (1) constituting the inner heat transfer tube wall (11), that is, the part of the heat transfer tube (1) located in the radiant heat transfer section, and more preferably. Is preferably provided in the heat transfer tube portion corresponding to the radiant heat transfer section, and more preferably, it is provided in a location where the heat load from the hot gas to the heat transfer tube is large, and the film temperature of the heat transfer medium in the entire heat transfer tube is It is preferable that the heat transfer liquid is set to be substantially constant within the heat-resistant temperature limit of the heat transfer liquid, and the cost can be reduced as compared with the case where the entire heat transfer pipe is a grooved pipe.

【0013】前記の熱媒ボイラにおいての熱媒液の流れ
は、内方側の伝熱管壁(11)の上端に位置する伝熱管(1)
の開口端から流入し、この伝熱管壁(11)部分の伝熱管
(1) を螺旋状に旋回しながら下方に向けて流動した後、
外方側の伝熱管壁(12)の下方から螺旋状に旋回しながら
上方に向けて流動した後、外方側の伝熱管壁(12)の上端
に位置する伝熱管(1) の開口端から流出する。一般にこ
のような熱媒ボイラで加熱された熱媒液は、需要箇所で
その熱エネルギーを利用し、温度低下した熱媒液は再び
熱媒ボイラに循環供給される。
The flow of the heat transfer liquid in the heat transfer boiler is the heat transfer tube (1) located at the upper end of the inner heat transfer tube wall (11).
Inflow from the open end of the heat transfer tube wall (11)
After swirling (1) spirally and flowing downward,
After spirally swirling from below the outer heat transfer tube wall (12) and flowing upward, the heat transfer tube (1) located at the upper end of the outer heat transfer tube wall (12) It flows out from the open end. Generally, the heat medium liquid heated by such a heat medium boiler utilizes its heat energy at a demand point, and the heat medium liquid having a lowered temperature is circulated and supplied again to the heat medium boiler.

【0014】このような缶体構造の熱媒ボイラにおいて
は、燃焼室(13)に対面する輻射伝熱部における伝熱管表
面においては、熱ガスから主として輻射伝熱を受け、前
記隙間(15)に対面する接触伝熱部における伝熱管表面に
おいては主として接触伝熱を受け、これらの熱は、伝熱
管(1) 自体の管壁を介して内部の熱媒液に伝達される。
In the heat medium boiler having such a can structure, the surface of the heat transfer tube in the radiant heat transfer section facing the combustion chamber (13) receives radiant heat from the hot gas, and the gap (15) The surface of the heat transfer tube in the contact heat transfer section facing the main part receives contact heat transfer, and these heats are transferred to the internal heat transfer medium via the tube wall of the heat transfer tube (1) itself.

【0015】前記の熱ガスからの輻射伝熱並びに接触伝
熱による伝熱過程において、伝熱管(1) の外表面は平滑
な円筒面であり、内表面は前述のような溝を形成したも
のであるため、熱媒液への熱伝達面積は、従来の円筒面
形状のものよりも広くなる。そのため、伝熱管(1) 外表
面において熱ガスから同一の熱量を受熱した場合、伝熱
管(1) 内表面における温度は低下し、この内表面と接す
る熱媒液の境膜温度も低下する。
In the heat transfer process by the radiative heat transfer from the hot gas and the contact heat transfer, the outer surface of the heat transfer tube (1) is a smooth cylindrical surface, and the inner surface is formed with the groove as described above. Therefore, the heat transfer area to the heat transfer liquid becomes wider than that of the conventional cylindrical surface shape. Therefore, when the same amount of heat is received from the hot gas on the outer surface of the heat transfer tube (1), the temperature on the inner surface of the heat transfer tube (1) decreases, and the film temperature of the heat transfer medium in contact with the inner surface also decreases.

【0016】即ち、熱媒液の境膜温度は、前述のように
熱媒液の劣化温度から制限を受けており、この境膜温度
を従来と同程度にした場合に、熱ガスとの伝熱面負荷を
増大することができるため、より狭い伝熱面積によっ
て、より多くの熱伝達を行うことができる。従って、同
一容量の熱媒ボイラとした場合、伝熱面積の縮小化によ
ってボイラの小型化,高能率化が可能になる。特に、前
記の伝熱面積の縮小化による缶体の小型化の効果は、熱
ガスによって最も加熱される伝熱部分(燃焼室等の熱ガ
スの発生部)における小型化の効果が著しい。
That is, the boundary film temperature of the heat transfer liquid is limited by the deterioration temperature of the heat transfer liquid as described above. Since the thermal surface load can be increased, more heat transfer can be performed due to the smaller heat transfer area. Therefore, in the case of the heating medium boiler having the same capacity, it is possible to downsize the boiler and improve the efficiency by reducing the heat transfer area. In particular, as for the effect of reducing the size of the can body by reducing the heat transfer area, the effect of reducing the size of the heat transfer portion (heat gas generating portion such as the combustion chamber) most heated by the heat gas is remarkable.

【0017】また、前記の実施例のように輻射伝熱部と
接触伝熱部を組込んでなる缶体構造においては、輻射伝
熱部の小型化により、熱ガスが大幅に温度低下すること
なく接触伝熱部内に流入する。そのため、前記の燃焼室
からの熱ガスが流入する接触伝熱部における熱回収量を
平均化するためにこの箇所の伝熱面面積を拡大した場合
においても、全体としての伝熱面面積は縮小する。その
ため、全体として更に小型、高効率の熱媒ボイラを安価
に提供することができる。
Further, in the can body structure in which the radiant heat transfer section and the contact heat transfer section are incorporated as in the above-mentioned embodiment, the temperature of the hot gas is significantly lowered due to the miniaturization of the radiant heat transfer section. Instead, it flows into the contact heat transfer section. Therefore, even if the heat transfer surface area of this portion is expanded in order to average the amount of heat recovery in the contact heat transfer part into which the hot gas from the combustion chamber flows, the heat transfer surface area as a whole is reduced. To do. Therefore, it is possible to provide a more compact and highly efficient heat medium boiler at low cost as a whole.

【0018】また、図示する実施例のような缶体構造の
他に、伝熱管を一重の円筒形状に巻回し、その内部を燃
焼室とした缶体構造のものであっても同様に適用でき、
この場合は、バーナからの熱ガスにより高温となる部分
の内面に溝を形成するのがよい。
In addition to the can body structure as shown in the illustrated embodiment, the same can be applied to a can body structure in which a heat transfer tube is wound in a single cylindrical shape and the inside thereof is a combustion chamber. ,
In this case, it is preferable to form a groove on the inner surface of the portion that is heated by the hot gas from the burner.

【0019】更に、この発明は、以上のように伝熱管を
螺旋状に巻回してなる缶体構造の熱媒ボイラの他、多数
の伝熱管を配列してなる多管式の水管ボイラ様式の缶体
構造のものにおいても、同様に適用できる。このような
多管式のボイラ缶体の例としては、多数の垂直伝熱管を
環状に配置して1乃至多重の環状伝熱管壁を構成し、環
状の伝熱管壁の最内周部を燃焼室とした構造のものや、
バーナから略直線状に延びる熱ガスの流通経路中に、こ
の流通経路に対して交叉するように多数の垂直水管を互
いに平行に配置し、各垂直伝熱管の上下の各端部同志を
ヘッダで連結した構造のもの等があり、これらの缶体構
造においては、前者は、燃焼室に面する伝熱管表面が輻
射伝熱部であり、後者は、バーナに直に対面する伝熱管
表面の他、その後流側の伝熱管表面も該当し、これらの
伝熱管の内周面に溝を形成する。
Further, according to the present invention, in addition to the heating medium boiler having a can body structure in which the heat transfer tubes are spirally wound as described above, a multi-tube type water tube boiler type in which a large number of heat transfer tubes are arranged is also used. The same can be applied to the case structure. As an example of such a multi-tube boiler can, a large number of vertical heat transfer tubes are annularly arranged to form one to multiple annular heat transfer tube walls, and the innermost peripheral portion of the annular heat transfer tube wall is formed. With a combustion chamber,
In the hot gas flow path that extends from the burner in a substantially straight line, a number of vertical water pipes are arranged parallel to each other so as to intersect with this flow path, and the upper and lower end parts of each vertical heat transfer pipe are used as headers. In these can body structures, in the former case, the surface of the heat transfer tube facing the combustion chamber is the radiant heat transfer section, and in the case of the latter, other than the surface of the heat transfer tube directly facing the burner. The surface of the heat transfer tubes on the downstream side also corresponds, and grooves are formed on the inner peripheral surfaces of these heat transfer tubes.

【0020】このような、缶体構造の熱媒ボイラに適用
した場合においても、前記同様に、熱媒ボイラの高能率
化、或は、小型化を図ることができ、伝熱面積の縮小化
による缶体の小型化の効果は、熱ガスによって最も加熱
される伝熱部分(燃焼室等の熱ガスの発生部)における
小型化の効果が著しい。また、輻射伝熱部の後流に接触
伝熱部を組込んでなる缶体構造においては、熱ガスの輻
射伝熱部分の小型化により、熱ガスが大幅に温度低下す
ることなく接触伝熱部内に流入するため、接触伝熱部に
おいても効率的な熱回収が行うことができて、輻射伝熱
部と接触伝熱部における熱回収量がより平均化する。そ
のため、全体として更に小型、高効率の熱媒ボイラを安
価に提供することができる。
Even when applied to such a heating medium boiler having a can body structure, the efficiency of the heating medium boiler can be increased or the size thereof can be reduced, and the heat transfer area can be reduced. The miniaturization effect of the can body due to is remarkable in miniaturization in the heat transfer portion (heat gas generation portion such as the combustion chamber) that is most heated by the hot gas. In addition, in the can body structure that incorporates the contact heat transfer part in the wake of the radiant heat transfer part, the contact heat transfer can be performed without the temperature of the hot gas significantly decreasing due to the miniaturization of the radiant heat transfer part of the hot gas. Since it flows into the heat transfer section, efficient heat recovery can be performed even in the contact heat transfer section, and the heat recovery amounts in the radiant heat transfer section and the contact heat transfer section are more averaged. Therefore, it is possible to provide a more compact and highly efficient heat medium boiler at low cost as a whole.

【0021】[0021]

【発明の効果】以上説明したように、この発明に係る熱
媒ボイラによれば、同一加熱量に対しての伝熱管表面に
おける熱媒液の境膜温度を低下することができ、換言す
れば、境膜温度を同一にした場合に熱ガスとの伝熱面負
荷を増大することができるため、より狭い伝熱面積によ
って、より多くの熱伝達を行うことができる。
As described above, according to the heating medium boiler of the present invention, the film temperature of the heating medium liquid on the surface of the heat transfer tube can be lowered for the same heating amount. Since the heat transfer surface load with the hot gas can be increased when the film temperature is the same, more heat can be transferred by the narrower heat transfer area.

【0022】従って、熱媒ボイラの高能率化、或は、小
型化を図ることができ、前記の伝熱面積の縮小化による
缶体の小型化の効果は、熱ガスによって最も加熱される
伝熱部分(燃焼室等の熱ガスの発生部)における小型化
の効果が著しい。
Therefore, it is possible to improve the efficiency of the heat medium boiler or to downsize it, and the effect of downsizing the can body by reducing the heat transfer area is that the heat gas is most heated. The effect of miniaturization in the heat part (the part that generates hot gas such as the combustion chamber) is remarkable.

【0023】また、輻射伝熱部と接触伝熱部を組込んで
なる缶体構造においては、熱ガスから輻射伝熱を受ける
部分の小型化により、熱ガスが大幅に温度低下すること
なく接触伝熱部内に流入するため、接触伝熱部において
も効率的な熱回収が行うことができて、輻射伝熱部と接
触伝熱部における熱回収量がより平均化する。そのた
め、全体として更に小型、高効率の熱媒ボイラを安価に
提供することができる。
Further, in the can body structure in which the radiant heat transfer section and the contact heat transfer section are incorporated, the size of the portion receiving the radiant heat transfer from the hot gas causes the hot gas to contact without significantly lowering the temperature. Since it flows into the heat transfer section, efficient heat recovery can be performed even in the contact heat transfer section, and the heat recovery amounts in the radiant heat transfer section and the contact heat transfer section are more averaged. Therefore, it is possible to provide a more compact and highly efficient heat medium boiler at low cost as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る熱媒ボイラの一実施例における
缶体構造を例示する縦断側面図である。
FIG. 1 is a vertical cross-sectional side view illustrating a can body structure in an embodiment of a heat medium boiler according to the present invention.

【図2】図1に示す熱媒ボイラのボイラ缶体に適用する
水管の一例を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a water pipe applied to the boiler can body of the heat medium boiler shown in FIG.

【符号の説明】[Explanation of symbols]

(1) 伝熱管 (2) 溝 (10) 缶体 (11) 伝熱管壁(内側の円筒状伝熱管壁) (12) 伝熱管壁(外側の円筒状伝熱管壁) (13) 燃焼室 (14) バーナ (15) 隙間 (A) 熱媒ボイラ (1) Heat transfer tube (2) Groove (10) Can body (11) Heat transfer tube wall (inner cylindrical heat transfer tube wall) (12) Heat transfer tube wall (outer cylindrical heat transfer tube wall) (13 ) Combustion chamber (14) Burner (15) Gap (A) Heat medium boiler

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バーナ(14)によって生成した熱ガスか
ら、主として輻射伝熱を受ける輻射伝熱部を備えた缶体
構造を有し、前記輻射伝熱部に位置する伝熱管(1) を内
周面に溝(2) を有する溝付管としたことを特徴とする熱
媒ボイラ。
1. A heat transfer tube (1) having a can body structure having a radiant heat transfer part for mainly receiving radiative heat transfer from hot gas generated by a burner (14), the heat transfer tube (1) being located in the radiant heat transfer part. A heat medium boiler characterized by being a grooved tube having a groove (2) on the inner peripheral surface.
【請求項2】 バーナ(14)によって生成した熱ガスか
ら、主として輻射伝熱を受ける輻射伝熱部と、この輻射
伝熱部から導出した熱ガスより主として接触伝熱を受け
る接触伝熱部とを備えた缶体構造を有し、少なくとも輻
射伝熱部に位置する伝熱管(1) を内周面に溝(2) を有す
る溝付管としたことを特徴とする熱媒ボイラ。
2. A radiant heat transfer section that mainly receives radiant heat transfer from the hot gas generated by the burner (14), and a contact heat transfer section that mainly receives contact heat transfer from the hot gas derived from this radiant heat transfer section. A heat transfer medium boiler having a can body structure including: a heat transfer tube (1) located at least in a radiant heat transfer section being a grooved tube having a groove (2) on an inner peripheral surface thereof.
【請求項3】 前記熱媒ボイラの缶体構造が、伝熱管
(1) を螺旋状に巻回した筒形状をなし、その最内周空間
にバーナ(14)を臨ませて配置してこの空間部を燃焼室(1
3)とすることによって、この燃焼室(13)に対面する伝熱
管部分を輻射伝熱部とした構造であることを特徴とする
請求項1又は2記載の熱媒ボイラ。
3. A can body structure of the heating medium boiler is a heat transfer tube.
(1) is spirally wound into a cylindrical shape, and the burner (14) is arranged facing the innermost peripheral space of this, and this space is set in the combustion chamber (1
The heat medium boiler according to claim 1 or 2, wherein the heat transfer tube portion facing the combustion chamber (13) is a radiant heat transfer portion.
【請求項4】 前記熱媒ボイラの缶体構造が、伝熱管
(1) を螺旋状に巻回した巻上直径の異なる多重の筒形状
をなし、その最内周空間部にバーナ(14)を臨ませて配置
してこの空間部を燃焼室(13)とすることによって、この
燃焼室(13)に対面する伝熱管部分を輻射伝熱部となし、
多重の円筒状伝熱管部分の間を前記燃焼室からの熱ガス
の流通隙間とすることによって、この隙間(15)に対面す
る伝熱管部分を接触伝熱面となした構造であることを特
徴とする請求項1又は2記載の熱媒ボイラ。
4. A heat transfer tube having a can structure of the heating medium boiler.
(1) is wound in a spiral shape to form multiple cylindrical shapes with different winding diameters, and the burner (14) is arranged facing the innermost space of this space, and this space is designated as the combustion chamber (13). By doing so, the heat transfer tube portion facing this combustion chamber (13) is formed as a radiant heat transfer portion,
By forming a gap between the multiple cylindrical heat transfer tube portions through which hot gas flows from the combustion chamber, the heat transfer tube portion facing this clearance (15) has a contact heat transfer surface. The heat medium boiler according to claim 1 or 2.
JP4045894A 1994-02-14 1994-02-14 Heat refrigerant boiler Pending JPH07225055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045894A JPH07225055A (en) 1994-02-14 1994-02-14 Heat refrigerant boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045894A JPH07225055A (en) 1994-02-14 1994-02-14 Heat refrigerant boiler

Publications (1)

Publication Number Publication Date
JPH07225055A true JPH07225055A (en) 1995-08-22

Family

ID=12581209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045894A Pending JPH07225055A (en) 1994-02-14 1994-02-14 Heat refrigerant boiler

Country Status (1)

Country Link
JP (1) JPH07225055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757102B2 (en) 2007-04-20 2014-06-24 Miura Co., Ltd. Boiler
JP2020536218A (en) * 2017-10-03 2020-12-10 エンバイロ パワー インコーポレイテッド Evaporator with integrated heat recovery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757102B2 (en) 2007-04-20 2014-06-24 Miura Co., Ltd. Boiler
KR101446635B1 (en) * 2007-04-20 2014-10-01 미우라고교 가부시키카이샤 Boiler
JP2020536218A (en) * 2017-10-03 2020-12-10 エンバイロ パワー インコーポレイテッド Evaporator with integrated heat recovery

Similar Documents

Publication Publication Date Title
US20110146594A1 (en) Fire Tube Heater
EP1711767A2 (en) A heat exchanger, in particular of the condensation type
RU2139472C1 (en) Straight-through steam generator (versions)
CA2314844C (en) Water-tube boiler
KR100368516B1 (en) Continuous steam generator
JPH06500850A (en) Once-through boiler with a vertical flue consisting of tubes arranged almost vertically
EP0777845B1 (en) Heat exchangers
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
WO2002063231A1 (en) Spiral flow heat exchanger
US9523538B2 (en) High-efficiency enhanced boiler
JPH07225055A (en) Heat refrigerant boiler
US5671700A (en) High efficiency water boiler having finned heat exchanger
JP2768264B2 (en) boiler
CN211575543U (en) Fire tube type condensation heat exchanger
KR20210039191A (en) Heat Recovery System for Boiler
KR100363719B1 (en) Spiral Wound Heat Transferring Equipment on the Single Passage for the Super-heater
JP4458552B2 (en) Through-flow boiler with evaporator tubes arranged in a spiral
JPS58205003A (en) Spiral type water-tube boiler
JP3190939B2 (en) Steam generator
EP1658462B1 (en) Device for transferring heat from a fluid to a heat transfer medium
US4077468A (en) Fluid heater
KR20230048599A (en) A tube winding for a gas heat exchange cell for a boiler
WO2019169397A1 (en) Multisection tubeless heat exchanger, fluid heating system including the same, and methods of manufacture thereof
JP2004003840A (en) Heat transfer fin structure of heat exchanger for gas boiler
KR940006238Y1 (en) Dual type heat transfer module of gas boiler