JPH0722401A - Plasma etching apparatus - Google Patents

Plasma etching apparatus

Info

Publication number
JPH0722401A
JPH0722401A JP16493793A JP16493793A JPH0722401A JP H0722401 A JPH0722401 A JP H0722401A JP 16493793 A JP16493793 A JP 16493793A JP 16493793 A JP16493793 A JP 16493793A JP H0722401 A JPH0722401 A JP H0722401A
Authority
JP
Japan
Prior art keywords
gas
emission
plasma
vacuum container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16493793A
Other languages
Japanese (ja)
Inventor
Hideaki Furuta
秀昭 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Hiroshima Ltd
Original Assignee
Hiroshima Nippon Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Nippon Denki KK filed Critical Hiroshima Nippon Denki KK
Priority to JP16493793A priority Critical patent/JPH0722401A/en
Publication of JPH0722401A publication Critical patent/JPH0722401A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To achieve the improvement of detecting accuracy and monitoring at all the time at an in-process level for the leakages from a vacuum system and a gas feeding system and to prevent the defective product caused by leaking. CONSTITUTION:A light-emission analyzer 20 can separate the light emitting wavelength in plasma. A high-frequency power supply 13, an evacuation system and a gas control system are controlled with an operation control part 24 by using the output signal from a comparison judging circuit 22, which judges the presence or absence of the leakages in a vacuum container and a gas feeding system based on the result of the output signals from a memory circuit 23 and a light-emission analyzer. In the memory circuit 23, the preset plasma light-emission intensity ratio and light-emitting wavelength of gas are stored. Thus, the improvement of the detecting accuracy of the minute leakages in a vacuum container 1 and the gas feeding system and the monitoring at all the time at an in-process level are achieved. This is effective for early detection of abnormality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマエッチング装置
に関し、特に半導体ウェーハの製造工程に於いてフォト
マスクにより選択露光されたレジストパターンをマスク
として、下地の絶縁膜、配線金属等の各種薄膜をプラズ
マによりエッチング処理するプラズマエッチング装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma etching apparatus, and in particular, in a semiconductor wafer manufacturing process, a resist pattern selectively exposed by a photomask is used as a mask for plasma-forming various thin films such as an underlying insulating film and wiring metal. The present invention relates to a plasma etching apparatus that performs an etching process by using.

【0002】[0002]

【従来の技術】従来、半導体装置の製造に用いられるプ
ラズマエッチング装置は、図5に示すように、真空容器
1内を高真空にした後、エッチングガスを導入し、真空
容器1内に相対向して設けられたウェーハ12を載置す
る支持電極であるカソード4と対向電極であるアノード
3間に高周波電源13(例えば13.56MHZ )を印
加し、電極間にプラズマを発生させ、ガスプラズマ中に
イオン衝撃による物理的反応と活性ガスによる化学反応
によって被エッチング膜をエッチングする様に構成さ
れ、又被エッチング膜の終点検出する発光分析器20を
有している。
2. Description of the Related Art Conventionally, in a plasma etching apparatus used for manufacturing a semiconductor device, as shown in FIG. a support electrode for mounting a wafer 12 provided with the high frequency power source 13 (e.g. 13.56MH Z) is applied between the cathode 4 and anode 3 which is a counter electrode, to generate plasma between the electrodes, gas plasma It has an emission analyzer 20 which is configured to etch the film to be etched by a physical reaction due to ion bombardment and a chemical reaction with an active gas, and which detects the end point of the film to be etched.

【0003】一般にエッチング工程では、エッチング後
の断面形状、表面外観、エッチングレート、下地との選
択比等のプロセス性能を高精度に維持する事が必須であ
り、この為には、真空容器1及びガス供給系でのバルブ
17及びガス配管のリークの有無管理・早期発見が極め
て重要な管理項目である。
Generally, in the etching process, it is essential to maintain the process performance such as the cross-sectional shape after etching, the surface appearance, the etching rate, and the selection ratio with the base with high accuracy. For this purpose, the vacuum container 1 and Control and early detection of leaks in the valve 17 and gas piping in the gas supply system are extremely important control items.

【0004】この為、従来技術のプラズマエッチング装
置でのリークの測定管理は、真空容器1内に設けられた
真空計2にて、真空容器1内の到達真空度を自動で計測
し設定圧力以下の場合アラームを発生するという真空度
の監視機能が実用化されているが、エッチング処理中等
においてはガス供給されている為、到達真空監視ができ
ず、エッチング処理のインターバル時間に限定して自動
計測監視が実施されているのが現状である。又、上記測
定に関して真空容器1側壁からのアウトガスや真空計2
の精度に影響を受ける為、真空容器1、ガス供給系のエ
アオペバルブ17及びガス配管の微小リークの検出は困
難であった。
Therefore, in the measurement and management of the leak in the plasma etching apparatus of the prior art, the ultimate vacuum degree in the vacuum container 1 is automatically measured by the vacuum gauge 2 provided in the vacuum container 1 and the pressure is set below the set pressure. In this case, a vacuum degree monitoring function that issues an alarm has been put to practical use, but because gas is being supplied during etching processing, the ultimate vacuum cannot be monitored, and automatic measurement is performed only during the etching processing interval time. The current situation is that monitoring is being carried out. Also, regarding the above measurement, outgas from the side wall of the vacuum container 1 and the vacuum gauge 2
Therefore, it is difficult to detect a minute leak in the vacuum container 1, the air operation valve 17 of the gas supply system, and the gas pipe.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のプラズ
マエッチング装置は、真空容器内に設けられた真空計に
より到達真空度及びリークレートの測定機構が設けられ
ているが、真空容器中しか測定出来ない為、ガス供給系
のバルブ、ガス配管に外部リーク、微小リーク等が発生
した場合には、発見する事が困難であり、又測定時は、
一旦真空容器内を高真空に引く必要があるため、ウェー
ハ処理のインターバルにしか測定出来ない。又、エッチ
ング終了後のアウトガスの影響、真空計の精度の影響に
より微小リーク検出は困難である。
The above-mentioned conventional plasma etching apparatus is provided with a mechanism for measuring the ultimate vacuum degree and the leak rate by means of a vacuum gauge provided in the vacuum container, but it can be measured only in the vacuum container. Since it is not present, it is difficult to detect external leaks, minute leaks, etc. in the gas supply system valves and gas pipes.
Since it is necessary to once draw a high vacuum in the vacuum container, measurement can only be performed at wafer processing intervals. Further, it is difficult to detect a minute leak due to the influence of outgas after the etching and the precision of the vacuum gauge.

【0006】本発明の目的は、真空系及びガス供給系の
リークに対して、検出精度の向上とインプロセスレベル
での常時監視化を図り、リーク起因の製品不良を防止で
きるプラズマエッチング装置を提供することにある。
An object of the present invention is to provide a plasma etching apparatus capable of improving the detection accuracy and constantly monitoring in-process level with respect to leaks in a vacuum system and a gas supply system, and preventing product defects due to leaks. To do.

【0007】[0007]

【課題を解決するための手段】本発明のプラズマエッチ
ング装置は、従来技術のプラズマエッチング装置に新た
に、予め設定したガスのプラズマ発光強度比及び発光波
長を記憶させる記憶回路と発光分析器からの出力信号強
度により、プロセスチャンバー及びガス供給系のリーク
の有無を比較判定する比較判定回路と、高周波電源と真
空排気系とガス制御部の制御を可能とする演算制御部を
有する。
The plasma etching apparatus according to the present invention includes a storage circuit for storing a preset plasma emission intensity ratio and emission wavelength of a gas and an emission analyzer which are newly added to the conventional plasma etching apparatus. It has a comparison / determination circuit that determines the presence / absence of a leak in the process chamber and the gas supply system based on the output signal strength, and a calculation control unit that enables control of the high frequency power supply, the vacuum exhaust system, and the gas control unit.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例の模式断面図、発
光分光ユニットシステムの図である。
FIG. 1 is a schematic sectional view of an embodiment of the present invention and a diagram of an emission spectroscopic unit system.

【0010】真空容器1には絶縁部材5で電気的に絶縁
された状態で一対の電極、すなわち対向電極であるアノ
ード3とウェーハ12を載置する支持電極であるカソー
ド4が相対向して設けられている。カソード4には整合
器14を介して高周波電源13が接続されている。真空
容器1内を真空にする為にドライポンプ9とターボポン
プ8に直結されたエッチングガス排気口6があり、ゲー
トバルブ7を開ける事によって真空容器1内の排気を行
う。
A pair of electrodes, that is, an anode 3 as a counter electrode and a cathode 4 as a support electrode on which a wafer 12 is mounted are provided in the vacuum container 1 in a state of being electrically insulated by an insulating member 5 so as to face each other. Has been. A high frequency power supply 13 is connected to the cathode 4 via a matching unit 14. There is an etching gas exhaust port 6 directly connected to the dry pump 9 and the turbo pump 8 in order to make the inside of the vacuum container 1 a vacuum, and the gate valve 7 is opened to exhaust the inside of the vacuum container 1.

【0011】又、アノード3及びカソード4は温調器1
0及び11によって温度コントロールが行われる。
Further, the anode 3 and the cathode 4 are temperature controllers 1
Temperature control is performed by 0 and 11.

【0012】エアオペバルブ17、マスフローコントロ
ーラー18に外部リークが発生すると、ガス供給系内に
大気が混入し、真空容器1内に供給される。
When an external leak occurs in the air operation valve 17 and the mass flow controller 18, the atmosphere is mixed in the gas supply system and is supplied into the vacuum container 1.

【0013】真空容器1内に大気混入したガスが高周波
電源13より発振される高周波により、自由に運動する
正、負の荷電粒子が共存して電気的中性なプラズマ状態
となり、発光を生じる。
The gas mixed in the atmosphere in the vacuum chamber 1 is oscillated by the high frequency power source 13 by the high frequency, and the freely moving positive and negative charged particles coexist in the electrically neutral plasma state to emit light.

【0014】前述のプラズマ発光のN2 の発光波長を分
離可能とする発光分析器20を予めN2 の発光波長(例
えば、380nm)に設定し、プラズマエッチング処理
中モニターする。
The emission analyzer 20 capable of separating the N 2 emission wavelength of the plasma emission described above is set in advance to the N 2 emission wavelength (for example, 380 nm) and monitored during the plasma etching process.

【0015】又、予め設定されたN2 ガスのプラズマ発
光強度比及び発光波長(例えば、380nm)を記憶回
路23に設定する。リーク発生時には、正常状態と比較
してプラズマ中のN2 の発光波長強度が増加する。
The preset plasma emission intensity ratio of N 2 gas and emission wavelength (for example, 380 nm) are set in the memory circuit 23. When a leak occurs, the emission wavelength intensity of N 2 in plasma increases as compared with the normal state.

【0016】増加した発光波長強度信号は光電子倍増菅
21にて電圧に変換された信号を、前記記憶回路23の
設定信号と比較判定回路22にて設定信号以上増加した
場合には異常と判断し、演算制御回路24にリーク有り
の信号を送り、高周波電源13、ゲートバルブ7、マス
フローコントローラー18、エアオペバルブ17の動作
を止める。
The increased emission wavelength intensity signal is judged to be abnormal when the signal converted into a voltage by the photomultiplier tube 21 is increased by more than the set signal of the memory circuit 23 and the set signal by the comparison / judgment circuit 22. A signal indicating that there is a leak is sent to the arithmetic control circuit 24, and the operations of the high frequency power supply 13, the gate valve 7, the mass flow controller 18, and the air operation valve 17 are stopped.

【0017】このように構成された本実施例によれば、
真空容器1内にガス供給されたプラズマエッチング処理
中であっても微小リークの検出が可能となる。
According to the present embodiment thus constructed,
It is possible to detect a minute leak even during the plasma etching process in which the gas is supplied into the vacuum container 1.

【0018】次に本発明の他の実施例について以下に説
明する。図2は本発明の他の実施例の断面図であり、図
3、図4は本実施例の詳細な説明図である。
Another embodiment of the present invention will be described below. FIG. 2 is a sectional view of another embodiment of the present invention, and FIGS. 3 and 4 are detailed explanatory views of this embodiment.

【0019】前述の実施例1では、図3にて説明するよ
うに、プラズマエッチング処理にてプロセスガスにN2
を使用する場合には、プラズマ発光にN2 発光波長強度
が発生する為、リークが発生しても、大気中のN2 の発
光波長強度と重なってしまう為、微小リーク検出は困難
であるという欠点があった。
In the first embodiment, as described with reference to FIG. 3, N 2 was used as the process gas in the plasma etching process.
In the case of using, the N 2 emission wavelength intensity is generated in plasma emission, and even if a leak occurs, it overlaps with the emission wavelength intensity of N 2 in the atmosphere, and it is difficult to detect a minute leak. There was a flaw.

【0020】実施例2では上述の不具合を改善すべく実
施例1の技術に対して、発光分析器20を復数個搭載
し、プロセスガスのN2 を使用する場合でも、リーク検
出を可能にしたものである。
In the second embodiment, in order to remedy the above-mentioned problems, in addition to the technique of the first embodiment, a plurality of emission analyzers 20 are mounted, and leak detection is possible even when N 2 of the process gas is used. It was done.

【0021】本発明の実施例2では、プラズマの発光波
長分離可能な発光分析器20a〜nを複数個有してい
る。下記に示す如くそれぞれの波長強度を求める事によ
り、バルブ17の外部リーク、及び内部リークの両方の
検出が可能となる。
The second embodiment of the present invention has a plurality of emission analyzers 20a to 20n capable of separating emission wavelengths of plasma. Both the external leak and the internal leak of the valve 17 can be detected by obtaining the respective wavelength intensities as shown below.

【0022】例えば、外部リークの場合は、発光分析器
20bの波長をO2 (例えば、602nm)に設定し、
検出された信号が、予め記憶回路23にO2 のプラズマ
発光強度比及び発光波長(例えば、602nm)を記憶
された値を比較判定回路22にて設定信号以上増加した
場合には異常と判断し、実施例1と同様に各ユニットを
制御する。
For example, in the case of external leakage, the wavelength of the emission analyzer 20b is set to O 2 (for example, 602 nm),
When the detected signal increases the value in which the plasma emission intensity ratio of O 2 and the emission wavelength (for example, 602 nm) are stored in the storage circuit 23 in advance in the comparison / determination circuit 22 by more than the set signal, it is determined to be abnormal. Control each unit as in the first embodiment.

【0023】又、特定のプロセスにしか使用しないガ
ス、例えばCF4 の場合は、発光分析器20nの波長を
F(690nm)に設定し、通常検出されない信号が設
定信号以上増加した場合には異常と判断し、演算制御回
路24に内部リーク有りの信号を送り、実施例1と同様
に制御する。
Further, in the case of a gas used only in a specific process, for example, CF 4 , the wavelength of the emission analyzer 20n is set to F (690 nm), and when the signal not normally detected increases by more than the set signal, it is abnormal. Then, a signal with an internal leak is sent to the arithmetic control circuit 24, and the same control as in the first embodiment is performed.

【0024】[0024]

【発明の効果】以上説明したように本発明は、プラズマ
エッチング装置のリークをプラズマエエッチング中に検
出する手段を設ける事により、真空容器内のみならず、
常時ガス供給系のバルブ、ガス配管のリークを精度良く
検出可能となり又、バルブの内部リークの検出をも可能
となる効果がある。従って、ガス供給系からの微小リー
クを早期に精度良く検出可能となる。
As described above, according to the present invention, by providing means for detecting a leak of the plasma etching apparatus during plasma etching, not only in the vacuum container,
There is an effect that it is possible to constantly detect a leak in the valve of the gas supply system and the gas pipe with high accuracy, and it is also possible to detect an internal leak in the valve. Therefore, a minute leak from the gas supply system can be detected early and accurately.

【0025】更に、今後LSIの高度集積化に対応した
サブミクロンオーダーレベルのエッチングが要求される
為、微小なリークが発生しても製品へ多大な影響が及ぼ
される。
Further, since etching in the submicron order level corresponding to high integration of LSI will be required in the future, even if a minute leak occurs, the product will be greatly affected.

【0026】そこで、本発明のような高精度のリーク検
出機構が、プラズマエッチング装置の能力を大巾に向上
させることができる効果を有する。
Therefore, the highly accurate leak detection mechanism as in the present invention has the effect of greatly improving the performance of the plasma etching apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の他の実施例の構成を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a configuration of another embodiment of the present invention.

【図3】実施例1の比較回路の出力例である。FIG. 3 is an output example of the comparison circuit of the first embodiment.

【図4】実施例2の比較回路の出力例である。FIG. 4 is an output example of a comparison circuit of the second embodiment.

【図5】従来のプラズマエッチング装置の一例の構成を
示す説明図である。
FIG. 5 is an explanatory diagram showing a configuration of an example of a conventional plasma etching apparatus.

【符号の説明】[Explanation of symbols]

1 真空容器 2 真空系 3 アノード 4 カソード 5 絶縁部材 6 エッチング排気口 7 ゲートバルブ 8 ターボポンプ 9 ドライポンプ 10 温調器 11 温調器 12 ウェーハ 13 高周波電源 14 整合器 15 アース 16 アース 17 エアオペバルブ 18 マスフローコントローラー 19 ガス供給源 20 発光分析器 21 光電子増倍菅 22 比較判定回路 23 記憶回路 24 演算制御回路 1 Vacuum container 2 Vacuum system 3 Anode 4 Cathode 5 Insulation member 6 Etching exhaust port 7 Gate valve 8 Turbo pump 9 Dry pump 10 Temperature controller 11 Temperature controller 12 Wafer 13 High frequency power supply 14 Matching device 15 Earth 16 Earth 17 Air op valve 18 Mass flow Controller 19 Gas supply source 20 Emission analyzer 21 Photomultiplier tube 22 Comparison judgment circuit 23 Storage circuit 24 Arithmetic control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に設置された半導体ウェーハ
を載置する支持電極と、該支持電極に対向して設けられ
た対向電極と、前記電極間にプラズマを発生させる高周
波電源と、真空容器を排気する真空排気系と、真空容器
内にプロセスガスを制御するガス制御系と、プラズマ中
の発光波長を分離可能とする発光分析器とを具備してな
るプラズマエッチング装置において、予め設定したガス
のプラズマ発光強度比及び発光波長を記憶させる記憶回
路と、発光分析器からの出力信号強度の比較判定を行う
比較判定回路と、前記比較判定回路からの出力信号結果
により高周波電源と真空排気系とガス供給系の制御を可
能とする演算制御部とを有する事を特徴とするプラズマ
エッチング装置。
1. A support electrode for mounting a semiconductor wafer, which is placed in a vacuum container, a counter electrode provided to face the support electrode, a high-frequency power source for generating plasma between the electrodes, and a vacuum container. In a plasma etching apparatus comprising a vacuum exhaust system for exhausting a gas, a gas control system for controlling a process gas in a vacuum container, and an emission analyzer capable of separating emission wavelengths in plasma, a preset gas is used. A storage circuit for storing the plasma emission intensity ratio and the emission wavelength, a comparison determination circuit for performing a comparison determination of the output signal intensity from the emission analyzer, and a high frequency power supply and a vacuum exhaust system based on the output signal result from the comparison determination circuit. A plasma etching apparatus having an arithmetic control unit capable of controlling a gas supply system.
【請求項2】 予め設定された複数のガスのプラズマ発
光強度比及び発光波長を記憶する記憶回路を有し、前記
記憶回路により設定された信号により自動で発光分析器
の波長設定を制御させる制御回路を有することを特徴と
する請求項1記載のプラズマエッチング装置。
2. A control which has a storage circuit for storing the preset plasma emission intensity ratios and emission wavelengths of a plurality of gases, and automatically controls the wavelength setting of the emission analyzer according to the signal set by the storage circuit. The plasma etching apparatus according to claim 1, further comprising a circuit.
JP16493793A 1993-07-05 1993-07-05 Plasma etching apparatus Pending JPH0722401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16493793A JPH0722401A (en) 1993-07-05 1993-07-05 Plasma etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16493793A JPH0722401A (en) 1993-07-05 1993-07-05 Plasma etching apparatus

Publications (1)

Publication Number Publication Date
JPH0722401A true JPH0722401A (en) 1995-01-24

Family

ID=15802680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16493793A Pending JPH0722401A (en) 1993-07-05 1993-07-05 Plasma etching apparatus

Country Status (1)

Country Link
JP (1) JPH0722401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060585A (en) * 1999-07-07 2001-03-06 Applied Materials Inc Method and device for monitoring process using principal component analysis
WO2002023585A3 (en) * 2000-09-15 2002-05-16 Koninkl Philips Electronics Nv Method and apparatus for detecting leaks in a plasma etch chamber
KR100643393B1 (en) * 2005-09-26 2006-11-10 삼성전자주식회사 Method for detecting leakage of outer gas into vacuum chamber
CN102403191A (en) * 2010-09-14 2012-04-04 中微半导体设备(上海)有限公司 Air leakage detecting method for reaction cavity and control method for vacuum reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060585A (en) * 1999-07-07 2001-03-06 Applied Materials Inc Method and device for monitoring process using principal component analysis
WO2002023585A3 (en) * 2000-09-15 2002-05-16 Koninkl Philips Electronics Nv Method and apparatus for detecting leaks in a plasma etch chamber
KR100643393B1 (en) * 2005-09-26 2006-11-10 삼성전자주식회사 Method for detecting leakage of outer gas into vacuum chamber
CN102403191A (en) * 2010-09-14 2012-04-04 中微半导体设备(上海)有限公司 Air leakage detecting method for reaction cavity and control method for vacuum reactor

Similar Documents

Publication Publication Date Title
TWI296828B (en)
JP2002299322A (en) Plasma processing apparatus and plasma processing method
US5284547A (en) Plasma-process system with batch scheme
US9618493B2 (en) Substrate processing apparatus and method for detecting an abnormality of an ozone gas concentration
TW202204687A (en) Plasma processing method and plasma processing apparatus
JPH0722401A (en) Plasma etching apparatus
KR20020054479A (en) Method for observing recipe of plasma chamber
US6599759B2 (en) Method for detecting end point in plasma etching by impedance change
CN102507003B (en) Method for detecting plasma ignition state
JPH0750289A (en) Plasma etching equipment
JP2001257197A (en) Manufacturing method and manufacturing device for semiconductor device
KR20070084829A (en) Leak detection appratus and method in dry etcher of semiconductor manufacture type thereof
JP2000028471A (en) Air leakage inspection in plasma producing device
JPH056873A (en) Etching end-point detection method and etching apparatus
KR100536601B1 (en) Plasma deposition facility
KR20190050254A (en) Substrate processing apparatus and monitoring method of processing substrate
JP2003163203A (en) Semiconductor manufacturing device
JPH0567665A (en) Leakage detection method
US11039527B2 (en) Air leak detection in plasma processing apparatus with separation grid
JPH0922900A (en) Plasma processing method
JP2005019763A (en) Dry etching device
KR20090017855A (en) Remote plasma system and method therefor
JP2000124198A (en) Device and method for plasma etching
JPH02111020A (en) Plasma treatment apparatus
JPH06124922A (en) Dry etching termination detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000816