JPH0722289A - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPH0722289A JPH0722289A JP18925393A JP18925393A JPH0722289A JP H0722289 A JPH0722289 A JP H0722289A JP 18925393 A JP18925393 A JP 18925393A JP 18925393 A JP18925393 A JP 18925393A JP H0722289 A JPH0722289 A JP H0722289A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- capacitor element
- lead wire
- solid electrolytic
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体電解コンデンサに関
する。FIELD OF THE INVENTION The present invention relates to a solid electrolytic capacitor.
【0002】[0002]
【従来の技術】タンタル等の固体電解コンデンサ50
は、例えば、図10に示す通り、タンタル線等からなる
陽極用リード線51を引き出しながら、タンタル等の微
粉末を角形や円筒形に圧縮成形し、焼結し、そして陽極
酸化皮膜、二酸化マンガン等の固体電解質層並びにカー
ボン層及び導電性銀ペースト層からなる陰極層を順次形
成したコンデンサ素子52を用いる。そしてフレーム状
の陽極端子53を陽極用リード線51に抵抗溶接すると
ともにフレーム状の陰極端子54をコンデンサ素子52
の側面55の陰極層に接続する。また、コンデンサ素子
52の周囲には樹脂をモールド等して外装56を設けて
いる。陽極端子53及び陰極端子54はこの外装56の
表面で底面の方に折り曲げている。2. Description of the Related Art Solid electrolytic capacitor 50 made of tantalum or the like
For example, as shown in FIG. 10, while pulling out the anode lead wire 51 made of tantalum wire or the like, fine powder of tantalum or the like is compression-molded into a prismatic or cylindrical shape, sintered, and then anodized film, manganese dioxide. A capacitor element 52 in which a solid electrolyte layer such as the above and a cathode layer including a carbon layer and a conductive silver paste layer are sequentially formed is used. Then, the frame-shaped anode terminal 53 is resistance-welded to the anode lead wire 51, and the frame-shaped cathode terminal 54 is connected to the capacitor element 52.
To the cathode layer on the side surface 55 of the. Further, an outer casing 56 is provided around the capacitor element 52 by molding a resin or the like. The anode terminal 53 and the cathode terminal 54 are bent toward the bottom surface of the exterior 56.
【0003】また、図11に示す通り、陰極端子57を
折り曲げてコンデンサ素子58の底面59の陰極層に接
続し、外装60の外部に引き出した構造の固体電解コン
デンサ61もある。Further, as shown in FIG. 11, there is also a solid electrolytic capacitor 61 having a structure in which a cathode terminal 57 is bent and connected to a cathode layer on a bottom surface 59 of a capacitor element 58 and is drawn out of an exterior 60.
【0004】そして、図12に示す通り、陽極端子62
を、その先端を陽極用リード線63に垂直にしてこれに
接続するとともに、陰極端子64をコンデンサ素子65
の側面66に接続し、これらを外装67の外部に引き出
した構造の固体電解コンデンサ68もある。Then, as shown in FIG. 12, the anode terminal 62 is
Is connected to the lead wire 63 for the anode with its tip being perpendicular to the lead wire 63, and the cathode terminal 64 is connected to the capacitor element 65.
There is also a solid electrolytic capacitor 68 which is connected to the side surface 66 of the above, and has a structure in which these are drawn out of the exterior 67.
【0005】[0005]
【発明が解決しようとする課題】しかし、図10や図1
2の構造の固体電解コンデンサ50及び68は、各々陰
極端子54及び64がコンデンサ素子52及び65の側
面55及び66に接続する部分で外装56及び67を厚
くしなければならない。そのため、固体電解コンデンサ
50及び68の外形寸法が一定であれば、その分、コン
デンサ素子52及び65の容積を小さくしなければなら
ず、容量が減少する欠点がある。そしてコンデンサ素子
52及び65の容積を同一にして容量を同一にしようと
すれば、固体電解コンデンサ50及び68は大形になる
欠点がある。However, FIG. 10 and FIG.
In the solid electrolytic capacitors 50 and 68 having the structure of 2, the outer casings 56 and 67 must be thickened at the portions where the cathode terminals 54 and 64 are connected to the side surfaces 55 and 66 of the capacitor elements 52 and 65, respectively. Therefore, if the external dimensions of the solid electrolytic capacitors 50 and 68 are constant, the volumes of the capacitor elements 52 and 65 must be reduced accordingly, and there is a drawback that the capacitance is reduced. If the capacities of the capacitor elements 52 and 65 are made the same so as to make the capacities the same, the solid electrolytic capacitors 50 and 68 have the disadvantage of becoming large.
【0006】また、図11の固体電解コンデンサ61に
ついても、陰極端子57がコンデンサ素子58の底面で
接続する部分で外装60を厚くしなければならない。従
って、この固体電解コンデンサ61も容量を減少しなけ
ればならなくなったり、大形化しなければならない欠点
がある。Also in the solid electrolytic capacitor 61 shown in FIG. 11, the outer casing 60 must be thickened at the portion where the cathode terminal 57 is connected to the bottom surface of the capacitor element 58. Therefore, the solid electrolytic capacitor 61 also has the drawback that the capacity must be reduced or the size must be increased.
【0007】さらに、図10〜図12の従来例は、一般
的に、陽極用リード線に陽極端子を抵抗溶接している。
従って、図10及び図11の場合には溶接箇所が大きく
なり、陽極用リード線を長くしなければならない。そし
てその分、コンデンサ素子を短かくして容量を減少させ
たり、固体電解コンデンサの外形を大きくしなければな
らない欠点がある。Further, in the conventional example shown in FIGS. 10 to 12, generally, an anode terminal is resistance-welded to an anode lead wire.
Therefore, in the case of FIGS. 10 and 11, the welded portion becomes large, and the lead wire for the anode must be lengthened. Therefore, there are drawbacks such that the capacitor element must be shortened to reduce the capacitance and the solid electrolytic capacitor must be enlarged in size.
【0008】本発明は、以上の欠点を改良し、容量の増
加や小形化の可能な固体電解コンデンサを提供するもの
である。The present invention improves the above drawbacks and provides a solid electrolytic capacitor capable of increasing capacity and downsizing.
【0009】[0009]
【課題を解決するための手段】請求項1の発明は、上記
の目的を達成するために、陽極用リード線を引き出し
た、弁作用金属からなる陽極体に、陽極酸化皮膜、固体
電解質層及び陰極層を設けるとともに、陰極端子を陰極
層に接続した固体電解コンデンサにおいて、少なくとも
底部に段部または凹部を設けた陽極体と、この段部また
は凹部の部分の陰極層に接続した陰極端子とを有するこ
とを特徴とする固体電解コンデンサを提供するものであ
る。In order to achieve the above object, the invention according to claim 1 provides an anode body made of a valve metal, from which an anode lead wire is drawn out, an anodized film, a solid electrolyte layer, and In a solid electrolytic capacitor provided with a cathode layer and a cathode terminal connected to the cathode layer, an anode body provided with a step portion or a concave portion at least at the bottom, and a cathode terminal connected to the cathode layer of the step portion or the concave portion The present invention provides a solid electrolytic capacitor characterized by having.
【0010】また、請求項2の発明は、請求項1の固体
電解コンデンサにおいて、陽極用リード線を斜めに貫通
させ、レーザー光によってこの陽極用リード線に溶接し
た陽極端子を有する固体電解コンデンサに提供するもの
である。The invention of claim 2 is the solid electrolytic capacitor of claim 1, wherein the lead wire for the anode is obliquely penetrated, and the solid electrolytic capacitor has an anode terminal welded to the lead wire for the anode by laser light. It is provided.
【0011】[0011]
【作用】陽極体の底部等に段部または凹部を設け、この
段部等に陰極端子を配置し、接続しているため、陰極端
子がコンデンサ素子の側面や底面から突出するのを完全
に防止したりあるいは軽減できる。従って、固体電解コ
ンデンサとして、外形寸法を変えずにコンデンサ素子の
容積を大きくできるため、容量を増加できる。そしてコ
ンデンサ素子の大きさを変えない場合には、外装を薄く
できるため、固体電解コンデンサを小形できる。[Function] Since a step or a recess is provided on the bottom of the anode body, and the cathode terminal is arranged and connected to this step, the cathode terminal is completely prevented from protruding from the side surface or bottom surface of the capacitor element. You can do or reduce it. Therefore, as the solid electrolytic capacitor, the volume of the capacitor element can be increased without changing the external dimensions, and the capacitance can be increased. When the size of the capacitor element is not changed, the external packaging can be made thin, so that the solid electrolytic capacitor can be made compact.
【0012】また、陽極端子を陽極用リード線にレーザ
ー光によって溶接しているため、溶接箇所を狭くでき、
陽極用リード線を短かくできる。そのため、コンデンサ
素子の容積を大きくして容量を増加したり、固体電解コ
ンデンサを小形化できる。なお、この際、陽極端子を斜
めにしてレーザー光によって溶接しているため、垂直に
溶接した場合に比較して、陽極用リード線のレーザー光
によって溶融した部分が陽極端子の傾斜した近い方の部
分に付着し易く、溶接作業が容易になる。Also, since the anode terminal is welded to the anode lead wire by laser light, the welded portion can be made narrower,
The lead wire for the anode can be shortened. Therefore, the capacity of the capacitor element can be increased to increase the capacity, and the solid electrolytic capacitor can be downsized. At this time, since the anode terminal is slanted and welded by laser light, the portion of the anode lead wire melted by laser light is closer to the tilted side of the anode terminal than in the case of vertical welding. It is easy to adhere to the part and welding work becomes easy.
【0013】[0013]
【実施例】以下、本発明を実施例に基づいて説明する。
図1は請求項1の発明の実施例の固体電解コンデンサ1
の断面図を示す。2は、角形のコンデンサ素子であり、
タンタルの微粉末を圧縮成形し、焼結した陽極体に、陽
極酸化皮膜、二酸化マンガン等の固体電解質層並びにカ
ーボン層及び導電性銀ペースト層からなる陰極層を形成
したものである。そしてこのコンデンサ素子2には、図
2にも示す通り、底部3の端で一方の側面から他方の側
面に渡る段部4を設けている。また、コンデンサ素子2
の上部5からはタンタル等からなる陽極用リード線6を
引き出している。7は、外装であり、エポキシレジンを
トランスファーモールドして形成したものである。8
は、陽極端子であり、陽極用リード線6に抵抗溶接等
し、外装7の周面に沿って底面の方に折り曲げてある。
9は、陰極端子であり、コンデンサ素子2の段部4にそ
の先端を配置して陰極層に導電性固着ペースト10によ
り接続したもので、外装7の周面に沿って底面の方に折
り曲げてある。EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a solid electrolytic capacitor 1 according to an embodiment of the invention of claim 1.
FIG. 2 is a rectangular capacitor element,
A fine powder of tantalum is compression molded and sintered, and an anode body formed by sintering is formed with an anode oxide film, a solid electrolyte layer such as manganese dioxide, and a cathode layer including a carbon layer and a conductive silver paste layer. Further, as shown in FIG. 2, the capacitor element 2 is provided with a step portion 4 extending from one side surface to the other side surface at the end of the bottom portion 3. In addition, the capacitor element 2
An anode lead wire 6 made of tantalum or the like is drawn out from the upper portion 5 of the. Reference numeral 7 denotes an exterior, which is formed by transfer molding of epoxy resin. 8
Is an anode terminal, which is resistance-welded to the anode lead wire 6 and bent along the peripheral surface of the exterior 7 toward the bottom surface.
Reference numeral 9 denotes a cathode terminal, the tip of which is arranged on the step portion 4 of the capacitor element 2 and connected to the cathode layer by the conductive fixing paste 10. is there.
【0014】なお、段部4はコンデンサ素子2の底部3
から上部の方にまで延長してもよい。The step portion 4 is the bottom portion 3 of the capacitor element 2.
May extend from to the top.
【0015】上記実施例によれば、陰極端子9は、コン
デンサ素子2の底部3の段部4の箇所で陰極層に接続し
ているため、コンデンサ素子2の側面11から突出する
ことなく、側面11とほぼ同一平面に配置できる。According to the above embodiment, since the cathode terminal 9 is connected to the cathode layer at the step 4 of the bottom 3 of the capacitor element 2, it does not protrude from the side surface 11 of the capacitor element 2 but the side surface thereof. 11 can be arranged on substantially the same plane.
【0016】また、図3は請求項1の発明の他の実施例
に用いるコンデンサ素子12の斜視図を示す。このコン
デンサ素子12は、特に、底部13の端の中央部に段部
14を形成している。この段部14は、コンデンサ素子
12の上部15の方に延長してもよい。コンデンサ素子
12は、図2のコンデンサ素子2に比較して、段部14
が短かいため、容量をより増加できる。また、コンデン
サ素子12を用いた固体電解コンデンサをより小形化で
きる。しかし、コンデンサ素子12の段部14は幅が狭
いため、この段部14に陰極端子の先端を配置し接続す
る作業が比較的難しい。この点、図2のコンデンサ素子
2は段部4の幅が長いため、このような作業を容易にで
きる。FIG. 3 is a perspective view of a capacitor element 12 used in another embodiment of the first aspect of the invention. The capacitor element 12 particularly has a step portion 14 formed at the center of the end of the bottom portion 13. This step 14 may extend towards the upper part 15 of the capacitor element 12. The capacitor element 12 has a step portion 14 as compared with the capacitor element 2 of FIG.
Since it is short, the capacity can be increased. Further, the solid electrolytic capacitor using the capacitor element 12 can be made smaller. However, since the step portion 14 of the capacitor element 12 has a narrow width, it is relatively difficult to arrange and connect the tip of the cathode terminal to the step portion 14. In this respect, since the capacitor element 2 of FIG. 2 has the step portion 4 having a long width, such a work can be facilitated.
【0017】図4も他の実施例に用いるコンデンサ素子
16の斜視図を示す。このコンデンサ素子16は、底部
17の中央から端の間に凹部18を設けている。そし
て、図5に示す通り、コンデンサ素子16の凹部18に
陰極端子19の先端を入れ、導電性固着ペースト20に
より陰極層に接続している。また、コンデンサ素子16
からは陽極用リード線21を引き出し、これに陽極端子
22を抵抗溶接等し、樹脂をモールドして外装23を形
成して固体電解コンデンサ24とする。従って、陰極端
子19はコンデンサ素子16の底部17の箇所で図12
のように屈曲させる必要がなくなる。そのため、固体電
解コンデンサ24は、陰極端子19の厚さ分だけコンデ
ンサ素子16を長くして容量を増加したり、外装を薄く
して小形化できる。FIG. 4 also shows a perspective view of a capacitor element 16 used in another embodiment. The capacitor element 16 has a concave portion 18 between the center and the end of the bottom portion 17. Then, as shown in FIG. 5, the tip of the cathode terminal 19 is put in the concave portion 18 of the capacitor element 16 and is connected to the cathode layer by the conductive fixing paste 20. In addition, the capacitor element 16
A lead wire 21 for an anode is drawn out from the above, and an anode terminal 22 is resistance-welded to the lead wire 21 to mold a resin to form an outer package 23 to form a solid electrolytic capacitor 24. Therefore, the cathode terminal 19 is located at the bottom portion 17 of the capacitor element 16 in FIG.
There is no need to bend like. Therefore, in the solid electrolytic capacitor 24, the capacitor element 16 can be lengthened by the thickness of the cathode terminal 19 to increase the capacity, or the exterior can be thinned to be miniaturized.
【0018】図6も他の実施例に用いるコンデンサ素子
25の斜視図を示す。このコンデンサ素子25は、底部
26の中央から端の間で一方の側面から他方の側面に渡
って凹部27を設けている。そしてこの凹部27に陰極
端子の先端を入れ、接続して、外装から陰極端子を引き
出す。このコンデンサ素子25は、図4のコンデンサ素
子16に比較して凹部27の幅が長くなっている。従っ
て陰極端子の接続作業がより容易になる。しかし、容量
コンデンサ素子16よりは小さくなり、小形化の効果も
低い。FIG. 6 also shows a perspective view of a capacitor element 25 used in another embodiment. The capacitor element 25 has a recess 27 extending from one side surface to the other side surface between the center and the end of the bottom portion 26. Then, the tip of the cathode terminal is put into the recess 27, connected, and the cathode terminal is pulled out from the exterior. In this capacitor element 25, the width of the recess 27 is longer than that of the capacitor element 16 of FIG. Therefore, the work of connecting the cathode terminal becomes easier. However, it is smaller than the capacitance capacitor element 16, and the effect of downsizing is low.
【0019】次に、請求項2の発明の実施例を図7に示
す。この実施例のコンデンサ素子は図2と同一とする。
そして特に、陽極用リード線6を陽極端子28に設けた
切り込み29(あるいは孔)に斜めに貫通させ、陽極用
リード線6の先端にレーザー光を照射してこれを溶接し
ている。陽極端子28は溶接箇所30から先の部分で折
り曲げて外装までまっすぐ引き出し、さらに外装31に
沿って折り曲げている。Next, an embodiment of the invention of claim 2 is shown in FIG. The capacitor element of this embodiment is the same as that shown in FIG.
In particular, the anode lead wire 6 is obliquely penetrated into the notch 29 (or hole) provided in the anode terminal 28, and the tip of the anode lead wire 6 is irradiated with laser light and welded. The anode terminal 28 is bent from the welding point 30 at the tip, is drawn straight out to the exterior, and is further bent along the exterior 31.
【0020】この実施例によれば、陽極用リード線6に
陽極端子28を溶接しているため、陽極用リード線6を
短かくできる。従って、コンデンサ素子2の容積をより
大きくでき、容量を増加できる。そして固体電解コンデ
ンサ32をより小形化できる。また、陽極端子28を斜
めに溶接しているため作業性が向上する。According to this embodiment, since the anode terminal 28 is welded to the anode lead wire 6, the anode lead wire 6 can be made short. Therefore, the capacity of the capacitor element 2 can be increased and the capacity can be increased. Then, the solid electrolytic capacitor 32 can be made smaller. Further, since the anode terminal 28 is obliquely welded, workability is improved.
【0021】また、図8に請求項2の発明の他の実施例
を示す。この実施例においても図2と同一のコンデンサ
素子2を用いている。そして、特にその段部4を外装3
3の底面側の近傍に位置させてコンデンサ素子2を配置
している。従って、陰極端子34は、段部4に接続し、
外装33の底面に近い位置から引き出している。また、
陽極用リード線6を陽極端子35に設けた切り込み36
に斜めに貫通させ、レーザー光により溶接する。そして
陽極端子35は、外装33の底面に向って延ばし、途中
で折り曲げ外装33から引き出している。FIG. 8 shows another embodiment of the invention of claim 2. Also in this embodiment, the same capacitor element 2 as in FIG. 2 is used. And, in particular, the step portion 4 is covered by the exterior 3
The capacitor element 2 is arranged near the bottom side of the capacitor element 3. Therefore, the cathode terminal 34 is connected to the step portion 4,
It is pulled out from a position close to the bottom surface of the exterior 33. Also,
Notch 36 with anode lead wire 6 provided in anode terminal 35
It is penetrated diagonally and welded by laser light. Then, the anode terminal 35 extends toward the bottom surface of the outer casing 33 and is pulled out from the bent outer casing 33 in the middle.
【0022】この実施例の場合にも、陽極端子35に陽
極用リード線6を斜めに貫通してレーザー光により溶接
しているため、容量を増加でき、小形化でき、溶接作業
が比較的し易い固体電解コンデンサ37が得られる。Also in this embodiment, since the anode lead wire 6 is obliquely penetrated through the anode terminal 35 and welded by laser light, the capacity can be increased, the size can be reduced, and the welding work can be performed relatively easily. An easy solid electrolytic capacitor 37 can be obtained.
【0023】さらに、図9も請求項2の発明の実施例を
示す。この実施例では、図4または図6の形状のコンデ
ンサ素子38を用いている。そして陰極端子39を、コ
ンデンサ素子38に形成した凹部40に導電性固着ペー
スト41により接続し、外装42から引き出している。
また、陽極端子43は、これに設けた切り込み44に陽
極用リード線45を斜めに貫通させてレーザー光により
溶接し、溶接箇所46の近くで折り曲げ、外装42から
引き出している。なお、この陽極端子43の溶接箇所4
6を含む部分の傾斜を外装42の傾斜とほぼ一致させて
いる。Further, FIG. 9 also shows an embodiment of the invention of claim 2. In this embodiment, the capacitor element 38 having the shape shown in FIG. 4 or 6 is used. Then, the cathode terminal 39 is connected to the concave portion 40 formed in the capacitor element 38 with the conductive fixing paste 41, and is drawn out from the exterior 42.
Further, the anode terminal 43 is formed by obliquely penetrating an anode lead wire 45 into a notch 44 provided in the anode terminal 43, welding it with a laser beam, bending it near a welding point 46, and drawing it out from the exterior 42. In addition, the welding point 4 of this anode terminal 43
The inclination of the portion including 6 is made substantially equal to the inclination of the exterior 42.
【0024】この実施例の場合にも、容量を増加でき、
小形化が可能で、溶接作業性が良い固体電解コンデンサ
47が得られる。しかも、溶接箇所46を含む部分の傾
斜を外装42の傾斜とほぼ一致させているため、外装4
2の肉厚を薄くできる。従って、より容量を増加したり
小形化することが可能となる。Also in the case of this embodiment, the capacity can be increased,
A solid electrolytic capacitor 47 which can be downsized and has good welding workability can be obtained. Moreover, since the inclination of the portion including the welded portion 46 is made substantially equal to the inclination of the exterior 42, the exterior 4
The thickness of 2 can be reduced. Therefore, the capacity can be increased or the size can be reduced.
【0025】次に、実施例及び従来例について、定格7
V、長さ5.6mm、高さ3.1mm、幅4.5mmのモール
ドチップ型タンタル固体電解コンデンサを用い、コンデ
ンサ素子の容積比及び各コンデンサの容量を求めた。な
お、コンデンサ素子の化成電圧は39Vとする。また、
試料数は各々2000ケとする。そして容積比は従来例
1を1.00とした場合の比率とし、コンデンサの容量
は定格電圧7V時の測定値とする。Next, for the example and the conventional example, the rating is 7
Using a molded chip type tantalum solid electrolytic capacitor having V, length 5.6 mm, height 3.1 mm and width 4.5 mm, the volume ratio of the capacitor element and the capacitance of each capacitor were determined. The formation voltage of the capacitor element is 39V. Also,
The number of samples is 2000 each. The volume ratio is the ratio when the value of Conventional Example 1 is 1.00, and the capacitance of the capacitor is the measured value when the rated voltage is 7V.
【0026】[0026]
【表1】 [Table 1]
【0027】表1から明らかな通り、実施例1〜実施例
7によれば、従来例1〜従来例3に比較して、コンデン
サ素子の容積比は最大1.5倍、コンデンサ容量は最小
値約1.26〜1.56倍、最大値約1.20〜1.5
5倍となる。また、請求項2の発明の実施例4〜実施例
7によれば、請求項1の発明の実施例1〜実施例3に比
較して、容積比は最大約1.12倍、容量は最小値約
1.02〜1.13倍、最大値約1.00〜1.14倍
となる。As is clear from Table 1, according to Examples 1 to 7, the volume ratio of the capacitor element is 1.5 times the maximum and the capacitance of the capacitor is the minimum value as compared with the conventional examples 1 to 3. About 1.26 to 1.56 times, maximum value about 1.20 to 1.5
It will be 5 times. Further, according to Embodiment 4 to Embodiment 7 of the invention of Claim 2, the volume ratio is about 1.12 times at maximum and the capacity is minimum as compared with Embodiment 1 to Embodiment 3 of the invention of Claim 1. The value is about 1.02 to 1.13 times, and the maximum value is about 1.00 to 1.14 times.
【0028】[0028]
【発明の効果】以上の通り、請求項1の発明によれば、
陽極体の少なくとも底部に段部または凹部を設け、この
段部等に陰極端子を接続しているため、容量を増加で
き、小形化の可能な固体電解コンデンサが得られる。As described above, according to the invention of claim 1,
Since at least the bottom portion of the anode body is provided with a stepped portion or a recessed portion and the cathode terminal is connected to this stepped portion or the like, it is possible to obtain a solid electrolytic capacitor capable of increasing the capacity and downsizing.
【0029】また、請求項2の発明によれば、上記の構
成に加えて、陽極端子に陽極用リード線を斜めに貫通さ
せ、レーザー光によって溶接しているため、より効果的
に容量を増加でき、小形化できるとともに、垂直にレー
ザー光で溶接した場合に比較して作業が容易になり、さ
らに垂直に抵抗溶接した場合には溶接用の電極によって
陽極用リード線や陽極端子が屈曲する恐れがあるが、こ
のような不良を防止できる固体電解コンデンサが得られ
る。According to the second aspect of the present invention, in addition to the above structure, the anode lead wire is obliquely penetrated through the anode terminal and welded by laser light, so that the capacity is increased more effectively. Can be made smaller and smaller, and the work is easier than when vertically welded with a laser beam, and when resistance welding is performed vertically, the welding lead electrode may bend the anode lead wire or anode terminal. However, there is obtained a solid electrolytic capacitor capable of preventing such a defect.
【図1】請求項1の発明の実施例の断面図を示す。1 shows a sectional view of an embodiment of the invention of claim 1;
【図2】本発明の実施例のコンデンサ素子の斜視図を示
す。FIG. 2 shows a perspective view of a capacitor element according to an embodiment of the present invention.
【図3】本発明の他の実施例のコンデンサ素子の斜視図
を示す。FIG. 3 shows a perspective view of a capacitor element according to another embodiment of the present invention.
【図4】本発明の他の実施例のコンデンサ素子の斜視図
を示す。FIG. 4 shows a perspective view of a capacitor element according to another embodiment of the present invention.
【図5】請求項1の発明の他の実施例の断面図を示す。FIG. 5 shows a sectional view of another embodiment of the invention of claim 1.
【図6】本発明の他の実施例のコンデンサ素子の斜視図
を示す。FIG. 6 shows a perspective view of a capacitor element according to another embodiment of the present invention.
【図7】請求項2の発明の実施例の断面図を示す。FIG. 7 shows a sectional view of an embodiment of the invention of claim 2;
【図8】請求項2の発明の他の実施例の断面図を示す。FIG. 8 is a sectional view of another embodiment of the invention of claim 2;
【図9】請求項2の発明の他の実施例の断面図を示す。FIG. 9 shows a sectional view of another embodiment of the invention of claim 2.
【図10】従来例の断面図を示す。FIG. 10 shows a sectional view of a conventional example.
【図11】従来例の断面図を示す。FIG. 11 shows a sectional view of a conventional example.
【図12】従来例の断面図を示す。FIG. 12 shows a cross-sectional view of a conventional example.
1,24,32,37,47…固体電解コンデンサ、
2,12,16,25,38…コンデンサ素子、 4,
14…段部、6,21,45…陽極用リード線、 8,
22,28,35,43…陽極端子、 9,19,3
4,39…陰極端子、 18,27,40…凹部。1, 24, 32, 37, 47 ... Solid electrolytic capacitors,
2, 12, 16, 25, 38 ... Capacitor element, 4,
14 ... Step portion, 6, 21, 45 ... Anode lead wire, 8,
22, 28, 35, 43 ... Anode terminal, 9, 19, 3
4, 39 ... Cathode terminal, 18, 27, 40 ... Recessed portion.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年7月21日[Submission date] July 21, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
Claims (2)
属からなる陽極体に陽極酸化皮膜、固体電解質層及び陰
極層を設けてコンデンサ素子とし、陰極端子を陰極層に
接続した固体電解コンデンサにおいて、少なくとも底部
に段部または凹部を設けた陽極体と、この段部または凹
部の部分の陰極層に接続した陰極端子とを有することを
特徴とする固体電解コンデンサ。1. A solid electrolytic capacitor in which an anodic oxide film, a solid electrolyte layer and a cathode layer are provided on an anode body made of a valve metal, from which an anode lead wire is drawn, to form a capacitor element, and a cathode terminal is connected to the cathode layer. A solid electrolytic capacitor comprising: an anode body having a step or a recess at least on a bottom thereof, and a cathode terminal connected to a cathode layer in the step or the recess.
ザー光によってこの陽極用リード線に溶接した陰極端子
を有する請求項1の固体電解コンデンサ。2. The solid electrolytic capacitor according to claim 1, further comprising a cathode terminal which is obliquely penetrated through the anode lead wire and which is welded to the anode lead wire by laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18925393A JPH0722289A (en) | 1993-07-01 | 1993-07-01 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18925393A JPH0722289A (en) | 1993-07-01 | 1993-07-01 | Solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0722289A true JPH0722289A (en) | 1995-01-24 |
Family
ID=16238201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18925393A Pending JPH0722289A (en) | 1993-07-01 | 1993-07-01 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0722289A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203748A (en) * | 2000-12-28 | 2002-07-19 | Nippon Chemicon Corp | Chip type solid-state electrolytic capacitor and method of manufacturing the same |
JP2002367862A (en) * | 2001-04-05 | 2002-12-20 | Rohm Co Ltd | Solid electrolytic capacitor and method for manufacturing the same |
GB2502703A (en) * | 2012-05-30 | 2013-12-04 | Avx Corp | Solid Electrolytic Capacitor comprising a sintered porous body with a notched anode lead |
US8842419B2 (en) | 2012-05-30 | 2014-09-23 | Avx Corporation | Notched lead tape for a solid electrolytic capacitor |
US9776281B2 (en) | 2012-05-30 | 2017-10-03 | Avx Corporation | Notched lead wire for a solid electrolytic capacitor |
US20220028622A1 (en) * | 2018-11-30 | 2022-01-27 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing the same |
-
1993
- 1993-07-01 JP JP18925393A patent/JPH0722289A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203748A (en) * | 2000-12-28 | 2002-07-19 | Nippon Chemicon Corp | Chip type solid-state electrolytic capacitor and method of manufacturing the same |
JP2002367862A (en) * | 2001-04-05 | 2002-12-20 | Rohm Co Ltd | Solid electrolytic capacitor and method for manufacturing the same |
GB2502703A (en) * | 2012-05-30 | 2013-12-04 | Avx Corp | Solid Electrolytic Capacitor comprising a sintered porous body with a notched anode lead |
US8842419B2 (en) | 2012-05-30 | 2014-09-23 | Avx Corporation | Notched lead tape for a solid electrolytic capacitor |
GB2502703B (en) * | 2012-05-30 | 2016-09-21 | Avx Corp | Notched lead for a solid electrolytic capacitor |
US9776281B2 (en) | 2012-05-30 | 2017-10-03 | Avx Corporation | Notched lead wire for a solid electrolytic capacitor |
US20220028622A1 (en) * | 2018-11-30 | 2022-01-27 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing the same |
US12094662B2 (en) * | 2018-11-30 | 2024-09-17 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100568280B1 (en) | A solid electrolytic condenser and it's manufactuer | |
US6236561B1 (en) | Chip type solid electrolytic capacitor and its manufacturing method | |
US6920037B2 (en) | Solid electrolytic capacitor | |
US6912117B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
US20070188982A1 (en) | Solid electrolytic capacitor and method of making the same | |
JP2008085344A (en) | Tantalum capacitor | |
JP3447443B2 (en) | Structure of surface mount type solid electrolytic capacitor with safety fuse | |
JP4613699B2 (en) | Solid electrolytic capacitor, method for manufacturing the same, and digital signal processing board using the same | |
JP2005079357A (en) | Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor | |
JP2001028322A (en) | Solid electrolytic capacitor | |
JPH0722289A (en) | Solid electrolytic capacitor | |
JP4646707B2 (en) | Solid electrolytic capacitor | |
JP3175609B2 (en) | Chip type electronic components | |
JP2972304B2 (en) | Solid electrolytic capacitors | |
JP3157722B2 (en) | Chip type solid electrolytic capacitor | |
KR200203310Y1 (en) | Tantal condensor having a coating terminal | |
JP2001167985A (en) | Solid electrolytic capacitor | |
JPS593571Y2 (en) | chip type capacitor | |
JPH027170B2 (en) | ||
JP2001326144A (en) | Solid electrolytic capacitor and its manufacturing method | |
JPH09162075A (en) | Tantalum solid electrolytic chip capacitor | |
JP3060971B2 (en) | Chip type solid electrolytic capacitor with built-in fuse | |
JPH1055938A (en) | Solid electrolytic capacitor | |
JPH05121279A (en) | Solid electrolytic capacitor | |
JP2001167978A (en) | Solid electrolytic capacitor |