JPH07222431A - Rotor for superconducting rotating electric machine - Google Patents

Rotor for superconducting rotating electric machine

Info

Publication number
JPH07222431A
JPH07222431A JP6008682A JP868294A JPH07222431A JP H07222431 A JPH07222431 A JP H07222431A JP 6008682 A JP6008682 A JP 6008682A JP 868294 A JP868294 A JP 868294A JP H07222431 A JPH07222431 A JP H07222431A
Authority
JP
Japan
Prior art keywords
rotor
refrigerant discharge
support piece
discharge pipe
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6008682A
Other languages
Japanese (ja)
Other versions
JP2796055B2 (en
Inventor
Atsunori Kaneda
篤典 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP6008682A priority Critical patent/JP2796055B2/en
Publication of JPH07222431A publication Critical patent/JPH07222431A/en
Application granted granted Critical
Publication of JP2796055B2 publication Critical patent/JP2796055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To save the consumption of a refrigerant in a liquid reservoir part inside a winding mounting shaft. CONSTITUTION:A support piece 21 which protrudes to the outward direction is bonded to a midstream part 16b in a refrigerant discharge tube. A support- piece receiver member 22 which is faced with the support piece 21 is bonded to the inner circumferential face of an inside tube 4b for a winding mounting shaft. When a rotor is turned, the midstream part 16b in the refrigerant discharge tube is deformed elastically by a centrifugal action due to the own weight of the support piece 21, and the support piece 21 comes into contact with the support-piece receiver member 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導回転電機の回
転子に関し、特に冷媒排出管等の配管の支持構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor of a superconducting rotating electric machine, and more particularly to a support structure for a pipe such as a refrigerant discharge pipe.

【0002】[0002]

【従来の技術】図16は従来の超電導回転電機の回転子
の一例を示す断面図である。図において、1は回転駆動
力が伝達される駆動側端部軸、2は駆動側端部軸1に対
向して設けられ、内部に貫通孔2bが設けられている反
駆動側端部軸、3は駆動側及び反駆動側端部軸1,2の
フランジ部1a,2aにそれぞれの一端部が固定されて
いる一対のトルクチューブであり、これらのトルクチュ
ーブ3は、それぞれ駆動側及び反駆動側端部軸1,2側
からの入熱を除去するための熱交換器である冷却器3a
を有している。
2. Description of the Related Art FIG. 16 is a sectional view showing an example of a rotor of a conventional superconducting rotating electric machine. In the figure, 1 is a drive-side end shaft to which a rotational drive force is transmitted, 2 is a counter-drive-side end shaft that is provided to face the drive-side end shaft 1, and has a through hole 2b provided therein. Reference numeral 3 denotes a pair of torque tubes whose one ends are fixed to the flanges 1a and 2a of the drive-side and anti-drive-side end shafts 1 and 2, respectively. Cooler 3a which is a heat exchanger for removing heat input from the side end shafts 1, 2
have.

【0003】4は一対のトルクチューブ3間に固定され
ている中空の巻線取付軸であり、この巻線取付軸4の内
部には、冷媒である液体ヘリウムの液溜め部4aが形成
されている。また、この巻線取付軸4内には、筒状部材
である金属製の内筒4bが挿通されている。5は液溜め
部4aを密閉するように巻線取付軸4の両端部に取り付
けられている端板、6は巻線取付軸4の外面に巻回され
ている超電導界磁巻線、7は超電導界磁巻線6を覆うよ
うに巻線取付軸4に取り付けられているヘリウム外筒、
8は巻線取付軸4の外周部両端に取り付けられている保
持環、9は両端部が一対のトルクチューブ3に支持さ
れ、ヘリウム外筒7を覆う低温ダンパ、10は両端部が
各フランジ部1a,2aに支持され、トルクチューブ3
及び低温ダンパ9を覆う常温ダンパである。
Reference numeral 4 denotes a hollow winding mounting shaft fixed between a pair of torque tubes 3. Inside the winding mounting shaft 4, a liquid reservoir 4a for liquid helium as a refrigerant is formed. There is. A metal inner cylinder 4b, which is a cylindrical member, is inserted into the winding mounting shaft 4. 5 is an end plate attached to both ends of the winding mounting shaft 4 so as to seal the liquid reservoir 4a, 6 is a superconducting field winding wound around the outer surface of the winding mounting shaft 4, and 7 is A helium outer cylinder attached to the winding mounting shaft 4 so as to cover the superconducting field winding 6,
Reference numeral 8 is a retaining ring attached to both ends of the outer circumference of the winding mounting shaft 4, 9 is a low temperature damper whose both ends are supported by a pair of torque tubes 3, and which covers the helium outer cylinder 7, 10 is both flanges at both ends. Torque tube 3 supported by 1a and 2a
And a normal temperature damper that covers the low temperature damper 9.

【0004】11は駆動側及び反駆動側端部軸1,2を
それぞれ回転自在に支持する軸受、12は巻線取付軸4
の両端面に対向するようにトルクチューブ3の内面側に
取り付けられている側面輻射シールド、13はトルクチ
ューブ3内,ヘリウム外筒7内及び低温ダンパ9内に形
成されている真空部である。
Reference numeral 11 denotes a bearing for rotatably supporting the drive-side and counter-drive-side end shafts 1 and 2, and 12 denotes a winding mounting shaft 4.
A side surface radiation shield is attached to the inner surface side of the torque tube 3 so as to face both end surfaces thereof, and 13 is a vacuum portion formed in the torque tube 3, the helium outer cylinder 7, and the low temperature damper 9.

【0005】14は反駆動側端部軸2に設けられた界磁
電流供給用のスリップリングであり、このスリップリン
グ14は、電流リード(図示せず)を介して超電導界磁
巻線6に電気的に接続されている。15は外部から供給
された冷媒を巻線取付軸4内に形成された液溜め部4a
に供給する冷媒供給管であり、この冷媒供給管15は、
反駆動側端部軸2の貫通孔2b内を通るように配設され
ている。
Reference numeral 14 is a slip ring for supplying a field current provided on the end shaft 2 on the non-driving side. The slip ring 14 is connected to the superconducting field winding 6 via a current lead (not shown). It is electrically connected. Reference numeral 15 is a liquid reservoir 4a formed in the winding mounting shaft 4 for the refrigerant supplied from the outside.
Is a refrigerant supply pipe for supplying to the
It is arranged so as to pass through the through hole 2b of the non-driving side end shaft 2.

【0006】16は液溜め部4a内の冷媒を冷却器3a
を経由して外部に排出する冷媒排出管であり、この冷媒
排出管16は、端板5と冷却器3aとの間に配設された
上流部16aと、巻線取付軸4の内筒4b内を通る配管
である中流部16bと、貫通孔2b内を通って外部に冷
媒を排出する下流部16cとから構成されている。17
は巻線取付軸4の内筒4bの内面に対して冷媒排出管中
流部16bを連結支持する円板状の支持体である。
Reference numeral 16 is a cooler 3a for the refrigerant in the liquid reservoir 4a.
Is a refrigerant discharge pipe for discharging to the outside via the upstream portion 16a disposed between the end plate 5 and the cooler 3a, and the inner cylinder 4b of the winding mounting shaft 4. It is composed of a midstream portion 16b which is a pipe passing through the inside, and a downstream portion 16c which discharges the refrigerant to the outside through the inside of the through hole 2b. 17
Is a disc-shaped support body that connects and supports the refrigerant discharge pipe midstream portion 16b to the inner surface of the inner cylinder 4b of the winding mounting shaft 4.

【0007】次に、動作について説明する。冷媒である
液体ヘリウムが外部から冷媒供給管15を介して巻線取
付軸4の液溜め部4aに供給されると、超電導界磁巻線
6は巻線取付軸4を介して液溜め部4a内の液体ヘリウ
ムにより極低温まで冷却され、その電気抵抗が零の状態
となる。このような超電導界磁巻線6にスリップリング
14を介して界磁電流が供給されると、超電導界磁巻線
6は励磁され、励磁損失のない強力な磁界が発生する。
Next, the operation will be described. When liquid helium, which is a refrigerant, is externally supplied to the liquid reservoir 4a of the winding mounting shaft 4 via the refrigerant supply pipe 15, the superconducting field winding 6 causes the liquid reservoir 4a to pass through the winding mounting shaft 4. It is cooled to a cryogenic temperature by the liquid helium inside, and its electrical resistance becomes zero. When a field current is supplied to the superconducting field winding 6 via the slip ring 14, the superconducting field winding 6 is excited and a strong magnetic field without excitation loss is generated.

【0008】この状態で、駆動側端部軸1側にタービン
(図示せず)等からの回転力が伝えられると、この回転
力が常温ダンパ10等を介して反駆動側端部軸2側にも
伝えられ、軸受11に支持される駆動側及び反駆動側端
部軸1,2は回転中心軸を中心として所定方向に回転す
る。そして、この駆動側及び反駆動側端部軸1,2の回
転力はトルクチューブ3を介して巻線取付軸4に伝えら
れ、超電導界磁巻線6を一定速度で回転させる。従っ
て、所定向きに磁界を発生しつつ回転するこの回転子に
よって、この回転子の外方に設けられた固定子(図示せ
ず)側に交流電力が発生される。
In this state, when a rotational force from a turbine (not shown) or the like is transmitted to the drive-side end shaft 1 side, this rotational force is transmitted through the room temperature damper 10 or the like to the non-drive-side end shaft 2 side. The drive-side and anti-drive-side end shafts 1 and 2, which are also transmitted to the bearing 11, rotate in a predetermined direction around the rotation center axis. Then, the rotational force of the drive-side and anti-drive-side end shafts 1 and 2 is transmitted to the winding mounting shaft 4 via the torque tube 3 to rotate the superconducting field winding 6 at a constant speed. Therefore, AC electric power is generated on the side of a stator (not shown) provided outside the rotor by the rotor that rotates while generating a magnetic field in a predetermined direction.

【0009】ここで、トルクチューブ3を介して駆動側
及び反駆動側端部軸1,2から巻線取付軸4側に熱伝導
により伝えられる熱は、冷却器3aを介して冷媒排出管
18内の液体ヘリウム(場合によってはガス化されてい
る)側に吸収される。また、駆動側端部軸1、反駆動側
端部軸2及び常温ダンパ10側から超電導界磁巻線6側
へ対流伝熱により伝えられようとする熱は、真空部13
によって遮断されるとともに、これらから超電導界磁巻
線6側へ輻射伝熱により伝えられようとする熱も側面輻
射シールド12や低温ダンパ9によって遮断される。
Here, the heat transferred by heat conduction from the drive-side and non-drive-side end shafts 1 and 2 to the winding mounting shaft 4 side via the torque tube 3 is passed through the cooler 3a to the refrigerant discharge pipe 18. It is absorbed on the side of liquid helium (possibly gasified) inside. Further, the heat which is about to be transferred by convective heat transfer from the drive-side end shaft 1, the counter-drive-side end shaft 2, and the room temperature damper 10 side to the superconducting field winding 6 side is transferred to the vacuum unit 13.
In addition to being blocked by the side radiation shield 12 and the low-temperature damper 9, the heat which is about to be transmitted to the superconducting field winding 6 side by radiative heat transfer is also blocked.

【0010】さらに、常温ダンパ10及び低温ダンパ9
は、固定子からの高周波磁界をシールドして超電導界磁
巻線6を保護するとともに、電力系統の擾乱による回転
子振動を減衰させる機能も有している。さらにまた、冷
媒排出管中流部16bは、図17にも示すように、その
外周全周に接触する支持体17によって内筒4bに常時
連結支持されているため、回転子の回転時の機会的な振
動による変形は防止されているものの、回転時、静止時
の別なく、相対的に高温側の冷媒排出管中流部16bか
ら低温側の内筒4bに熱が伝導し、さらにその熱は液溜
め部4aにも伝導する。
Further, the room temperature damper 10 and the low temperature damper 9
Has a function of shielding the high-frequency magnetic field from the stator to protect the superconducting field winding 6 and also attenuating the rotor vibration due to the disturbance of the power system. Furthermore, as shown in FIG. 17, the middle portion 16b of the refrigerant discharge pipe is always connected to and supported by the inner cylinder 4b by the support member 17 that is in contact with the entire outer circumference of the middle portion 16b. Although it is prevented from being deformed due to such vibrations, heat is conducted from the relatively high temperature side refrigerant discharge pipe midstream portion 16b to the low temperature side inner cylinder 4b regardless of whether it is rotating or stationary. It also conducts to the reservoir 4a.

【0011】[0011]

【発明が解決しようとする課題】上記のように構成され
た従来の超電導回転電機の回転子においては、回転時、
静止時の別なく、冷媒排出管中流部16bからその外周
全周に接触する支持体17及び内筒4bを介して液溜め
部4aに熱が伝わるため、液溜め部4a内の冷媒が多量
に消費されてしまい、冷媒供給用の冷凍機(図示せず)
を含めた回転電機としての運転効率が低くなり、大容量
の冷凍機が必要となるなどの問題点があった。
In the rotor of the conventional superconducting rotating electric machine configured as described above, when rotating,
Since the heat is transferred to the liquid reservoir 4a from the medium discharge portion 16b of the refrigerant discharge pipe through the support body 17 and the inner cylinder 4b which are in contact with the entire outer circumference of the medium portion 16b regardless of the stationary state, a large amount of the refrigerant in the liquid reservoir 4a exists. Refrigerator for supplying refrigerant (not shown)
However, the operating efficiency of the rotating electric machine including the above becomes low, and a large capacity refrigerator is required.

【0012】この発明は、上記のような問題点を解決す
ることを課題としてなされたものであり、回転子の回転
時における配管の支持を確保しつつ、冷媒の消費を節約
することができる超電導回転電機の回転子を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and it is a superconducting device which can save the consumption of the refrigerant while ensuring the support of the pipes when the rotor rotates. The purpose is to obtain a rotor of a rotating electric machine.

【0013】[0013]

【課題を解決するための手段】請求項1の発明に係る超
電導回転電機の回転子は、配管の少なくとも一部が回転
時の遠心作用により外径方向へ変位するとともに静止時
には元の位置に復元するようになっており、かつ回転時
に配管の変位した部分を筒状部材の内周面に対して機械
的に支持する支持片を、配管と筒状部材の内周面との間
に両者が熱伝導的に非接触となるように設けたものであ
る。
In the rotor of the superconducting rotating electric machine according to the invention of claim 1, at least a part of the pipe is displaced in the outer diameter direction by centrifugal action during rotation and is restored to its original position when stationary. And a supporting piece that mechanically supports the displaced portion of the pipe during rotation with respect to the inner peripheral surface of the tubular member, and the support piece between the pipe and the inner peripheral surface of the tubular member. It is provided so as to be non-contact in terms of heat conduction.

【0014】請求項2の発明に係る超電導回転電機の回
転子は、冷媒排出管の少なくとも一部が回転時の遠心作
用により外径方向へ変位するとともに静止時には元の位
置に復元するようになっており、かつ回転時に冷媒排出
管の変位した部分を内筒の内周面に対して機械的に支持
する支持片を、冷媒排出管と内筒の内周面との間に両者
が熱伝導的に非接触となるように設けたものである。
In the rotor of the superconducting rotating electric machine according to the second aspect of the present invention, at least a part of the refrigerant discharge pipe is displaced in the outer diameter direction by centrifugal action during rotation, and is restored to its original position when stationary. In addition, a support piece that mechanically supports the displaced portion of the refrigerant discharge pipe during rotation with respect to the inner peripheral surface of the inner cylinder has thermal conduction between the refrigerant discharge pipe and the inner peripheral surface of the inner cylinder. It is provided so as to be non-contact.

【0015】請求項3の発明に係る超電導回転電機の回
転子は、支持片を冷媒排出管の外周部に外径方向へ突出
するように設け、回転時に支持片の自重による遠心作用
により冷媒排出管を弾性変形させるようにしたものであ
る。
In the rotor of the superconducting rotary electric machine according to the third aspect of the present invention, the support piece is provided on the outer peripheral portion of the refrigerant discharge pipe so as to project in the outer diameter direction, and the refrigerant is discharged by the centrifugal action due to the weight of the support piece during rotation. The tube is elastically deformed.

【0016】請求項4の発明に係る超電導回転電機の回
転子は、回転時の変位により支持片が当接する支持片受
け部材を、内径方向へ突出させ、かつ支持片に対向させ
て内筒の内周面に設けたものである。
In the rotor of the superconducting rotary electric machine according to the invention of claim 4, the support piece receiving member, which the support piece contacts by displacement during rotation, is projected in the inner diameter direction and is opposed to the support piece to form the inner cylinder. It is provided on the inner peripheral surface.

【0017】請求項5の発明に係る超電導回転電機の回
転子は、支持片を冷媒排出管の軸方向に間隔をおいて複
数設け、かつ互いに隣接する支持片は、冷媒排出管の周
方向に180°間隔をおいて設けたものである。
In the rotor of the superconducting rotary electric machine according to the invention of claim 5, a plurality of support pieces are provided at intervals in the axial direction of the refrigerant discharge pipe, and the adjacent support pieces are arranged in the circumferential direction of the refrigerant discharge pipe. It is provided at 180 ° intervals.

【0018】請求項6の発明に係る超電導回転電機の回
転子は、冷媒排出管を回転中心から径方向にずらして配
置し、かつ支持片は、内筒の内周面に内径方向へ突出さ
せて設けたものである。
In the rotor of the superconducting rotating electric machine according to the invention of claim 6, the refrigerant discharge pipe is arranged so as to be displaced from the center of rotation in the radial direction, and the support piece is projected in the inner peripheral surface of the inner cylinder in the inner diameter direction. It was provided by.

【0019】[0019]

【作用】請求項1の発明においては、回転子の静止時
に、配管と筒状部材とを熱伝導的に非接触とし、静止時
の冷媒の消費を節約し、また回転子の回転時には、配管
の少なくとも一部を遠心作用で変位させ、必要最小限の
熱伝導路断面の支持片により、配管の支持を確保しつつ
冷媒の消費を節約する。
According to the first aspect of the present invention, when the rotor is stationary, the pipe and the tubular member are kept in non-contact with each other in a heat conductive manner to save the consumption of the refrigerant when the rotor is stationary. At least a part of the above is displaced by a centrifugal action, and the support piece of the necessary minimum heat conduction path cross section secures the support of the pipe and saves the consumption of the refrigerant.

【0020】請求項2の発明においては、回転子の静止
時に、冷媒排出管と内筒とを熱伝導的に非接触とし、静
止時の冷媒の消費を節約し、また回転子の回転時には、
冷媒排出管の少なくとも一部を遠心作用で変位させ、必
要最小限の熱伝導路断面の支持片により、冷媒排出管の
支持を確保しつつ冷媒の消費を節約する。
According to the second aspect of the present invention, when the rotor is stationary, the refrigerant discharge pipe and the inner cylinder are made in non-contact with each other in a heat conductive manner to save the consumption of the refrigerant when stationary, and when the rotor is rotating,
At least a part of the refrigerant discharge pipe is displaced by centrifugal action, and the support piece having the minimum necessary heat conduction path cross section secures the support of the refrigerant discharge pipe while saving the consumption of the refrigerant.

【0021】請求項3の発明においては、冷媒排出管の
外周部に支持片を設けるだけの簡単な構造により、液溜
め部の冷媒の消費を節約する。
In the third aspect of the invention, the consumption of the refrigerant in the liquid reservoir is saved by the simple structure in which the supporting piece is provided on the outer peripheral portion of the refrigerant discharge pipe.

【0022】請求項4の発明においては、内筒側に支持
片受け部材を設けることにより、冷媒排出管にかかる支
持片の重量を必要最小限にする。
According to the fourth aspect of the present invention, by providing the support piece receiving member on the inner cylinder side, the weight of the support piece applied to the refrigerant discharge pipe can be minimized.

【0023】請求項5の発明においては、複数の支持片
を設けるとともに、互いに隣接する支持片を冷媒排出管
の周方向に180°ずらして配置することにより、回転
子の回転時に回転中心まわりの支持片の重量分布が均一
になり、回転子の軸振動特性が良好になる。
According to the invention of claim 5, a plurality of support pieces are provided, and the support pieces adjacent to each other are arranged so as to be offset by 180 ° in the circumferential direction of the refrigerant discharge pipe. The weight distribution of the support piece becomes uniform, and the axial vibration characteristics of the rotor are improved.

【0024】請求項6の発明においては、内筒の内周面
に支持片を設けるだけで、冷媒排出管には支持片を設け
ることなく、液溜め部の冷媒の消費を節約する。
In the sixth aspect of the invention, the support piece is provided only on the inner peripheral surface of the inner cylinder, and the support piece is not provided on the refrigerant discharge pipe, so that the consumption of the refrigerant in the liquid reservoir can be saved.

【0025】[0025]

【実施例】以下、この発明の実施例を図について説明す
る。 実施例1.図1はこの発明の実施例1による超電導回転
電機の回転子の要部を示す静止時の断面図であり、図1
6及び図17と同一又は相当部分には同一符号を付し、
その説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. Example 1. 1 is a sectional view of a rotor of a superconducting rotating electric machine according to a first embodiment of the present invention when the rotor is at rest.
6 and FIG. 17 are given the same reference numerals as in FIG.
The description is omitted.

【0026】図において、21は冷媒排出管中流部16
bの外周部に外径方向へ突出して取り付けられている支
持片であり、この支持片21は、冷媒排出管16bの軸
方向に間隔をおいて複数個取り付けられている。22は
内筒4bの内周面に内径方向へ突出して取り付けられて
いる複数個の支持片受け部材であり、これらの支持片受
け部材22は、各支持片22に対して所定の間隔をおい
て対向している。
In the figure, reference numeral 21 designates the middle portion 16 of the refrigerant discharge pipe.
It is a support piece that is attached to the outer peripheral portion of b so as to project in the outer diameter direction. A plurality of support pieces 21 are attached at intervals in the axial direction of the refrigerant discharge pipe 16b. Reference numeral 22 denotes a plurality of support piece receiving members mounted on the inner peripheral surface of the inner cylinder 4b so as to project in the inner diameter direction. The support piece receiving members 22 are spaced from each other by a predetermined distance. Are facing each other.

【0027】また、支持片21及び支持片受け部材22
は、例えば絶縁材(プラスチック材等)からなってお
り、冷媒排出管中流部16b及び内筒4bに接着剤を介
して接着されている。さらに、冷媒排出管中流部16b
は、例えばステンレス鋼材など、極低温下で弾性変形可
能な金属材からなっている。なお、回転子全体の構成
は、図16に示した従来例とほぼ同様である。
The support piece 21 and the support piece receiving member 22 are also provided.
Is made of, for example, an insulating material (plastic material or the like), and is adhered to the refrigerant discharge pipe midstream portion 16b and the inner cylinder 4b via an adhesive. Further, the refrigerant discharge pipe midstream portion 16b
Is made of a metal material, such as stainless steel, which is elastically deformable at extremely low temperatures. The overall structure of the rotor is almost the same as that of the conventional example shown in FIG.

【0028】このような超電導回転電機の回転子では、
図1に示すように、支持片21と支持片受け部材22と
の間に間隔があるため、冷媒排出管中流部16bと内筒
4bとが熱伝導的に非接触となっている。従って、回転
子の静止時には、冷媒排出管中流部16b内の気化した
冷媒の熱は、内筒4bの外側の液溜め4a(図16)の
冷媒には伝導せず、冷媒の消費が節約される。
In the rotor of such a superconducting rotating electric machine,
As shown in FIG. 1, since there is a gap between the support piece 21 and the support piece receiving member 22, the refrigerant discharge pipe midstream portion 16b and the inner cylinder 4b are in thermal contact with each other. Therefore, when the rotor is stationary, the heat of the vaporized refrigerant in the refrigerant discharge pipe midstream portion 16b is not conducted to the refrigerant in the liquid reservoir 4a (FIG. 16) outside the inner cylinder 4b, and the consumption of the refrigerant is saved. It

【0029】また、回転子の回転時には、支持片21の
自重により冷媒排出管中流部16bが遠心作用を受けて
弾性変形する。この結果、図2及び図3に示すように、
支持片21は、外径方向へ変位して支持片受け部材22
に当接する。これにより、内筒4bの内周面に対して冷
媒排出管中流部16bが機械的に支持されることにな
り、冷媒排出管中流部16bに回転に伴う微小振動が生
じるのが防止される。また、支持片21と支持片受け部
材22との接触面積は、冷媒排出管中流部16bを支持
するために必要な最小限の面積とすればよく、これによ
り熱伝導路の断面積が小さくなり、回転時の冷媒の消費
も節約される。
During rotation of the rotor, the refrigerant discharge pipe midstream portion 16b is subjected to a centrifugal action due to the weight of the support piece 21 and is elastically deformed. As a result, as shown in FIG. 2 and FIG.
The support piece 21 is displaced in the outer diameter direction so that the support piece receiving member 22
Abut. As a result, the refrigerant discharge pipe middle-flow portion 16b is mechanically supported on the inner peripheral surface of the inner cylinder 4b, and it is possible to prevent the refrigerant discharge pipe middle-flow portion 16b from generating minute vibrations due to rotation. Further, the contact area between the support piece 21 and the support piece receiving member 22 may be set to the minimum area required to support the refrigerant discharge pipe midstream portion 16b, which reduces the cross-sectional area of the heat conduction path. Also, the consumption of the refrigerant during rotation is saved.

【0030】さらに、内筒4bの内周面に支持片受け部
材22を取り付けたので、支持片21は回転時に冷媒排
出管中流部16bを変形させるのに必要な最小限の大き
さにすることができ、静止時に冷媒排出管中流部16b
にかかる支持片21の重量を必要最小限にすることがで
きる。さらにまた、支持片21を冷媒排出管中流部16
bに取り付けることにより、冷媒排出管中流部16bを
回転中心に配置したまま、容易に遠心作用を働かせるこ
とができ、回転時に冷媒排出管中流部16bをより確実
に支持することができる。
Further, since the support piece receiving member 22 is attached to the inner peripheral surface of the inner cylinder 4b, the support piece 21 should have the minimum size necessary for deforming the refrigerant discharge pipe midstream portion 16b during rotation. And the refrigerant discharge pipe midstream portion 16b when stationary
It is possible to minimize the weight of the support piece 21 that is required. Furthermore, the support piece 21 is attached to the middle portion 16 of the refrigerant discharge pipe.
By attaching it to b, the refrigerant discharge pipe middle-flow portion 16b can easily exert a centrifugal action while being arranged at the center of rotation, and the refrigerant discharge pipe middle-flow portion 16b can be more reliably supported during rotation.

【0031】なお、支持片21と支持片受け部材22と
の間の間隔は、直接の熱伝導を避けることができればか
なり微小であってもよく、従って冷媒排出管中流部16
bの弾性変形量はそれが繰り返し変形しても容易に破壊
しない程度のものとすることができる。
The space between the support piece 21 and the support piece receiving member 22 may be quite small as long as direct heat conduction can be avoided, and therefore the refrigerant discharge pipe midstream portion 16 is provided.
The amount of elastic deformation of b can be such that it does not easily break even if it is repeatedly deformed.

【0032】実施例2.次に、図4はこの発明の実施例
2による超電導回転電機の回転子の要部を示す静止時の
断面図、図5は図4の回転時の断面図、図6は図5のV
I−VI線断面図である。
Example 2. Next, FIG. 4 is a sectional view of a rotor of a superconducting rotating electric machine according to a second embodiment of the present invention at rest, FIG. 5 is a sectional view of FIG. 4 during rotation, and FIG. 6 is V of FIG.
It is a sectional view taken along the line I-VI.

【0033】図において、23は冷媒排出管中流部16
bの外周部に外径方向へ突出して取り付けられている例
えば絶縁物からなる支持片であり、この支持片23は、
その先端部が内筒4bの内周面に対して所定の間隔をお
いて対向している。また、この実施例2では、支持片2
3が実施例1の支持片21よりも外径方向へ延長されて
おり、従って内筒4bの内周面には支持片受け部材22
のような突起物が設けられていない。他の部分について
は、上記実施例1と同様である。
In the figure, reference numeral 23 designates the middle portion 16 of the refrigerant discharge pipe.
A support piece made of, for example, an insulator is attached to the outer peripheral portion of b so as to project in the outer diameter direction.
The tip portion faces the inner peripheral surface of the inner cylinder 4b at a predetermined interval. In addition, in the second embodiment, the support piece 2
3 extends in the outer diameter direction more than the support piece 21 of the first embodiment, and therefore the support piece receiving member 22 is provided on the inner peripheral surface of the inner cylinder 4b.
There is no such protrusion. Other parts are the same as those in the first embodiment.

【0034】このような超電導回転電機の回転子では、
静止時には、支持片23と内筒4bの内周面との間に間
隔があるため、冷媒排出管中流部16bと内筒4bとが
熱伝導的に非接触となり、冷媒の消費が節約される。ま
た、回転子の回転時には、支持片23の自重により冷媒
排出管中流部16bが遠心作用を受けて弾性変形し、図
5及び図6に示すように、冷媒排出管中流部16bが必
要最小限の熱伝導路断面積で機械的に支持されるため、
回転時の冷媒排出管中流部16bの微小振動が防止され
るとともに、冷媒の消費が節約される。さらに、冷媒排
出管中流部16bに支持片23を取り付けるだけで、内
筒4b側には突起物を設ける必要がないため、構造が簡
単であり製造も容易である。
In the rotor of such a superconducting rotary electric machine,
When stationary, there is a gap between the support piece 23 and the inner peripheral surface of the inner cylinder 4b, so that the refrigerant discharge pipe midstream portion 16b and the inner cylinder 4b are in non-contact in a heat conductive manner, and the consumption of the refrigerant is saved. . Further, when the rotor rotates, the refrigerant discharge pipe middle-flow portion 16b is elastically deformed by the centrifugal force due to the weight of the support piece 23, and as shown in FIGS. Since it is mechanically supported by the heat conduction path cross-sectional area of
Micro-vibration of the refrigerant discharge pipe midstream portion 16b during rotation is prevented and the consumption of the refrigerant is saved. Furthermore, since it is not necessary to provide a protrusion on the inner cylinder 4b side only by attaching the support piece 23 to the refrigerant discharge pipe midstream portion 16b, the structure is simple and the manufacturing is easy.

【0035】なお、上記実施例1,2では支持片21,
23や支持片受け部材22を接着剤で接着する例を示し
たが、他の方法で設けてもよい。また、上記実施例1,
2では支持片21,23を複数個設けたが、回転時に冷
媒排出管中流部16bを支持できれば、支持片21,2
3は1個でもよい。
In the first and second embodiments, the support piece 21,
Although the example in which 23 and the support piece receiving member 22 are adhered by an adhesive is shown, they may be provided by other methods. In addition, in the above-mentioned Example 1,
2, the support pieces 21 and 23 are provided in plural, but if the refrigerant discharge pipe midstream portion 16b can be supported during rotation, the support pieces 21 and 23 are provided.
3 may be one.

【0036】実施例3.次に、図7はこの発明の実施例
3による超電導回転電機の回転子の要部を示す静止時の
断面図、図8は図7の回転時の断面図、図9は図8のI
X−IX線断面図である。
Example 3. Next, FIG. 7 is a sectional view of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention at rest, FIG. 8 is a sectional view of FIG. 7 during rotation, and FIG. 9 is I of FIG.
It is an X-IX line sectional view.

【0037】図において、24,25は冷媒排出管中流
部16bの外周部に軸方向に間隔をおいて外径方向へ突
出して取り付けられている例えば絶縁物からなる第1及
び第2の支持片であり、これらの支持片24,25は、
冷媒排出管中流部16bの周方向に180°間隔をおい
て設けられている。26,27はそれぞれ各支持片2
4,25に対向するように内筒4bの内周面に取り付け
られている例えば絶縁物からなる支持片受け部材であ
る。他の部分については、上記実施例1と同様である。
In the figure, reference numerals 24 and 25 denote first and second support pieces made of, for example, an insulator, which are attached to the outer peripheral portion of the refrigerant discharge pipe midstream portion 16b so as to project in the outer radial direction at intervals in the axial direction. And these support pieces 24, 25 are
The refrigerant discharge pipes are provided at intervals of 180 ° in the circumferential direction of the midstream portion 16b. 26 and 27 are each support piece 2
It is a support piece receiving member made of, for example, an insulator, which is attached to the inner peripheral surface of the inner cylinder 4b so as to face 4,4 and 25. Other parts are the same as those in the first embodiment.

【0038】このような超電導回転電機の回転子では、
静止時には、各支持片24,25と各支持片受け部材2
6,27との間に間隔があるため、冷媒排出管中流部1
6bと内筒4bとが熱伝導的に非接触となり、冷媒の消
費が節約される。また、回転子の回転時には、支持片2
3の自重により冷媒排出管中流部16bが遠心作用を受
けて弾性変形し、図8及び図9に示すように、冷媒排出
管中流部16bが必要最小限の熱伝導路断面積で機械的
に支持されるため、回転時の冷媒排出管中流部16bの
微小振動が防止されるとともに、冷媒の消費が節約され
る。さらに、各支持片24,25及び各支持片受け部材
26,27は、回転中心まわりの重量分布が均一になる
ように配置されているので、回転子の軸振動特性が良好
に保たれる。
In the rotor of such a superconducting rotary electric machine,
At rest, each support piece 24, 25 and each support piece receiving member 2
Since there is a gap between the refrigerant discharge pipe 6 and 27,
6b and the inner cylinder 4b do not come into contact with each other in heat conduction, and the consumption of the refrigerant is saved. Further, when the rotor rotates, the support piece 2
The refrigerant discharge pipe middle-flow portion 16b is subjected to centrifugal action and elastically deformed by its own weight, and as shown in FIGS. 8 and 9, the refrigerant discharge pipe middle-flow portion 16b mechanically has a minimum necessary heat conduction path cross-sectional area. Since it is supported, minute vibration of the refrigerant discharge pipe midstream portion 16b during rotation is prevented, and consumption of the refrigerant is saved. Further, since the support pieces 24, 25 and the support piece receiving members 26, 27 are arranged so that the weight distribution around the rotation center is uniform, the axial vibration characteristics of the rotor are kept good.

【0039】なお、上記実施例3では2個の支持片2
4,25を示したが、3個以上としてもよく、その場
合、互いに隣接する支持片を冷媒排出管中流部16bの
周方向に180°間隔をおいて設けるのが好ましいが、
全体として回転中心まわりの重量分布が均一になれば、
必ずしも1個ずつ交互に反対向きにしなくてもよい。
In the third embodiment, the two support pieces 2 are used.
4, 25 are shown, but three or more may be provided, and in this case, it is preferable that the supporting pieces adjacent to each other are provided at 180 ° intervals in the circumferential direction of the refrigerant discharge pipe midstream portion 16b.
If the weight distribution around the center of rotation becomes uniform as a whole,
It is not always necessary to alternate one by one in the opposite direction.

【0040】実施例4.次に、図10はこの発明の実施
例4による超電導回転電機の回転子の要部を示す静止時
の断面図、図11は図10の回転時の断面図、図12は
図11のXII−XII線断面図である。
Example 4. Next, FIG. 10 is a sectional view of a rotor of a superconducting rotating electric machine according to a fourth embodiment of the present invention at rest, FIG. 11 is a sectional view of FIG. 10 during rotation, and FIG. 12 is XII- of FIG. It is a XII sectional view.

【0041】図において、28,29は冷媒排出管中流
部16bの外周部に軸方向に間隔をおいて外径方向へ突
出して取り付けられている例えば絶縁物からなる第1及
び第2の支持片であり、これらの支持片28,29は、
冷媒排出管中流部16bの周方向に180°間隔をおい
て設けられている。また、この実施例4では、各支持片
28,29が実施例3の各支持片24,25よりも外径
方向へ延長されており、従って内筒4bの内周面には支
持片受け部材26,27のような突起物が設けられてい
ない。他の部分については、上記実施例3と同様であ
る。
In the figure, reference numerals 28 and 29 denote first and second support pieces made of, for example, an insulator, which are attached to the outer peripheral portion of the middle portion 16b of the refrigerant discharge pipe so as to project in the outer radial direction at intervals in the axial direction. And these supporting pieces 28, 29 are
The refrigerant discharge pipes are provided at intervals of 180 ° in the circumferential direction of the midstream portion 16b. In addition, in the fourth embodiment, the support pieces 28, 29 are extended in the outer diameter direction more than the support pieces 24, 25 of the third embodiment, so that the support piece receiving member is provided on the inner peripheral surface of the inner cylinder 4b. No protrusions such as 26 and 27 are provided. Other parts are the same as those in the third embodiment.

【0042】このような超電導回転電機の回転子では、
実施例3と同様に、回転時の冷媒排出管中流部16bの
支持を確保しつつ、静止時及び回転時の冷媒の消費を節
約することができ、また回転子の軸振動特性が良好に保
たれる。さらに、上記実施例2と同様に、内筒4bの内
周面側には突起物等を設ける必要がないため、構造が簡
単であり、製造も容易になる。
In the rotor of such a superconducting rotary electric machine,
As in the case of the third embodiment, it is possible to save the consumption of the refrigerant at the time of standstill and at the time of rotation while ensuring the support of the refrigerant discharge pipe midstream portion 16b at the time of rotation, and to keep the shaft vibration characteristics of the rotor good. Be drunk Further, similarly to the second embodiment, since it is not necessary to provide a protrusion or the like on the inner peripheral surface side of the inner cylinder 4b, the structure is simple and the manufacturing is easy.

【0043】実施例5.次に、図13はこの発明の実施
例5による超電導回転電機の回転子の要部を示す静止時
の断面図、図14は図13の回転時の断面図、図15は
図14のXV−XV線断面図である。
Example 5. Next, FIG. 13 is a cross-sectional view of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention at rest, FIG. 14 is a cross-sectional view of FIG. 13 at the time of rotation, and FIG. 15 is XV- of FIG. It is a XV line sectional view.

【0044】図において、30は内筒4bの内周面に内
径方向へ突出するように取り付けられている例えば絶縁
物からなる複数個の支持片であり、これらの支持片30
の先端面の断面形状は、冷媒排出管中流部16bの外周
形状に沿った円弧状になっている。また、冷媒排出管中
流部16bは、回転中心から支持片30側へ径方向にず
らして配置されている。
In the figure, reference numeral 30 denotes a plurality of support pieces made of, for example, an insulator, which are attached to the inner peripheral surface of the inner cylinder 4b so as to project in the inner diameter direction.
The cross-sectional shape of the front end surface of the is a circular arc shape along the outer peripheral shape of the refrigerant discharge pipe midstream portion 16b. Further, the refrigerant discharge pipe midstream portion 16b is arranged so as to be radially displaced from the rotation center toward the support piece 30 side.

【0045】このような超電導回転電機の回転子では、
静止時には、冷媒排出管中流部16bと支持片30との
間に間隔があるため、冷媒排出管中流部16bと内筒4
bとが熱伝導的に非接触となり、冷媒の消費が節約され
る。また、回転子の回転時には、回転中心からずらして
配置された冷媒排出管中流部16bが遠心作用を受けて
図14及び図15のように変位し、必要最小限の熱伝導
路断面積で機械的に支持されるため、回転時の冷媒排出
管中流部16bの微小振動が防止されるとともに、冷媒
の消費が節約される。
In the rotor of such a superconducting rotating electric machine,
At rest, since there is a space between the middle portion 16b of the refrigerant discharge pipe and the support piece 30, the middle portion 16b of the refrigerant discharge pipe and the inner cylinder 4
It is in non-contact with b in heat conduction, and the consumption of the refrigerant is saved. Further, during rotation of the rotor, the medium portion 16b of the refrigerant discharge pipe, which is arranged displaced from the center of rotation, is displaced by centrifugal action as shown in FIGS. 14 and 15, and the machine has a minimum necessary heat conduction path cross-sectional area. Since it is supported, the minute vibration of the refrigerant discharge pipe midstream portion 16b during rotation is prevented and the consumption of the refrigerant is saved.

【0046】また、この実施例5では、支持片30を内
筒4bに取り付けるだけで、冷媒排出管中流部16b側
には突起物等が不要であるため、構造が簡単であり、製
造が容易であるとともに、静止時に冷媒排出管中流部1
6bが支持片30の荷重を受けることがない。
Further, in the fifth embodiment, since the support piece 30 is simply attached to the inner cylinder 4b and no protrusions or the like are required on the side of the refrigerant discharge pipe midstream portion 16b, the structure is simple and the manufacture is easy. In addition, the refrigerant discharge pipe midstream portion 1 when stationary
6b does not receive the load of the support piece 30.

【0047】なお、上記各実施例では配管として冷却排
出管中流部16bを、また筒状部材として巻線取付軸4
の内筒4bをそれぞれ示したが、筒状部材との間に伝導
伝熱が発生し、かつその伝導伝熱により冷媒が消費され
るようなものであれば、その他の配管の支持にもこの発
明を適用することができる。
In each of the above-mentioned embodiments, the cooling discharge pipe midstream portion 16b is used as the pipe, and the winding mounting shaft 4 is used as the tubular member.
Although the inner cylinders 4b of the above are shown, as long as conduction heat transfer occurs between the inner cylinder 4b and the tubular member and the refrigerant is consumed by the conduction heat transfer, this pipe is also used for supporting other pipes. The invention can be applied.

【0048】[0048]

【発明の効果】以上説明したように、請求項1の発明の
超電導回転電機の回転子は、配管の少なくとも一部が回
転時の遠心作用により外径方向へ変位するとともに静止
時には元の位置に復元するようになっており、かつ回転
時に配管の変位した部分を筒状部材の内周面に対して機
械的に支持する支持片を、配管と筒状部材の内周面との
間に両者が熱伝導的に非接触となるように設けたので、
回転時にのみ必要最小限の熱伝導路断面で配管を支持す
ることができ、冷媒の消費を節約することができるとい
う効果を奏する。
As described above, in the rotor of the superconducting rotary electric machine according to the invention of claim 1, at least a part of the pipe is displaced in the outer diameter direction by the centrifugal action during the rotation, and is at the original position when it is stationary. Between the pipe and the inner peripheral surface of the tubular member, a support piece that mechanically supports the displaced portion of the pipe during rotation on the inner peripheral surface of the tubular member is provided. Since it was installed so as to be non-contact in terms of heat conduction,
It is possible to support the pipe with the minimum required heat conduction path cross section only during rotation, and to reduce the consumption of the refrigerant.

【0049】また、請求項2の発明の超電導回転電機の
回転子は、冷媒排出管の少なくとも一部が回転時の遠心
作用により外径方向へ変位するとともに静止時には元の
位置に復元するようになっており、かつ回転時に冷媒排
出管の変位した部分を内筒の内周面に対して機械的に支
持する支持片を、冷媒排出管と内筒の内周面との間に両
者が熱伝導的に非接触となるように設けたので、回転時
にのみ必要最小限の熱伝導路断面で冷媒排出管を支持す
ることができ、巻線取付軸内の液溜め部の冷媒の消費を
節約することができるという効果を奏する。
Further, in the rotor of the superconducting rotating electric machine according to the second aspect of the invention, at least a part of the refrigerant discharge pipe is displaced in the outer diameter direction by centrifugal action during rotation, and is restored to the original position when stationary. In addition, a support piece that mechanically supports the displaced portion of the refrigerant discharge pipe at the time of rotation to the inner peripheral surface of the inner cylinder is provided between the refrigerant discharge pipe and the inner peripheral surface of the inner cylinder. Since it is installed so as to be conductively non-contact, it is possible to support the refrigerant discharge pipe with the minimum necessary heat conduction path cross section only during rotation, saving the consumption of refrigerant in the liquid reservoir inside the winding mounting shaft. There is an effect that can be done.

【0050】さらに、請求項3の発明の超電導回転電機
の回転子は、支持片を冷媒排出管の外周部に外径方向へ
突出するように設け、回転時に支持片の自重による遠心
作用により冷媒排出管を弾性変形させるようにしたの
で、上記請求項2の発明と同様の効果に加えて、回転時
に冷媒排出管に容易に遠心作用を働かせることができ、
回転時に冷媒排出管をより確実に支持することができる
という効果を奏する。
Further, in the rotor of the superconducting rotating electric machine according to the third aspect of the present invention, the support piece is provided on the outer peripheral portion of the refrigerant discharge pipe so as to project in the outer diameter direction, and the refrigerant is centrifugally generated by the weight of the support piece during rotation. Since the discharge pipe is elastically deformed, in addition to the same effect as the invention of claim 2, the refrigerant discharge pipe can easily exert a centrifugal action during rotation,
The refrigerant discharge pipe can be more reliably supported during rotation.

【0051】さらにまた、請求項4の発明の超電導回転
電機の回転子は、回転時の変位により支持片が当接する
支持片受け部材を、内径方向へ突出させ、かつ支持片に
対向させて内筒の内周面に設けたので、上記請求項3の
発明と同様の効果に加えて、支持片を必要最小限の大き
さにすることができ、冷媒排出管にかかる支持片の重量
を小さくすることができるという効果を奏する。
Furthermore, in the rotor of the superconducting rotary electric machine according to the invention of claim 4, the support piece receiving member, which the support piece contacts by displacement during rotation, is projected in the inner diameter direction and is opposed to the support piece. Since it is provided on the inner peripheral surface of the cylinder, in addition to the same effect as the invention of claim 3, the supporting piece can be made to have a necessary minimum size, and the weight of the supporting piece on the refrigerant discharge pipe is reduced. There is an effect that can be done.

【0052】また、請求項5の発明の超電導回転電機の
回転子は、支持片を冷媒排出管の軸方向に間隔をおいて
複数設け、かつ互いに隣接する支持片は、冷媒排出管の
周方向に180°間隔をおいて設けたので、上記請求項
3の発明と同様の効果に加えて、回転子の回転時に回転
中心まわりの支持片の重量分布が均一になり、回転子の
軸振動特性を良好に保つことができるという効果を奏す
る。
In the rotor of the superconducting rotary electric machine according to the invention of claim 5, a plurality of support pieces are provided at intervals in the axial direction of the refrigerant discharge pipe, and the adjacent support pieces are in the circumferential direction of the refrigerant discharge pipe. In addition to the effect similar to that of the invention of claim 3, the weight distribution of the supporting piece around the rotation center becomes uniform when the rotor rotates, and the shaft vibration characteristics of the rotor are increased. There is an effect that can keep good.

【0053】さらに、請求項6の発明の超電導回転電機
の回転子は、冷媒排出管を回転中心から径方向にずらし
て配置し、かつ支持片は、内筒の内周面に内径方向へ突
出させて設けたので、上記請求項2の発明と同様の効果
に加えて、冷媒排出管に支持片を設けることなく、液溜
め部の冷媒の消費を節約することができ、静止時に冷媒
排出管にかかる支持片の荷重をなくすことができるとい
う効果を奏する。
Further, in the rotor of the superconducting rotating electric machine according to the invention of claim 6, the refrigerant discharge pipe is arranged so as to be displaced in the radial direction from the center of rotation, and the supporting piece projects in the inner peripheral surface of the inner cylinder in the inner diameter direction. Since it is provided in such a manner, in addition to the same effect as that of the invention of claim 2, consumption of the refrigerant in the liquid reservoir can be saved without providing a supporting piece on the refrigerant discharge pipe, and the refrigerant discharge pipe at rest is provided. The effect that the load of the supporting piece applied to the can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による超電導回転電機の回
転子の要部を示す静止時の断面図である。
FIG. 1 is a cross-sectional view of a rotor of a superconducting rotating electric machine according to a first embodiment of the present invention when the rotor is at rest.

【図2】図1の回転時の断面図である。FIG. 2 is a sectional view of FIG. 1 during rotation.

【図3】図2のIII−III線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】この発明の実施例2による超電導回転電機の回
転子の要部を示す静止時の断面図である。
FIG. 4 is a sectional view of a rotor of a superconducting rotary electric machine according to a second embodiment of the present invention at rest, when the rotor is stationary.

【図5】図4の回転時の断面図である。FIG. 5 is a sectional view of FIG. 4 during rotation.

【図6】図5のVI−VI線断面図である。6 is a sectional view taken along line VI-VI of FIG.

【図7】この発明の実施例3による超電導回転電機の回
転子の要部を示す静止時の断面図である。
FIG. 7 is a sectional view of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention at rest, when the rotor is stationary.

【図8】図7の回転時の断面図である。FIG. 8 is a sectional view of FIG. 7 during rotation.

【図9】図8のIX−IX線断面図である。9 is a sectional view taken along line IX-IX in FIG.

【図10】この発明の実施例4による超電導回転電機の
回転子の要部を示す静止時の断面図である。
FIG. 10 is a sectional view of a rotor of a superconducting rotating electric machine according to a fourth embodiment of the present invention at rest, showing the essential parts thereof.

【図11】図10の回転時の断面図である。FIG. 11 is a sectional view of FIG. 10 during rotation.

【図12】図11のXII−XII線断面図である。12 is a sectional view taken along line XII-XII in FIG.

【図13】この発明の実施例5による超電導回転電機の
回転子の要部を示す静止時の断面図である。
FIG. 13 is a sectional view of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention when the rotor is at rest.

【図14】図13の回転時の断面図である。14 is a cross-sectional view of FIG. 13 during rotation.

【図15】図14のXV−XV線断面図である。15 is a sectional view taken along line XV-XV in FIG.

【図16】従来の超電導回転電機の回転子の一例を示す
断面図である。
FIG. 16 is a sectional view showing an example of a rotor of a conventional superconducting rotating electric machine.

【図17】図16の巻線取付軸の内筒の断面図である。17 is a cross-sectional view of the inner cylinder of the winding mounting shaft of FIG.

【符号の説明】[Explanation of symbols]

4 巻線取付軸 4a 内筒(筒状部材) 6 超電導巻線 16b 冷媒排出管中流部(配管) 21 支持片 22 支持片受け部材 23 支持片 24 第1の支持片 25 第2の支持片 26 第1の支持片受け部材 27 第2の支持片受け部材 28 第1の支持片 29 第2の支持片 30 支持片 4 Winding Attachment Shaft 4a Inner Cylinder (Cylindrical Member) 6 Superconducting Winding 16b Refrigerant Discharge Pipe Midstream (Piping) 21 Support Piece 22 Support Piece Receiving Member 23 Support Piece 24 First Support Piece 25 Second Support Piece 26 First support piece receiving member 27 Second support piece receiving member 28 First support piece 29 Second support piece 30 Support piece

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒により冷却されている筒状部材と、
この筒状部材内に配置されているとともに上記筒状部材
よりも高温になっており、回転時の遠心作用により少な
くとも一部が外径方向へ変位するとともに静止時には元
の位置に復元する配管と、この配管と上記筒状部材とが
熱伝導的に非接触となるように上記配管と上記筒状部材
の内周面との間に設けられ、回転時に上記配管の変位し
た部分を上記筒状部材の内周面に対して機械的に支持す
る支持片とを備えていることを特徴とする超電導回転電
機の回転子。
1. A tubular member cooled by a refrigerant,
A pipe which is arranged in the tubular member and has a temperature higher than that of the tubular member, at least a part of which is displaced in the outer diameter direction by centrifugal action during rotation and which is restored to its original position when stationary. , The pipe and the tubular member are provided between the pipe and the inner peripheral surface of the tubular member so as to be in non-contact with each other in a heat conductive manner, and the displaced portion of the pipe during rotation is the tubular shape. A rotor for a superconducting rotating electric machine, comprising: a support piece mechanically supporting the inner peripheral surface of the member.
【請求項2】 筒状部材は、超電導界磁巻線が取り付け
られる巻線取付軸内に挿通されている内筒であり、配管
は、冷媒の排出経路を形成するために上記内筒内に配置
されている冷媒排出管であることを特徴とする請求項1
記載の超電導回転電機の回転子。
2. The tubular member is an inner cylinder that is inserted into a winding mounting shaft to which a superconducting field winding is mounted, and a pipe is provided in the inner cylinder to form a refrigerant discharge path. The refrigerant discharge pipe is arranged, and is characterized by the above-mentioned.
The rotor of the superconducting rotating electric machine described.
【請求項3】 支持片は、冷媒排出管の外周部に外径方
向へ突出して設けられ、回転時に自重による遠心作用に
より上記冷媒排出管を弾性変形させるようになっている
ことを特徴とする請求項2記載の超電導回転電機の回転
子。
3. The support piece is provided on the outer peripheral portion of the refrigerant discharge pipe so as to project in the outer diameter direction, and elastically deforms the refrigerant discharge pipe by a centrifugal action due to its own weight during rotation. The rotor of the superconducting rotating electric machine according to claim 2.
【請求項4】 内筒の内周面には、回転時の変位により
支持片が当接する支持片受け部材が、内径方向へ突出
し、かつ上記支持片に対向して設けられていることを特
徴とする請求項3記載の超電導回転電機の回転子。
4. An inner peripheral surface of the inner cylinder is provided with a support piece receiving member that comes into contact with the support piece due to displacement during rotation and that projects toward the inner diameter and faces the support piece. The rotor of a superconducting rotating electric machine according to claim 3.
【請求項5】 支持片は、冷媒排出管の軸方向に間隔を
おいて複数設けられており、かつ互いに隣接する支持片
は、上記冷媒排出管の周方向に180°間隔をおいて設
けられていることを特徴とする請求項3又は請求項4記
載の超電導回転電機の回転子。
5. A plurality of support pieces are provided at intervals in the axial direction of the refrigerant discharge pipe, and adjacent support pieces are provided at 180 ° intervals in the circumferential direction of the refrigerant discharge pipe. The rotor for a superconducting rotating electric machine according to claim 3 or 4, wherein
【請求項6】 冷媒排出管は、回転中心から径方向にず
らして配置されており、かつ支持片は、内筒の内周面に
内径方向へ突出して設けられていることを特徴とする請
求項2記載の超電導回転電機の回転子。
6. The refrigerant discharge pipe is arranged to be displaced from the center of rotation in the radial direction, and the support piece is provided on the inner peripheral surface of the inner cylinder so as to project in the inner diameter direction. Item 2. A rotor for a superconducting rotating electric machine according to Item 2.
JP6008682A 1994-01-28 1994-01-28 Superconducting rotating electric machine rotor Expired - Fee Related JP2796055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6008682A JP2796055B2 (en) 1994-01-28 1994-01-28 Superconducting rotating electric machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6008682A JP2796055B2 (en) 1994-01-28 1994-01-28 Superconducting rotating electric machine rotor

Publications (2)

Publication Number Publication Date
JPH07222431A true JPH07222431A (en) 1995-08-18
JP2796055B2 JP2796055B2 (en) 1998-09-10

Family

ID=11699701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6008682A Expired - Fee Related JP2796055B2 (en) 1994-01-28 1994-01-28 Superconducting rotating electric machine rotor

Country Status (1)

Country Link
JP (1) JP2796055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033858A1 (en) * 2005-09-23 2007-03-29 Siemens Aktiengesellschaft Machine based on superconducting technology with a baffle screen part
WO2007144231A1 (en) * 2006-06-12 2007-12-21 Siemens Aktiengesellschaft Machine with uncooled rotor body and cooled rotor winding and associated holding and/or support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033858A1 (en) * 2005-09-23 2007-03-29 Siemens Aktiengesellschaft Machine based on superconducting technology with a baffle screen part
US7728466B2 (en) 2005-09-23 2010-06-01 Siemens Aktiengesellschaft Machine based on superconducting technology with part support elements
KR101282134B1 (en) * 2005-09-23 2013-07-04 지멘스 악티엔게젤샤프트 Machine based on superconducting technology with a baffle screen part
WO2007144231A1 (en) * 2006-06-12 2007-12-21 Siemens Aktiengesellschaft Machine with uncooled rotor body and cooled rotor winding and associated holding and/or support device
US7795764B2 (en) 2006-06-12 2010-09-14 Siemens Aktiengesellschaft Machine having an uncooled rotor body and a cooled rotor winding, as well as an associated holding and/or supporting device

Also Published As

Publication number Publication date
JP2796055B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US4123676A (en) Rotor member for superconducting generator
US4152609A (en) Rotor member for superconducting generator
JPH07222431A (en) Rotor for superconducting rotating electric machine
JP2968188B2 (en) Vacuum pump device
JP5016393B2 (en) Superconducting rotating electrical machine rotor
JPH0452712B2 (en)
JP2818109B2 (en) Superconducting rotating electric machine rotor
JP4732053B2 (en) Superconducting rotating electrical machine rotor
JP3302705B2 (en) Superconducting rotating electric machine rotor
JP2603002B2 (en) Superconducting rotating electric machine rotor
JP3300707B2 (en) Superconducting rotating electric machine rotor
JP2667063B2 (en) Superconducting rotating electric machine rotor
JP2752228B2 (en) Superconducting rotating electric machine
JPH06327234A (en) Rotor of superconducting rotary electric device
JPS6248473B2 (en)
JPS61196762A (en) Rotor of superconductive rotary machine
JPH0260456A (en) Superconducting rotating machine
JPH06276722A (en) Rotor of superconducting rotating electric machine
JPH0974707A (en) Bearing cooling device for dynamo-electric machine
JP2672894B2 (en) Superconducting rotating electric machine rotor
JP2529382B2 (en) Insertion molding method of superconducting field coil in rotor of superconducting rotating electric machine
JPH0426347A (en) Claw pole type synchronous generator
JPH0613370U (en) Cooling device for high-speed rotating electric machine
JP3273959B2 (en) Motor cooling device
JP3400597B2 (en) Rotor of superconducting rotating electric machine and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees