JPH0722218B2 - Frequency stabilized light source - Google Patents

Frequency stabilized light source

Info

Publication number
JPH0722218B2
JPH0722218B2 JP26124186A JP26124186A JPH0722218B2 JP H0722218 B2 JPH0722218 B2 JP H0722218B2 JP 26124186 A JP26124186 A JP 26124186A JP 26124186 A JP26124186 A JP 26124186A JP H0722218 B2 JPH0722218 B2 JP H0722218B2
Authority
JP
Japan
Prior art keywords
light source
semiconductor laser
diffraction grating
frequency
stabilized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26124186A
Other languages
Japanese (ja)
Other versions
JPS63114292A (en
Inventor
宏之 朝倉
清和 萩原
稔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26124186A priority Critical patent/JPH0722218B2/en
Publication of JPS63114292A publication Critical patent/JPS63114292A/en
Publication of JPH0722218B2 publication Critical patent/JPH0722218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光通信,光計測,光記録用の周波数安定化光
源に関する。
Description: TECHNICAL FIELD The present invention relates to a frequency-stabilized light source for optical communication, optical measurement, and optical recording.

従来の技術 従来、半導体レーザ素子の周波数安定化に回折格子を用
いた光帰還が行われてきたが、これらの回折格子として
機械刻線によるエシェレット格子が使用されてきた。こ
のエシェレット格子はその格子溝形状が鋸歯状をしてお
り、格子の傾きによって決まるブレーズ角とブレーズ波
長に対して回折効率が高くなる。したがって半導体レー
ザ素子から出た光は、回折格子で効率良く反射されて再
びもとの半導体レーザ素子と強く結合し、半導体レーザ
素子の発振モードが単一化されて周波数が安定化され
る。発振波長は回折格子と半導体レーザ素子との位置関
係により幾何学的に決定される。第4図に従来の実施例
を示す。半導体レーザ素子41より出た光は、レンズ42よ
り平行光となりエシェレット格子43に入射される。入射
光はその波長に従い分散され特定の波長のみが半導体レ
ーザ素子41と結合し、その波長で半導体レーザ素子41は
発振する。特にエシェレット格子43の溝面と入射および
回折光が鏡面反射の関係にあるとき回折効率は高くな
り、半導体レーザ素子41との結合が強くなり発振が安定
する。(たとえばエレクトロニクスレター(ELECTRONIC
S LETTER)21巻15号 658ページ1985年) 発明が解決しようとする問題点 しかし、上記に述べた周波数安定化光源に用いるエシェ
レット格子は主に機械刻線によって製作されるために溝
ピッチ誤差により発生するゴーストや迷光が発生し、半
導体レーザ素子の波長を不安定にしたり、ノイズを発生
させたりする。また、格子定数の設定もネジピッチで制
約される。このためにレンズを含む光学系の設計に制約
が生じる。また機械刻線のエシェレット格子は製作に時
間がかかり、さらに刻線のためのルーリングエンジンは
超精密機械のために作成されたエシェレット格子は非常
に高価なものになるので従来のエシェレット格子を用い
た周波数安定化光源はコストが高くなる。エシェレット
格子を量産する方法にマスターの格子からレプリカをと
る方法があるが機械刻線のエシェレット格子の溝形状は
ルーリングエンジンのカッターの歯先の形状や設定に依
って完全な鋸歯状にはならず、第5図(a),(b)に
示すように先端部が平になったり、ひげが生じたりす
る。このため、レプリカをとって形状を転写すると、元
のオリジナルとは特性が異なったり、レプリカがとれな
い場合もある。
2. Description of the Related Art Conventionally, optical feedback using a diffraction grating has been performed to stabilize the frequency of a semiconductor laser device, and an echelette with mechanical engraving has been used as these diffraction gratings. The Echelette grating has a sawtooth-shaped grating groove, and the diffraction efficiency is high with respect to the blaze angle and the blaze wavelength determined by the tilt of the grating. Therefore, the light emitted from the semiconductor laser element is efficiently reflected by the diffraction grating and is strongly coupled again to the original semiconductor laser element, so that the oscillation mode of the semiconductor laser element is unified and the frequency is stabilized. The oscillation wavelength is geometrically determined by the positional relationship between the diffraction grating and the semiconductor laser device. FIG. 4 shows a conventional embodiment. The light emitted from the semiconductor laser device 41 becomes parallel light from the lens 42 and enters the echelette grating 43. The incident light is dispersed according to its wavelength, only a specific wavelength is coupled with the semiconductor laser element 41, and the semiconductor laser element 41 oscillates at that wavelength. In particular, when the incident surface and diffracted light have a specular reflection relationship with the groove surface of the Echelette grating 43, the diffraction efficiency is increased, the coupling with the semiconductor laser element 41 is strengthened, and oscillation is stabilized. (For example, Electronics Letter (ELECTRONIC
(S LETTER) Volume 21, No. 15, Page 658, 1985) Problems to be Solved by the Invention However, since the Echelette grating used for the frequency-stabilized light source described above is mainly manufactured by machine engraving, groove pitch error may occur. The generated ghost and stray light cause the wavelength of the semiconductor laser device to become unstable and generate noise. The setting of the lattice constant is also restricted by the screw pitch. This imposes restrictions on the design of the optical system including the lens. In addition, the machine engraved echelette lattice takes time to manufacture, and the ruling engine for engraved lines uses the conventional echelette lattice because the echelette lattice created for ultra-precision machines becomes very expensive. Frequency stabilized light sources are expensive. There is a method of mass-producing the Echelette lattice to make a replica from the master lattice. As shown in FIGS. 5 (a) and 5 (b), the tip portion becomes flat or a whisker is formed. For this reason, when a replica is used to transfer the shape, the characteristics may be different from the original, or the replica may not be obtained.

本発明は上記問題に鑑み、コストが安くノイズの低い周
波数安定化光源を提供するものである。
In view of the above problems, the present invention provides a frequency stabilized light source that is low in cost and low in noise.

問題点を解決するための手段 上記問題点を解決するために本発明の周波数安定化光源
はホログラフィック回折格子を用いて光帰還をおこなう
ものである。
Means for Solving the Problems In order to solve the above problems, the frequency-stabilized light source of the present invention uses a holographic diffraction grating to perform optical feedback.

作用 本発明は上記した構成によって、コストが安くノイズの
低い周波数安定化光源を提供するものである。
Effect The present invention provides a frequency-stabilized light source with low cost and low noise by the above-mentioned configuration.

実施例 以下、本発明の一実施例における周波数安定化光源につ
いて図面を参照しながら説明する。
Embodiment A frequency-stabilized light source according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における周波数安定化光源の
構成図を示すものである。1は半導体レーザ素子、2は
レンズ、4はホログラフィック回折格子、5は反射防止
膜である。半導体レーザ素子1よりでた光は、レンズ2
より平行光となりホログラフィック回折格子4に入射さ
れる。入射光はその波長に従い分散され特定の波長のみ
が半導体レーザ素子1と結合し、その波長で半導体レー
ザ素子1は発振する。
FIG. 1 shows a block diagram of a frequency stabilizing light source in an embodiment of the present invention. Reference numeral 1 is a semiconductor laser element, 2 is a lens, 4 is a holographic diffraction grating, and 5 is an antireflection film. Light emitted from the semiconductor laser element 1 is reflected by the lens 2
It becomes parallel light and enters the holographic diffraction grating 4. The incident light is dispersed according to the wavelength, only a specific wavelength is coupled with the semiconductor laser device 1, and the semiconductor laser device 1 oscillates at that wavelength.

ホログラフィック回折格子の回折効率は入射光の偏光方
向および格子定数dと波長λの比λ/dに依存する。その
様子を第2図に示す。ホログラフィック回折格子の溝方
向と平行な方向に電気ベクトルを持つものをP偏光、垂
直なものをS偏光とする。PまたはS偏光に対して特定
のλ/dで効率が高くなる。半導体レーザ素子1の出力光
の波長幅は数オングストロームしかないため回折格子の
dを効率が高くなるように設定すれば回折光強度が高く
なり半導体レーザ素子1に強い光帰還がかけられる。半
導体レーザ素子1の出力光はその接合面に対して水平方
向に偏光しているため、ホログラフィック回折格子4の
溝方向に対して半導体レーザ素子1の接合面を水平また
は垂直に配置することでPまたはS偏光状態で構成する
ことが容易にできる。PまたはS偏光状態での入射光に
対してλ/dが0.2<λ/d<1.7の範囲では特に回折効率が
高くなる。
The diffraction efficiency of the holographic diffraction grating depends on the polarization direction of incident light and the ratio λ / d of the grating constant d and the wavelength λ. This is shown in FIG. Those having an electric vector in a direction parallel to the groove direction of the holographic diffraction grating are P-polarized light, and those perpendicular to the same are S-polarized light. The efficiency is high for a specific λ / d for P or S polarization. Since the wavelength width of the output light of the semiconductor laser device 1 is only a few angstroms, if the d of the diffraction grating is set to be high in efficiency, the intensity of the diffracted light becomes high and a strong optical feedback is applied to the semiconductor laser device 1. Since the output light of the semiconductor laser device 1 is polarized in the horizontal direction with respect to the joint surface, by arranging the joint surface of the semiconductor laser device 1 horizontally or vertically with respect to the groove direction of the holographic diffraction grating 4. It can be easily constructed in the P or S polarization state. The diffraction efficiency is particularly high in the range where λ / d is 0.2 <λ / d <1.7 with respect to the incident light in the P or S polarization state.

ホログラフィック回折格子は単一波長の二光束でフォト
レジストを感光し、現像することで容易に作成すること
ができる。また、ホログラフィック格子はその形状が滑
らかでかつ、対称であるため形状の転写が行いやすく、
オリジナルの溝構造がそのまま転写される。したがって
転写されてできたレプリカは、元のオリジナルのホログ
ラフィック回折格子の特性をそのまま有する。レプリカ
を作成することによって、同一特性のホログラフィック
回折格子を簡単にかつ大量に生産することができる。し
たがってホログラフィック回折格子を用いてコストの安
い周波数安定化光源を構成することができる。また二光
束干渉露光法によって作成されたホログラフィック格子
は機械刻線によるエシェレット格子にくらべピッチ誤差
によるゴーストが少ないために、半導体レーザ素子1へ
の光帰還をおこなっても不安定な結合状態にならない利
点を持つ。
The holographic diffraction grating can be easily prepared by exposing a photoresist to two light fluxes having a single wavelength and developing the photoresist. In addition, the shape of the holographic grating is smooth and symmetrical, making it easy to transfer the shape,
The original groove structure is directly transferred. Therefore, the transferred replica has the characteristics of the original holographic diffraction grating. By making a replica, holographic diffraction gratings having the same characteristics can be easily produced in large quantities. Therefore, it is possible to construct a frequency-stabilized light source at low cost by using the holographic diffraction grating. Further, since the holographic grating formed by the two-beam interference exposure method has less ghost due to the pitch error than the Echelette grating by mechanical engraving, even if optical feedback to the semiconductor laser element 1 is performed, an unstable coupling state does not occur. Have an advantage.

第3図に本発明の第2の実施例を示す周波数安定化光源
の構成図である。半導体レーザ素子31からの出力光はホ
ログラフィック凹面回折格子35で分散され、特定波長の
光が再び半導体レーザ素子31に結合される。回折格子を
凹面にすることによって、レンズが不要となる。
FIG. 3 is a configuration diagram of a frequency stabilized light source showing a second embodiment of the present invention. The output light from the semiconductor laser device 31 is dispersed by the holographic concave diffraction grating 35, and the light of a specific wavelength is coupled to the semiconductor laser device 31 again. By making the diffraction grating concave, no lens is required.

発明の効果 以上のように本発明は半導体レーザ素子と波長λと格子
定数dに対して0.2<λ/d<1.7のホログラフィック回折
格子を有することによって安価でかつノイズの少ない周
波数安定化光源を提供することができる。
EFFECTS OF THE INVENTION As described above, the present invention provides an inexpensive and noise-free frequency-stabilized light source by using a semiconductor laser device and a holographic diffraction grating of 0.2 <λ / d <1.7 for a wavelength λ and a lattice constant d. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例における周波数安定化光
源の構成図、第2図はホログラフィック回折格子の偏光
と効率を示した特性図、第3図は本発明の第2の実施例
における周波数安定化光源の構成図、第4図は従来の実
施例における周波数安定化光源の構成図、第5図
(a),(b)は機械刻線エシェレット格子の断面図で
ある。 1……半導体レーザ素子、2……レンズ、43……エシェ
レット格子、4……ホログラフィック回折格子、35……
ホログラフィック凹面回折格子。
FIG. 1 is a block diagram of a frequency-stabilized light source according to a first embodiment of the present invention, FIG. 2 is a characteristic diagram showing polarization and efficiency of a holographic diffraction grating, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a block diagram of a frequency-stabilized light source in an example, FIG. 4 is a block diagram of a frequency-stabilized light source in a conventional embodiment, and FIGS. 1 ... Semiconductor laser device, 2 ... Lens, 43 ... Echelette grating, 4 ... Holographic diffraction grating, 35 ...
Holographic concave diffraction grating.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】使用波長λに対し格子定数dが、0.2<λ/
d<1.7の範囲を有するホログラフィック回折格子と半導
体レーザ素子からなる周波数安定化光源。
1. The lattice constant d is 0.2 <λ / with respect to the used wavelength λ.
A frequency-stabilized light source composed of a holographic diffraction grating having a range of d <1.7 and a semiconductor laser device.
【請求項2】上記回折格子に平面回折格子を用いた特許
請求の範囲第(1)項記載の周波数安定化光源。
2. A frequency-stabilized light source according to claim 1, wherein a plane diffraction grating is used as the diffraction grating.
【請求項3】上記回折格子に凹面回折格子を用いた特許
請求の範囲第(1)項記載の周波数安定化光源。
3. A frequency stabilized light source according to claim 1, wherein a concave diffraction grating is used as the diffraction grating.
【請求項4】上記半導体レーザ素子に反射防止膜をつけ
た特許請求の範囲第(1)項,第(2)項,または第
(3)項のいずれかに記載の周波数安定化光源。
4. A frequency-stabilized light source according to any one of claims (1), (2), and (3), wherein the semiconductor laser device is provided with an antireflection film.
JP26124186A 1986-10-31 1986-10-31 Frequency stabilized light source Expired - Fee Related JPH0722218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26124186A JPH0722218B2 (en) 1986-10-31 1986-10-31 Frequency stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26124186A JPH0722218B2 (en) 1986-10-31 1986-10-31 Frequency stabilized light source

Publications (2)

Publication Number Publication Date
JPS63114292A JPS63114292A (en) 1988-05-19
JPH0722218B2 true JPH0722218B2 (en) 1995-03-08

Family

ID=17359098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26124186A Expired - Fee Related JPH0722218B2 (en) 1986-10-31 1986-10-31 Frequency stabilized light source

Country Status (1)

Country Link
JP (1) JPH0722218B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534962B (en) * 2013-06-06 2016-08-10 华为技术有限公司 Light frequency supervising device

Also Published As

Publication number Publication date
JPS63114292A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US4997747A (en) Method for the formation of a diffraction grating
EP0176812B1 (en) Optical device
US5404234A (en) Projector using a hologram
JP3084960B2 (en) Diffraction grating, method for producing the same, and second harmonic generator
JPH0722218B2 (en) Frequency stabilized light source
US5036504A (en) Optical head using a reflection grating
US6633385B2 (en) System and method for recording interference fringes in a photosensitive medium
JPH0810781B2 (en) Frequency stabilized light source
JPS62230074A (en) Frequency stabilized light source
JPH0225803A (en) Polarized beam splitter
JP3916773B2 (en) Method for measuring period of diffraction grating
JPH0722217B2 (en) Frequency stabilized light source
JPS61126524A (en) Adjusting device for quantity of laser light
JPS63114293A (en) Frequency stabilized light source
JP3037357B2 (en) Faraday rotator with integrated polarizer and optical isolator using the same
JP2761899B2 (en) Diffraction grating exposure system
JPH09185313A (en) Manufacture of hologram
JPH02109086A (en) Hologram printing equipment
JPS6139289Y2 (en)
JPH0786596B2 (en) Method to eliminate polarization dependence of hologram
KR940005924Y1 (en) Laser beam scanning apparatus of holographic laser scanner
JPH05234851A (en) Formation method of resist pattern
JPS588131U (en) spectrometer
JPS642459U (en)
JPH07210067A (en) Hologram recording method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees