JPH0722207B2 - Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method - Google Patents

Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method

Info

Publication number
JPH0722207B2
JPH0722207B2 JP61060364A JP6036486A JPH0722207B2 JP H0722207 B2 JPH0722207 B2 JP H0722207B2 JP 61060364 A JP61060364 A JP 61060364A JP 6036486 A JP6036486 A JP 6036486A JP H0722207 B2 JPH0722207 B2 JP H0722207B2
Authority
JP
Japan
Prior art keywords
pyroelectric element
pyroelectric
substrate
single crystal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61060364A
Other languages
Japanese (ja)
Other versions
JPS62216234A (en
Inventor
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61060364A priority Critical patent/JPH0722207B2/en
Publication of JPS62216234A publication Critical patent/JPS62216234A/en
Publication of JPH0722207B2 publication Critical patent/JPH0722207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は、薄型焦電素子に関する。Detailed Description of the Invention a. TECHNICAL FIELD The present invention relates to a thin pyroelectric element.

ロ.従来の技術 赤外線センサーとして焦電素子が最近良く利用されてい
るが、焦電素子のS/N値を向上させるために、出来るだ
け薄い素子の開発が求められている。焦電素子の温度変
化率は熱容量に反比例するから、素子が薄いと熱容量が
減少するために素子の温度変化率は上がる。しかし、素
子が薄くなると素子の電気容量が増加して、温度上昇に
対する電圧感度は落ちるので、光量に対する電圧感度は
同じであるが、ノイズ特にtanδノイズ,入力抵抗ノイ
ズは電気容量が大きいと減少する。従って、素子を薄く
すると、総合的にはS/N値が向上することになる。
B. 2. Description of the Related Art Pyroelectric devices have been widely used recently as infrared sensors, but in order to improve the S / N value of pyroelectric devices, it is required to develop as thin a device as possible. Since the rate of temperature change of the pyroelectric element is inversely proportional to the heat capacity, if the element is thin, the heat capacity decreases and the rate of temperature change of the element increases. However, as the element becomes thinner, the capacitance of the element increases and the voltage sensitivity to temperature rise decreases, so the voltage sensitivity to the amount of light is the same, but noise, especially tan δ noise and input resistance noise, decreases when the capacitance is large. . Therefore, if the element is thinned, the S / N value will be improved overall.

このように焦電素子のS/N値の向上を計るために素子を
薄くすることが望ましい。又、焦電素子には多くの種類
があるが、その中でも特にLiTaO3はキュリー温度が610
℃と高く、潮解性がなく焦電性能も良いので、薄い素子
で電極と安定して接合する素子の開発が望まれている
が、従来においては、素子を薄く加工する過程でクラッ
クが生じたりして、厚さ20μm以下の素子を安定して製
造することができなかった。又、クラックを避けるには
非常に目の細かい研摩材を用いなければならないので、
薄い素子が出来ても素子の表面が鏡面状或はそれに近い
状態となり、電極(Pt,Au,Al,Cr等)を素子の表面に蒸
着,スパッタリング等でつけた時に剥がれやヒビ割れが
発生し易いと云う問題点があった。
Thus, it is desirable to thin the element in order to improve the S / N value of the pyroelectric element. There are many types of pyroelectric elements, but among them, LiTaO 3 has a Curie temperature of 610.
Since it is as high as ℃, it has no deliquescent property and good pyroelectric performance, it is desired to develop an element that can be stably joined to the electrode with a thin element, but in the past, cracks occurred during the process of thinning the element. Then, it was not possible to stably manufacture an element having a thickness of 20 μm or less. Also, in order to avoid cracks, it is necessary to use very fine abrasives,
Even if a thin element is produced, the surface of the element will be mirror-like or close to it, and peeling and cracking will occur when electrodes (Pt, Au, Al, Cr, etc.) are attached to the element surface by vapor deposition, sputtering, etc. There was a problem that it was easy.

ハ.発明が解決しようとする問題点 本発明は、焦電素子特にLiTaO3において、安定して薄く
作れてしかも電極の剥がれやヒビ割れの発生しにくい素
子を提供することをを目的とする。
C. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention It is an object of the present invention to provide a pyroelectric element, particularly LiTaO 3 , which can be stably made thin and which is less likely to cause electrode peeling or cracking.

ニ.問題点解決のための手段 焦電素子単結晶板を従来法例えば研磨法等と数種の粗さ
の異なる砥粒で研磨する加工工程によって、ある程度ま
で薄くした素子基板を、フッ硝酸溶液に全表面が液に浸
かるように設置し、溶液を適宜な温度に加熱して、適当
に攪拌することにより、素子を溶液中で溶解させて薄化
加工を行うことで、厚み15μm以下で両表面が適当な凹
凸を有するスリガラス状の素子基板を製作し、同素子基
板の両表面に電極膜を形成する。
D. Means for Solving Problems A device substrate that has been thinned to a certain extent by a conventional method, such as a polishing method, for polishing a single crystal plate of a pyroelectric element with abrasive grains having different roughnesses By setting the surface so that it is immersed in the liquid, heating the solution to an appropriate temperature, and stirring it appropriately, the element is dissolved in the solution and subjected to a thinning process. A ground glass element substrate having appropriate irregularities is manufactured, and electrode films are formed on both surfaces of the element substrate.

ホ.作用 焦電素子特にLiTaO3において、素子を従来法例えば研磨
法等の薄化加工工程である程度まで薄くした素子基板
を、最後にフッ硝酸溶液中で溶解作用により両表面の仕
上げ加工を行うことにより、少なくとも一表面に上記酸
液の腐食作用により適当な凹凸が存在する素子を容易に
製作することが可能になり、15μm以下の焦電素子を容
易に製作することができる。又、製作された素子が上記
のように粗面であるために、電極との接着面積が増大
し、表面と平行な力に対しても表面の凹凸によって抵抗
力が増すことになって、温度変化等によって起きる電極
の剥がれやヒビ割れの発生しにくい素子を容易に製作す
ることが可能になった。
E. In pyroelectric element, especially in LiTaO 3 , the element substrate is thinned to a certain extent by the conventional thinning process such as polishing method, and finally by finishing the both surfaces by the dissolving action in the hydrofluoric nitric acid solution. Moreover, it becomes possible to easily manufacture an element having appropriate unevenness on at least one surface due to the corrosive action of the acid solution, and it is possible to easily manufacture a pyroelectric element of 15 μm or less. In addition, since the manufactured element has a rough surface as described above, the adhesive area with the electrode increases, and the resistance to the force parallel to the surface increases due to the unevenness of the surface, It has become possible to easily fabricate an element in which electrode peeling or cracking caused by changes or the like is unlikely to occur.

ヘ.実施例 第2図に本発明素子の一加工工程例を示す。第2図にお
いて、1は焦電素子の基板であるLiTaO3単結晶、2は単
結晶1を薄化加工する際の加工台であるガラス台、3は
溶解用箱でテフロン製である。4は単結晶を入れる溶解
用容器で底に細かい穴が開けてある。5は単結晶を溶解
するフッ硝酸溶液、6はフッ硝酸溶液の温度を高めるプ
レートヒータ、7はスターラーである。
F. Example FIG. 2 shows an example of one processing step of the device of the present invention. In FIG. 2, 1 is a LiTaO 3 single crystal that is a substrate of a pyroelectric element, 2 is a glass table that is a processing table when thinning the single crystal 1, and 3 is a melting box made of Teflon. Reference numeral 4 is a melting vessel for containing a single crystal, which has a fine hole at the bottom. Reference numeral 5 is a hydrofluoric nitric acid solution for dissolving the single crystal, 6 is a plate heater for raising the temperature of the hydrofluoric nitric acid solution, and 7 is a stirrer.

第2図Aにおいて、1は予めポーリングされたLiTaO3
結晶Z板で直径2.0inch〜4.0inch,厚さ100μm以上の素
子基板で、陰極側の表面を鏡面或はそれに近い面にポリ
シングにて加工する。
In FIG. 2A, 1 is a pre-poled LiTaO 3 single crystal Z plate, which is an element substrate having a diameter of 2.0 inch to 4.0 inch and a thickness of 100 μm or more. The cathode side surface is polished to a mirror surface or a surface close to it. To process.

第2図Bにおいて、上記で加工された素子基板1の鏡面
仕上げの陰極面をガラス台2に接着する。陰極側の面を
鏡面仕上げするのは、ガラス台との接着を良くし、又、
接着を剥がす場合に剥がし易くするためである。
In FIG. 2B, the mirror-finished cathode surface of the element substrate 1 processed above is adhered to the glass base 2. The mirror-finished surface on the cathode side improves adhesion to the glass table, and
This is because when the adhesive is peeled off, the peeling is facilitated.

第2図Cにおいて、上記で接着された素子基板の陽極側
の面を1000#の砥粒で50μmまでラッピングする。
In FIG. 2C, the anode-side surface of the above-bonded element substrate is lapped with 1000 # abrasive grains to 50 μm.

第2図Dおいて、上記で50μmまでラッピングされた素
子基板の陽極面を更に4000#の砥粒で20μmまでラッピ
ングする。
In FIG. 2D, the anode surface of the element substrate, which has been lapped to 50 μm as described above, is further lapped to 20 μm with 4000 # abrasive grains.

第2図Eにおいて、上記で20μmまでラッピングされた
素子基板をガラス台2から外して、陽極面を上にして底
に細かい穴が開いている容器4に入れる。同容器4は攪
拌可能な溶解用箱3に設置されている。同箱3に50%フ
ッ酸溶液と70%硝酸溶液を1:1で混合し、素子基板1が
同溶液5に沈むまで同混合溶液5を箱3に入れて、下部
に設置されたプレートヒータ6により溶液を80℃に加熱
して、水中バブリング(不図示)により溶液を攪拌しな
がら2時間程放置後素子基板1を取り出し水洗する。
In FIG. 2E, the element substrate lapped to 20 μm is removed from the glass table 2 and placed in a container 4 with the anode surface facing upward and the bottom having fine holes. The container 4 is installed in the dissolution box 3 which can be stirred. A 50% hydrofluoric acid solution and a 70% nitric acid solution are mixed in the same box 1 at a ratio of 1: 1, and the mixed solution 5 is put in the box 3 until the element substrate 1 is submerged in the same solution 5. The solution is heated to 80 ° C. by 6 and left for about 2 hours while stirring the solution by bubbling in water (not shown), and then the element substrate 1 is taken out and washed with water.

上記酸処理の過程で、素子基板1は陰極側の方が陽極側
より溶解速度が速い。このため酸処理による基板の厚さ
の減少は陰極側の面で主に進行する。
In the process of the acid treatment, the element substrate 1 has a faster dissolution rate on the cathode side than on the anode side. Therefore, the reduction of the thickness of the substrate due to the acid treatment mainly proceeds on the surface on the cathode side.

このような工程で加工すれば、両表面が適当な凹凸を有
するスリガラス状の厚みが10μmの素子基板1が作成さ
れる。
By processing in such a step, a ground glass-like element substrate 1 having a thickness of 10 μm and having appropriate irregularities on both surfaces is prepared.

第2図に示すように得られた素子基板1の陽極面に砥粒
による砂傷が酸処理によってなだらかな凹凸を有するチ
リメント状の表面になり、陰極面は凹ピラミッド状の無
数の微細なエッチピットに覆われ300倍程度の顕微鏡で
見ると、キラキラしたダイヤガラス状を呈している。
As shown in FIG. 2, sand scratches caused by abrasive grains on the anode surface of the element substrate 1 obtained as shown in FIG. 2 become a tilment-like surface having gentle irregularities due to acid treatment, and the cathode surface has a myriad of finely-etched concave pyramids. It is covered with pits and looks like a shimmering diamond glass when viewed under a microscope of about 300 times.

ト.効果 本発明によれば、フッ硝酸による溶解加工により、加工
中に素子に歪みを与えずに加工が可能になり、表面が溶
解作用により粗面になっているので、温度変化等によっ
て素子から電極が剥がれたりヒビ割れしない15μm以下
の薄さの焦電素子を容易に提供することが可能になっ
た。
G. Effect According to the present invention, the dissolution processing using hydrofluoric nitric acid enables processing without straining the element during processing, and the surface becomes a rough surface due to the dissolution action. It has become possible to easily provide a pyroelectric element having a thickness of 15 μm or less that does not peel off or crack.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の断面図、第2図は加工工程
図でA,B,C,D,Eはその途中工程図である。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a working process drawing, and A, B, C, D and E are intermediate process drawings.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】焦電素子単結晶薄板を少くともその一方の
表面をフッ硝酸溶液に浸漬し、同溶液を加熱攪拌し、上
記薄板表面を溶解させることで同薄板を更に薄くして焦
電素子基板とすることを特徴とする焦電素子製造方法。
1. A pyroelectric element single crystal thin plate, at least one surface of which is immersed in a hydrofluoric nitric acid solution, and the solution is heated and stirred to dissolve the thin plate surface, thereby further thinning the thin plate and making it pyroelectric. A method for manufacturing a pyroelectric element, which comprises using an element substrate.
【請求項2】焦電素子単結晶基板が厚さ15μm以下で、
少くとも一表面が溶解過程で生じた凹凸を有するスリガ
ラス状を呈していることを特徴とする焦電素子。
2. A pyroelectric element single crystal substrate having a thickness of 15 μm or less,
A pyroelectric element characterized in that at least one surface has a ground glass shape having irregularities generated during the melting process.
JP61060364A 1986-03-17 1986-03-17 Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method Expired - Lifetime JPH0722207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060364A JPH0722207B2 (en) 1986-03-17 1986-03-17 Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060364A JPH0722207B2 (en) 1986-03-17 1986-03-17 Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method

Publications (2)

Publication Number Publication Date
JPS62216234A JPS62216234A (en) 1987-09-22
JPH0722207B2 true JPH0722207B2 (en) 1995-03-08

Family

ID=13140010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060364A Expired - Lifetime JPH0722207B2 (en) 1986-03-17 1986-03-17 Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method

Country Status (1)

Country Link
JP (1) JPH0722207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4168599A (en) 1998-06-18 2000-01-05 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor

Also Published As

Publication number Publication date
JPS62216234A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
WO2015172588A1 (en) Thinning method for pyroelectric relaxor ferroelectric single crystal
JP2008301066A (en) Lithium tantalate (lt) or lithium niobate (ln) single crystal compound substrate
US5516388A (en) Sol-gel bonding
CN109972204B (en) Ultra-thin ultra-flat wafer and method for manufacturing the same
JPH0466096B2 (en)
JPH0722207B2 (en) Pyroelectric element manufacturing method and pyroelectric element manufactured by the same method
JPS5833882A (en) Manufacture of light emitting diode
JPH10501101A (en) Semi-finished products for electronic or optoelectronic semiconductor components
JPH08274285A (en) Soi substrate and manufacture thereof
JPS61163641A (en) Semiconductor wafer intermediate body
CN109065508A (en) A kind of reversed table top composite construction ultra thin wafer and preparation method thereof
JPH06298539A (en) Bonding of glass material
JPS61158145A (en) Processing method for semiconductor substrate
CN108707970A (en) Micron order monocrystal thin films
JPS63117445A (en) Processing of semiconductor wafer
CN108565333A (en) Two-sided electroded ultra thin wafer of one kind and preparation method thereof
JP2017135553A (en) Method for manufacturing piezoelectric composite substrate
JP4955200B2 (en) Peelable lithium tantalate single crystal composite substrate
JP2010188489A (en) Method for manufacturing bonded wafer
CN112768598B (en) Infrared pyroelectric detector and preparation method thereof
FR2805546A1 (en) METHOD FOR MANUFACTURING A LANGASITY SUBSTRATE, MONOCRYSTALLINE SUBSTRATE, AND PIEZOELECTRIC DEVICE
JP5459016B2 (en) Wafer substrate polishing method and polishing plate
JPH04285025A (en) Method for rendering single domain to piezoelectric single crystal
SU107572A1 (en) The method of applying silver coatings on the surface of quartz plates
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate