JPH0722196A - Tandem type accelerator - Google Patents

Tandem type accelerator

Info

Publication number
JPH0722196A
JPH0722196A JP18867193A JP18867193A JPH0722196A JP H0722196 A JPH0722196 A JP H0722196A JP 18867193 A JP18867193 A JP 18867193A JP 18867193 A JP18867193 A JP 18867193A JP H0722196 A JPH0722196 A JP H0722196A
Authority
JP
Japan
Prior art keywords
canal
inlet
canal member
stripper
inlet canal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18867193A
Other languages
Japanese (ja)
Inventor
Toshio Kimura
寿男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP18867193A priority Critical patent/JPH0722196A/en
Publication of JPH0722196A publication Critical patent/JPH0722196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To construct an inlet canal member light in weight and enhance the cooling efficiency. CONSTITUTION:An inlet canal member 22 is formed as a whole in a concentrical double cylindrical construction and composed of a cylindricer part 23 admitting passage of a beam, a comical cylinder part 24 situated on its outside, flanges 26, 27 mating with each other, and a ring-shaped coupling part 25 where a carbon plate 13 is installed as a beam absorbent at the foremost of each cylinder part. Using spacer 29 and bolt 30, the flanges of the inlet canal member are installed between a terminal flange 8 of a low energy side accelerator tube 2 and an expansion joint 11 with a stripper canal 9 intruding into it. A high pressure insulative gas makes convection and circulation inside of this double cylindrical construction of the inlet canal member so that heat emitted by the carbon plate is released, and thereby the temp. of the canal member is suppressed low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却効率の良い入口カ
ナール部材を有し、小型化及び荷電変換効率の向上を図
ったタンデム加速器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tandem accelerator which has an inlet canal member having a high cooling efficiency and which is downsized and whose charge conversion efficiency is improved.

【0002】[0002]

【従来の技術】図2はタンデム加速器の概略図であり、
加速器本体部分は高圧絶縁ガスが充填された圧力タンク
1の内部に収容されている。負イオンビ−ムが導入され
る低エネルギー側加速管2に荷電変換部3が結合され
る。同変換部は高電圧ターミナル部4内に位置し、両端
に伸縮継手を有するハウジング部材内に各構成部品を一
式収納する形式で構成されており、低エネルギー側加速
管2と荷電変換された正イオンビ−ムを加速する高エネ
ルギー側加速管5の間に組み込まれる。
2. Description of the Related Art FIG. 2 is a schematic diagram of a tandem accelerator.
The accelerator body is housed inside a pressure tank 1 filled with high-pressure insulating gas. The charge conversion unit 3 is coupled to the low energy side acceleration tube 2 into which the negative ion beam is introduced. The converter is located in the high-voltage terminal unit 4, and is configured in such a manner that each set of components is housed in a housing member having expansion joints at both ends. It is installed between the high energy side acceleration tubes 5 that accelerate the ion beam.

【0003】図3は、荷電変換部3における負イオンビ
ーム導入部分の断面構成図である。低エネルギー側加速
管2は加速管電極6と加速管碍子7を多段に積み重ねて
構成されており、同加速管の端末フランジ8に、ストリ
ッパカナール9を収容しているストリッパハウジング1
0が伸縮継手11を介して結合されている。ストリッパ
カナール9の負イオンビーム入射側に入口カナール部材
12が設けられており、同部材の先端部にビーム吸収体
としてカーボンプレート13が取り付けられている。入
口カナール部材12のビーム開口14の内径はストリッ
パカナール9の内径と同じであり、同カナール部材の右
端部は、ストリッパカナールが嵌合し、同カナールを支
持する段部15が形成されており、この段部近くにスト
リッパカナール内に導入されるストリッパガスの複数の
循環開口16が形成されている。
FIG. 3 is a sectional view of a portion of the charge conversion section 3 where the negative ion beam is introduced. The low energy side accelerating tube 2 is configured by stacking an accelerating tube electrode 6 and an accelerating tube insulator 7 in multiple stages, and a stripper housing 1 in which a stripper canal 9 is accommodated in a terminal flange 8 of the accelerating tube.
0 are connected via expansion joint 11. An inlet canal member 12 is provided on the negative ion beam incident side of the stripper canal 9, and a carbon plate 13 as a beam absorber is attached to the tip of the inlet canal member 12. The inner diameter of the beam opening 14 of the inlet canal member 12 is the same as the inner diameter of the stripper canal 9, and the right end portion of the canal member has a step portion 15 into which the stripper canal is fitted and which supports the canal, A plurality of circulation openings 16 for stripper gas to be introduced into the stripper canal are formed near this step.

【0004】入口カナール部材12への入射負イオンビ
−ムの一部は、有効にビーム開口径内に入射せず、カー
ボンプレート13に衝突し、ビームエネルギーは熱エネ
ルギーに変換される。そこで、入口カナール部材12
は、その発熱を冷却するために、高熱伝導率の銅を用い
て構成され、大きな伝熱断面積を有するものであり、そ
の取り付けフランジ部17には周辺部に放熱フィン18
が形成されており、同フランジ部はストリッパハウジン
グ10と伸縮継手11のフランジの間に取り付けられて
いる。
A part of the negative ion beam incident on the entrance canal member 12 does not effectively enter the beam aperture diameter, but collides with the carbon plate 13, and the beam energy is converted into thermal energy. Therefore, the entrance canal member 12
Is made of copper having a high thermal conductivity in order to cool its heat generation, and has a large heat transfer cross-sectional area.
Is formed, and the flange portion is mounted between the stripper housing 10 and the flange of the expansion joint 11.

【0005】[0005]

【発明が解決しようとする課題】図4に示すように、低
エネルギー側加速管2に導入された負イオンビ−ムは加
速管のレンズ作用により絞られて入口カナール部材12
とストリッパカナール9のストリッパカナール部に入射
する。同カナール部へのビームの入射立体角θはカナー
ル部のアクセプタンスの大きさを示すものであり、カナ
ール部が加速管2に近いほど入射角θしたがってアクセ
プタンスを大きくすることができ、カナール部へのビー
ム入射量を大きくすることができる。
As shown in FIG. 4, the negative ion beam introduced into the low energy side accelerating tube 2 is squeezed by the lens action of the accelerating tube and the entrance canal member 12 is squeezed.
And enters the stripper canal portion of the stripper canal 9. The solid angle of incidence θ of the beam on the canal portion indicates the magnitude of the acceptance of the canal portion. The closer the canal portion is to the accelerating tube 2, the greater the incident angle θ and therefore the acceptance can be increased. The beam incident amount can be increased.

【0006】したがって、入口カナール部材12は低エ
ネルギー側加速管2の端部に近接して配置した方が、加
速管からの負イオンビームの導入に係るストリッパカナ
ール部のアクセプタンスが増加し、タンデム加速器本体
部の全体の長さを短くすることができる。この点、入口
カナール部材12の取り付けフランジ17を低エネルギ
ー側加速管2の端末フランジ8に直接取り付けることが
考えられる。しかし、入口カナール部材12は、放熱フ
ィン18が圧力タンク内の高圧絶縁ガスに直接触れるこ
とにより放熱、冷却されるが、このとき、取り付けフラ
ンジ17も高温状態にあり、その熱が端末フランジ8に
伝わり、接着構造で製作されている加速管2の端末フラ
ンジ8と加速管電極6、加速管電極と加速管碍子7の接
合部に悪い影響を及ぼすことになる。
Therefore, if the inlet canal member 12 is disposed closer to the end of the low energy side accelerating tube 2, the acceptance of the stripper canal portion related to the introduction of the negative ion beam from the accelerating tube is increased, and the tandem accelerator. The overall length of the main body can be shortened. In this respect, it is conceivable to directly attach the attachment flange 17 of the inlet canal member 12 to the terminal flange 8 of the low energy side acceleration pipe 2. However, the inlet canal member 12 is radiated and cooled by direct contact of the heat radiation fins 18 with the high-pressure insulating gas in the pressure tank. At this time, the mounting flange 17 is also in a high temperature state, and the heat is transferred to the terminal flange 8. Therefore, it adversely affects the end flange 8 of the accelerating tube 2 and the accelerating tube electrode 6, which are manufactured by the adhesive structure, and the joint between the accelerating tube electrode and the accelerating tube insulator 7.

【0007】また、入口カナール部材12は熱伝導を確
保するために全体がムクの銅でできており、その重量は
15Kg程度に達し、荷電変換部全体の軽量化を阻む原
因となっている。
Further, the inlet canal member 12 is entirely made of solid copper in order to secure heat conduction, and its weight reaches about 15 kg, which is a cause of hindering the weight reduction of the entire charge conversion portion.

【0008】本発明は、入口カナール部材を軽量で冷却
効率の良い構造のものとし、タンデム加速器の小型化、
荷電変換効率の向上を図ることを目的とするものであ
る。
According to the present invention, the inlet canal member has a structure that is lightweight and has a high cooling efficiency, and the tandem accelerator is downsized.
The purpose is to improve the charge conversion efficiency.

【0009】[0009]

【課題を解決するための手段】本発明のタンデム加速器
は、荷電変換用ストリッパカナールの負イオンビーム入
射側に設けられ、先端部にビーム吸収体を有する入口カ
ナール部材が、内部に高圧絶縁ガスが対流、循環する同
心の二重筒体で構成されていることを特徴とするもので
ある。
The tandem accelerator of the present invention is provided with an inlet canal member having a beam absorber at the tip, which is provided on the negative ion beam entrance side of a stripper canal for charge conversion, and has a high-pressure insulating gas inside. It is characterized in that it is constituted by a concentric double cylinder that circulates and circulates.

【0010】[0010]

【作用】入口カナール部材における同心の二重筒体の内
部を高圧絶縁ガスが対流、循環するから、ビーム吸収体
の取り付け部分を含めてカナール部材全体が冷却され、
その温度は低く抑えられるから、入口カナール部材の低
エネルギー側加速管への直接取り付けを可能にする。
[Operation] Since the high pressure insulating gas is convected and circulates inside the concentric double cylinder in the inlet canal member, the entire canal member including the beam absorber mounting portion is cooled,
Since its temperature is kept low, it enables direct attachment of the inlet canal member to the low energy side acceleration tube.

【0011】[0011]

【実施例】本発明の一実施例について図面を参照して説
明する。図1は、荷電変換部の負イオンビーム入口部分
の断面構成図であり、図2ないし図4と同一符号は同等
部分を示す。入口カナール部材22は、低エネルギー側
加速管2の端末フランジ8に結合される。同カナール部
材は、全体として同心の二重筒体を有して形成されてお
り、ビームが内部を通過する円筒部23、この円筒部の
外側の円錐筒部24、これら両筒部の先端の結合部であ
り、ビーム吸収体としてのカーボンプレートが取り付け
られる環状結合部25及び、各筒部のフランジ部であっ
て、高圧絶縁ガスの通路となる間隔を有して対向するフ
ランジ部26,27からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram of the negative ion beam entrance portion of the charge conversion portion, and the same reference numerals as those in FIGS. 2 to 4 denote the same portions. The inlet canal member 22 is coupled to the terminal flange 8 of the low energy side acceleration tube 2. The canal member is formed to have a concentric double cylindrical body as a whole, and includes a cylindrical portion 23 through which the beam passes, a conical cylindrical portion 24 outside the cylindrical portion, and tips of these cylindrical portions. An annular joint portion 25, which is a joint portion, to which a carbon plate as a beam absorber is attached, and flange portions 26, 27, which are flange portions of the respective cylinder portions and are opposed to each other with a space serving as a passage for the high-pressure insulating gas. Consists of.

【0012】ストリッパカナール9はカナール支持柱2
8によりストリッパハウジング10内に支持されてお
り、同カナールはその先端部がストリッパハウジングに
結合した伸縮継手11の内部に入り込んで配置されてい
る。入口カナール部材22はフランジ部26,27によ
って低エネルギー側加速管2の端末フランジ8と伸縮継
手11との間にスペーサ29とボルト30を用いて取り
付けられる。この取り付けに際しては、先ず、入口カナ
ール部材22のフランジ部26を仮止めボルト31によ
って低エネルギー側加速管2の端末フランジ8に固定
し、入口カナール部材を低エネルギー側加速管に取り付
けておく。次いで、ストリッパカナール9を支持柱によ
ってカナールハウジング10に取り付け、同ハウジング
の両端に伸縮継手11を取り付けた組立て体を入口カナ
ール部材22と高エネルギー側加速管に結合することに
より行われる。即ち、同組立て体の低エネルギー側加速
管2及び入口カナール部材22との取り付けは、仮止め
ボルト31を外し、入口カナール部材のフランジ部2
6,27の間にスペーサ29を挾んでボルト30により
固定する。ストリッパカナール9内に導入され、入口カ
ナール部材22の方向に流れるストリッパガスは、スト
リッパカナールと入口カナール部材との間隙部32を通
って循環する。
The stripper canal 9 is a canal support column 2.
8 is supported in the stripper housing 10, and the canal is arranged so that its tip portion enters the inside of the expansion joint 11 connected to the stripper housing. The inlet canal member 22 is attached between the end flange 8 of the low energy side acceleration tube 2 and the expansion joint 11 by means of the flange portions 26 and 27 using a spacer 29 and a bolt 30. In this attachment, first, the flange portion 26 of the inlet canal member 22 is fixed to the terminal flange 8 of the low energy side accelerating pipe 2 with the temporary fixing bolt 31, and the inlet canal member is attached to the low energy side accelerating pipe. Then, the stripper canal 9 is attached to the canal housing 10 by the support column, and the assembly having the expansion joints 11 attached to both ends of the housing is connected to the inlet canal member 22 and the high energy side acceleration tube. That is, when the low energy side acceleration tube 2 and the inlet canal member 22 of the same assembly are attached, the temporary fixing bolt 31 is removed, and the flange portion 2 of the inlet canal member is removed.
A spacer 29 is sandwiched between 6 and 27 and fixed by a bolt 30. The stripper gas introduced into the stripper canal 9 and flowing toward the inlet canal member 22 circulates through the gap 32 between the stripper canal and the inlet canal member.

【0013】入口カナール部材22を低エネルギー側加
速管2に取り付けることにより、入口カナール部材のビ
ーム導入部は低エネルギー側加速管の最終段の加速管電
極の直後に位置し、ストリッパカナール部のアクセプタ
ンスが良くなり、ビーム輸送効率を向上させる。かかる
ストリッパカナール9と入口カナール部材22の配置構
成に伴い、高電圧タ−ミナル部内に位置する荷電変換部
の寸法は全体として小型化、短縮される。
By attaching the entrance canal member 22 to the low energy side acceleration tube 2, the beam introduction part of the entrance canal member is located immediately after the final stage acceleration tube electrode of the low energy side acceleration tube, and the acceptance of the stripper canal part. Improves the beam transportation efficiency. Due to the arrangement configuration of the stripper canal 9 and the inlet canal member 22, the size of the charge conversion portion located in the high voltage terminal portion is downsized and shortened as a whole.

【0014】入口カナール部材22の円筒部23内に入
射せずに、カーボンプレート13に衝突した負イオンビ
−ムのエネルギーは熱エネルギーに変換され、その熱は
円筒部及び円錐筒部24からフランジ部26,27へと
伝わる。低エネルギー側加速管2の端末フランジ8と伸
縮継手11との間に取り付けられているフランジ部26
と同27の対向間隔部は圧力タンク内の高圧絶縁ガス空
間に開放しており、この対向間隔部を通じて高圧絶縁ガ
スが円筒部及び円錐筒部の間を対流、循環し、入口カナ
ール部材12は放熱する。入口カナール部材22は、円
筒部23、円錐筒部24はもとより、カーボンプレート
13が取り付けられている環状結合部25の部分を含め
てフランジ部26,27の部分まで絶縁ガスの対流、循
環により全体に亘って放熱、冷却されるから、同カナー
ル部材の温度は低く抑えられる。
The energy of the negative ion beam colliding with the carbon plate 13 without entering the cylindrical portion 23 of the inlet canal member 22 is converted into heat energy, and the heat is converted from the cylindrical portion and the conical cylindrical portion 24 into the flange portion. It is transmitted to 26 and 27. Flange portion 26 mounted between the end flange 8 of the low energy side acceleration tube 2 and the expansion joint 11
And 27 facing each other are opened to the high-pressure insulating gas space in the pressure tank, and the high-pressure insulating gas is convected and circulated between the cylindrical portion and the conical cylindrical portion through the facing spacing portion, and the inlet canal member 12 is Dissipate heat. The inlet canal member 22 is entirely formed by convection and circulation of the insulating gas up to the flange portions 26 and 27 including the cylindrical portion 23 and the conical cylindrical portion 24, as well as the annular coupling portion 25 to which the carbon plate 13 is attached. The temperature of the canal member can be kept low because the heat is dissipated and cooled over the entire length.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成した
ので、入口カナール部材は、高圧絶縁ガスが対流、循環
する同心の二重筒体で形成されているから、従来の高熱
伝導率、大断面積のムクの銅でできているものと比べて
はるかに軽量となり、そして、同カナール部材は、ビー
ム吸収体の取り付け部分を含めて絶縁ガスの対流、循環
により冷却されるから、その温度を低くすることがで
き、アウトガスの放出が低減される。
Since the present invention is constructed as described above, since the inlet canal member is formed of a concentric double cylinder body in which high-pressure insulating gas is convected and circulated, the conventional high thermal conductivity, It is much lighter than the one made of large cross section Muku copper, and the temperature of the canal member is cooled by convection and circulation of insulating gas including the mounting part of the beam absorber. Can be lowered, and the emission of outgas is reduced.

【0016】入口カナール部材の温度が低く抑えられる
から、入口カナール部材したがってストリッパカナール
部の入口を低エネルギー側加速管に近接して配置するこ
とが可能となり、カナール部のアクセプタンスが良くな
り、ビームの輸送効率が向上すると共に、荷電変換部の
寸法を小型化することができ、タンデム加速器全長を短
くできる。
Since the temperature of the inlet canal member is kept low, the inlet canal member and therefore the inlet of the stripper canal portion can be arranged close to the low energy side accelerating tube, the acceptance of the canal portion is improved, and the beam The transport efficiency is improved, the size of the charge conversion section can be reduced, and the total length of the tandem accelerator can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面構成図である。FIG. 1 is a sectional configuration diagram of an embodiment of the present invention.

【図2】タンデム加速器の概略図である。FIG. 2 is a schematic diagram of a tandem accelerator.

【図3】荷電変換部における負イオンビ−ム導入部分の
断面構成図である。
FIG. 3 is a cross-sectional configuration diagram of a negative ion beam introduction portion in a charge conversion unit.

【図4】ストリッパカナール部へのビーム入射について
の説明図である。
FIG. 4 is an explanatory diagram of beam incidence on a stripper canal portion.

【符号の説明】[Explanation of symbols]

2 低エネルギー側加速管 9 ストリッパカナール 10 ストリッパハウジング 11 伸縮継手 13 ビーム吸収体(カーボンプレート) 22 入口カナール部材 23 円筒部 24 円錐筒部 25 環状結合部 26,27 フランジ部 29 スペーサ 30 ボルト 2 Low energy side acceleration tube 9 Stripper canal 10 Stripper housing 11 Expansion joint 13 Beam absorber (carbon plate) 22 Inlet canal member 23 Cylindrical part 24 Conical cylindrical part 25 Annular joint part 26, 27 Flange part 29 Spacer 30 Bolt

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電変換用ストリッパカナールの負イオ
ンビーム入射側に設けられ、先端部にビーム吸収体を有
する入口カナール部材が、内部に高圧絶縁ガスが対流、
循環する同心の二重筒体で構成されていることを特徴と
するタンデム加速器。
1. An inlet canal member, which is provided on the negative ion beam incident side of a charge conversion stripper canal and has a beam absorber at its tip, has a high-pressure insulating gas convection therein.
A tandem accelerator characterized by being constituted by a concentric double cylinder that circulates.
JP18867193A 1993-07-02 1993-07-02 Tandem type accelerator Pending JPH0722196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18867193A JPH0722196A (en) 1993-07-02 1993-07-02 Tandem type accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18867193A JPH0722196A (en) 1993-07-02 1993-07-02 Tandem type accelerator

Publications (1)

Publication Number Publication Date
JPH0722196A true JPH0722196A (en) 1995-01-24

Family

ID=16227819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18867193A Pending JPH0722196A (en) 1993-07-02 1993-07-02 Tandem type accelerator

Country Status (1)

Country Link
JP (1) JPH0722196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130225115A1 (en) * 2011-07-11 2013-08-29 Ntt Docomo, Inc. Communication terminal and information providing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130225115A1 (en) * 2011-07-11 2013-08-29 Ntt Docomo, Inc. Communication terminal and information providing method
US9509424B2 (en) * 2011-07-11 2016-11-29 Ntt Docomo, Inc. Communication terminal and information providing method

Similar Documents

Publication Publication Date Title
US3293480A (en) Pole piece and collector assembly for high frequency electron discharge device with cooling ribs
KR20100082781A (en) Device for dissipating lost heat, and ion accelerator arrangement comprising such a device
WO2007026612A1 (en) X-ray tube
JPH0722196A (en) Tandem type accelerator
US3662212A (en) Depressed electron beam collector
JPH11149877A (en) Collector structure of traveling wave tube
JP2003123999A (en) X-ray tube device
US3426230A (en) Direct radiation cooling of the collector of linear beam tubes
JP2007042434A (en) X-ray tube
JP3246658B2 (en) Electron beam tube
US5821693A (en) Electron beam tubes having a unitary envelope having stepped inner surface
JP3067699B2 (en) Radiation cooled traveling wave tube
US2860277A (en) Traveling-wave tube collector electrode
JPS6157650B2 (en)
US5436525A (en) Highly depressed, high thermal capacity, conduction cooled collector
US20120279543A1 (en) Power converter
US3448313A (en) Efficient radiation cooled beam collector for linear beam devices
JP2015525953A (en) Cooling configuration for X-ray generator
US8787516B2 (en) Thermoelectric power converter support structure
JPS6217971Y2 (en)
CN109786188B (en) Klystron with small-size integration cooling structure
JPH0747840Y2 (en) Tandem accelerator
JP3258062B2 (en) Gyrotron device
JP3133379B2 (en) Gyrotron oscillation tube
JPH0532960Y2 (en)