JPH07221489A - Superconductive magnetic shield substance - Google Patents

Superconductive magnetic shield substance

Info

Publication number
JPH07221489A
JPH07221489A JP6009307A JP930794A JPH07221489A JP H07221489 A JPH07221489 A JP H07221489A JP 6009307 A JP6009307 A JP 6009307A JP 930794 A JP930794 A JP 930794A JP H07221489 A JPH07221489 A JP H07221489A
Authority
JP
Japan
Prior art keywords
magnetic shield
tubular
superconductor
superconducting
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6009307A
Other languages
Japanese (ja)
Inventor
Toranosuke Ashizawa
寅之助 芦沢
Takao Nakada
孝夫 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6009307A priority Critical patent/JPH07221489A/en
Publication of JPH07221489A publication Critical patent/JPH07221489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a superconductive magnetic shield substance which has enough magnetic shielding effect without using a large combustion furnace. CONSTITUTION:This is a multiple structure of superconductive magnetic shielding substance where two or more tubular superconductors are coupled in longitudinal direction, using a superconductive material of the same composition as the said tubular superconductor so as to constitute a first tube 14, and further two or more tubular superconductors are coupled in a longitudinal direction, using a superconductive material of the same composition as the this tubular superconductor so as to constitute a second tube 15, and this tube is set on or inserted into the first tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電動磁気シールド体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super electric magnetic shield.

【0002】[0002]

【従来の技術】人体から発生する微小磁場を測定する生
体磁気計測の場合、地磁気などの外部磁場によるじょう
乱は、微小磁場の精度良い測定に悪影響を与える。これ
を避けるために、外部の磁気雑音を遮蔽するための磁気
シールド体が用いられる。超電導体を用いた磁気シール
ド体は高いシールド効果が得られるため微小磁場の測定
には好都合であり、特に液体窒素温度以上で超電導性を
有する高温超電導体を用いた磁気シールド体が注目され
ている。
2. Description of the Related Art In the case of biomagnetic measurement for measuring a minute magnetic field generated from a human body, disturbance caused by an external magnetic field such as terrestrial magnetism adversely affects accurate measurement of the minute magnetic field. In order to avoid this, a magnetic shield body for shielding external magnetic noise is used. A magnetic shield using a superconductor is convenient for measuring a small magnetic field because it can obtain a high shielding effect. In particular, a magnetic shield using a high-temperature superconductor having superconductivity at a liquid nitrogen temperature or higher is drawing attention. .

【0003】磁気シールド体の形状としては板状、筒
状、箱型、球状等があり、生体磁気測定の場合、筒状の
磁気シールド体の検討が進んでいる。このような目的で
用いられる磁気シールド体の性能としては、周囲の環境
雑音を10-12T程度の磁場にする必要がある。
The shape of the magnetic shield body may be a plate shape, a cylinder shape, a box shape, a spherical shape, etc. In the case of biomagnetism measurement, a cylindrical magnetic shield body is being studied. As a performance of the magnetic shield used for such a purpose, it is necessary to make ambient environmental noise a magnetic field of about 10 −12 T.

【0004】[0004]

【発明が解決しようとする課題】生体磁気計測に使用さ
れる磁気シールド体の形状は人体を囲む必要から直径が
1〜2m及び長さが2m以上となるため、高温超電導体
でこのような大型の磁気シールド体を製作するためには
高度な技術が必要とされる。そこで、金属などの大型化
しやすい材料を支持体とし、その上に膜状の高温超電導
体層を形成する方法が考えられる。この場合、層の厚い
高温超電導体を形成することは重量増加、価格及び製造
技術の面から不利となる。また金属の支持体上に高温超
電導体層を形成する場合でも直径が1〜2m及び長さが
2m以上の大型品の製造には長さ2m以上にわたって温
度分布の均一な焼成炉が必要となるため、製作が困難と
なる。
Since the shape of the magnetic shield used for biomagnetism measurement needs to surround the human body, the diameter is 1 to 2 m and the length is 2 m or more. Advanced technology is required to manufacture the magnetic shield body. Therefore, a method is conceivable in which a material such as a metal that tends to increase in size is used as a support and a film-shaped high-temperature superconductor layer is formed thereon. In this case, forming a thick high-temperature superconductor is disadvantageous in terms of weight increase, price, and manufacturing technology. Even when a high-temperature superconductor layer is formed on a metal support, a large-sized product having a diameter of 1 to 2 m and a length of 2 m or more requires a firing furnace with a uniform temperature distribution over a length of 2 m or more. Therefore, manufacturing becomes difficult.

【0005】また、複数の超電導体を組み合わせて磁気
シールド体を作製した例(例えば第39回応用物理学関
係連合講演会講演予稿集、29p−V−2、1992年
3月28日〜3月31日)も報告されているが、このも
のにおいても超電導体の隙間からの磁場の漏れによって
充分な磁気シールド効果が得られていなかった。本発明
は上記のような問題点の生じない超電導磁気シールド体
を提供するものである。
Further, an example of producing a magnetic shield by combining a plurality of superconductors (for example, Proceedings of the 39th Joint Lecture on Applied Physics, 29p-V-2, March 28-March 1992). 31 days) was also reported, but even in this case, a sufficient magnetic shield effect was not obtained due to the leakage of the magnetic field from the gap of the superconductor. The present invention provides a superconducting magnetic shield which does not have the above problems.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決するために種々検討を行った結果、長さの短
い筒状超電導体同士をそれと同一組成の超電導体材料を
用いて接合して長い第一の筒状体を製作し、さらにその
外側又は内側に長さの短い筒状超電導体同士を連結し、
かつ連結部を上記と同様に筒状超電導体と同一組成の超
電導材料を用いて接合することで高い磁気シールド効果
が得られることを見出した。
As a result of various studies to solve the above problems, the inventors of the present invention have used tubular superconductors having short lengths with superconductor materials having the same composition. To produce a long first tubular body, and further connect short tubular superconductors to the outside or inside of the first tubular body,
Moreover, it has been found that a high magnetic shield effect can be obtained by joining the connecting portion using a superconducting material having the same composition as that of the cylindrical superconductor, as in the above case.

【0007】本発明は筒状超電導体をその長手方向に二
つ以上連結し、かつ連結部を前記筒状超電導体と同一組
成の超電導体材料で接合して第一の筒状体を形成し、さ
らに該第一の筒状体の外側又は内側に、他の筒状超電導
体をその長手方向に二つ以上連結し、かつ連結部を前記
筒状超電導体と同一組成の超電導体材料で接合して第二
の筒状体を形成した多重構造の超電導磁気シールド体に
関する。
In the present invention, two or more tubular superconductors are connected in the longitudinal direction thereof, and the connecting portions are joined with a superconductor material having the same composition as the tubular superconductor to form a first tubular body. Further, two or more other tubular superconductors are connected to the outside or the inside of the first tubular body in the longitudinal direction thereof, and the connecting portions are joined with a superconductor material having the same composition as the tubular superconductor. Then, the present invention relates to a superconducting magnetic shield body having a multiple structure in which a second tubular body is formed.

【0008】本発明において第一の筒状体の連結部と第
二の筒状体の連結部とは互いに重なる位置にあっても本
発明の目的は達成できるが、異なる位置になるように組
み合わせると磁気シールド効果の磁場依存性がさらに改
善されるので好ましい。本発明における筒状体の筒状と
は円筒状、角筒、楕円筒等を意味するが、一般的には円
筒状のものが容易に製作できるので好ましい。
In the present invention, the object of the present invention can be achieved even if the connecting portion of the first tubular body and the connecting portion of the second tubular body overlap each other, but they are combined in different positions. And is preferable because the magnetic field dependency of the magnetic shield effect is further improved. The tubular shape of the tubular body in the present invention means a cylindrical shape, a rectangular tube, an elliptic tube, and the like, but generally, a cylindrical shape is preferable because it can be easily manufactured.

【0009】筒状超電導体の接合は、例えば銀製円筒の
外周に超電導体用グリーンシートを加熱圧着したグリー
ンシート積層基材を焼成して筒状超電導体とし、該筒状
超電導体をその長手方向に二つ以上連結し、連結部に筒
状超電導体と同一組成のペーストを塗布又は塗布後焼成
して行なわれる。
For joining the cylindrical superconductors, for example, a green sheet laminated base material in which a green sheet for a superconductor is heated and pressure-bonded to the outer circumference of a silver cylinder is fired to form a cylindrical superconductor, and the cylindrical superconductor is formed in the longitudinal direction thereof. Two or more of them are connected to each other, and a paste having the same composition as that of the cylindrical superconductor is applied to the connecting portion or is fired after the application.

【0010】本発明に用いられている超電導体とは主に
高温超電導体を意味するが、この高温超電導体の組成に
ついては特に制限は無く、例えばY−Ba−Cu−O
系、Bi(Pb)−Sr−Ca−Cu−O系、Tl(Pb)
−Sr(Ba)−Ca−Cu−O系等は臨界温度が液体窒
素の沸点以上であるので好ましい。さらに高温超電導体
は大型品の製作が難しいことから、貴金属、金属等の支
持体上に高温超電導体を形成することが好ましい。支持
体材料としては、Ag、Ag合金、Au等の貴金属、F
e−Ni系合金等の耐熱性の高い金属を用いることが好
ましい。なおFe−Ni系合金等の金属製支持体上に直
接高温超電導体を形成すると高温超電導体の剥離、超電
導性の劣化等が生じるため中間層を一層以上設け、その
上面に高温超電導体を形成すればよい。
The superconductor used in the present invention mainly means a high temperature superconductor, but the composition of this high temperature superconductor is not particularly limited, and for example, Y-Ba-Cu-O is used.
System, Bi (Pb) -Sr-Ca-Cu-O system, Tl (Pb)
A -Sr (Ba) -Ca-Cu-O system or the like is preferable because its critical temperature is higher than the boiling point of liquid nitrogen. Further, since it is difficult to manufacture a large-sized high-temperature superconductor, it is preferable to form the high-temperature superconductor on a support such as a noble metal or a metal. Support materials include Ag, Ag alloys, precious metals such as Au, F
It is preferable to use a metal having high heat resistance such as an e-Ni alloy. If a high-temperature superconductor is formed directly on a metallic support such as an Fe-Ni alloy, peeling of the high-temperature superconductor, deterioration of superconductivity, and the like occur, one or more intermediate layers are provided, and a high-temperature superconductor is formed on the upper surface of the intermediate layer. do it.

【0011】中間層としては、支持体と超電導体との熱
膨張差を緩和させ、さらに超電導性の劣化を防げる材質
であれば良く、例えばMgO、ZrO2等のセラミック
ス又はAg、Au等の貴金属あるいはこれらの合金の組
み合わせが用いられる。
The intermediate layer may be made of any material as long as it can relax the difference in thermal expansion between the support and the superconductor and prevent deterioration of superconductivity. For example, ceramics such as MgO and ZrO 2 or noble metals such as Ag and Au. Alternatively, a combination of these alloys is used.

【0012】[0012]

【実施例】以下本発明の実施例を説明する。 実施例1 ビスマス、ストロンチウム、カルシウム及び銅の比率が
原子比で2:2:1:2となるように、Bi23(高純
度化学研究所製、純度99.9%)233.0g、Sr
CO3(高純度化学研究所製、純度99.9%)14
7.6g、CaCO3(高純度化学研究所製、純度9
9.9%)50.1g及びCuO(高純度化学研究所
製、純度99.9%)79.5gを秤量した後、合成樹
脂製ボールミルに合成樹脂製ボール及び蒸留水300g
と共に充てんし、72時間混合した後、100℃で12
時間乾燥して、原料混合粉末を得た。この原料混合粉末
をアルミナ容器に入れ、820℃で24時間仮焼し、次
いで乳鉢で粗粉砕した後、合成樹脂製ボールミルにジル
コニアボール及び酢酸エチル300gと共に充てんし、
24時間粉砕した後、100℃で10時間乾燥して、仮
焼粉末を得た。
EXAMPLES Examples of the present invention will be described below. Example 1 233.0 g of Bi 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) so that the atomic ratio of bismuth, strontium, calcium and copper is 2: 2: 1: 2. Sr
CO 3 (manufactured by Kojundo Chemical Laboratory, purity 99.9%) 14
7.6g, CaCO 3 (manufactured by Kojundo Chemical Laboratory, purity 9
9.9%) 50.1 g and CuO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) 79.5 g are weighed, and then synthetic resin balls and distilled water 300 g are placed in a synthetic resin ball mill.
Fill with and mix for 72 hours, then at 100 ℃ for 12 hours
After drying for an hour, a raw material mixed powder was obtained. This raw material mixed powder was placed in an alumina container, calcined at 820 ° C. for 24 hours, then roughly crushed in a mortar, and then charged into a synthetic resin ball mill together with zirconia balls and 300 g of ethyl acetate,
After crushing for 24 hours, it was dried at 100 ° C. for 10 hours to obtain a calcined powder.

【0013】上記の仮焼粉末の一部をアルミナ容器にい
れ窒素気流中、700℃で15時間熱処理してBi系酸
化物粉末とし、このBi系酸化物粉末100重量部に対
して、エチルセルロース(和光純薬製、45cp)を5
重量部及びテルピネオール(和光純薬製、試薬一級)を
20重量部添加し、均一に混合してBi系酸化物ペース
トとした。
A portion of the above calcined powder is placed in an alumina container and heat-treated at 700 ° C. for 15 hours in a nitrogen stream to obtain a Bi-based oxide powder. 100 parts by weight of this Bi-based oxide powder is mixed with ethyl cellulose ( 5 Wako Pure Chemicals, 45 cp)
20 parts by weight of terpineol (manufactured by Wako Pure Chemical Industries, Ltd., first-class reagent) were added and uniformly mixed to obtain a Bi-based oxide paste.

【0014】一方上記の仮焼粉末100重量部に対して
ポリビニルブチラール樹脂(和光純薬製、試薬一級)8
重量部、フタル酸エステル(和光純薬製、試薬一級)3
重量部及び1ブタノール50重量部を添加して混合した
後、脱気を行い粘度15Pa・sのスラリーを得た。こ
のスラリーを厚さが180μmのポリエステルフィルム
(東レ製)上に供給し、ドクターブレード法で厚さ0.
2mmの超電導体用グリーンシート(以下グリーンシート
とする)を得た。
On the other hand, polyvinyl butyral resin (manufactured by Wako Pure Chemical Co., Ltd., first-class reagent) was added to 100 parts by weight of the above calcined powder.
Parts by weight, phthalate ester (Wako Pure Chemical Industries, reagent first grade) 3
After adding 1 part by weight and 50 parts by weight of 1-butanol and mixing, deaeration was performed to obtain a slurry having a viscosity of 15 Pa · s. This slurry was supplied onto a polyester film (manufactured by Toray) having a thickness of 180 μm, and the thickness was adjusted to 0.1 by a doctor blade method.
A 2 mm green sheet for a superconductor (hereinafter referred to as a green sheet) was obtained.

【0015】次に図1の(a)に示すように外径60m
m、内径59mm及び長さ90mmの2本の銀製円筒5の外
面に上記のグリーンシートを60℃で30MPaの条件
で加熱圧着し、グリーンシート積層基材1及びグリーン
シート積層基材2(いずれも外径60.4mm、内径60
mm及び長さ90mm)を得た。一方図1の(b)に示すよ
うに外径65mm、内径64mm及び長さ90mmの2本の銀
製円筒6の外面に上記のグリーンシートを上記と同一の
条件で加熱圧着しグリーンシート積層基材3及びグリー
ンシート積層基材4(いずれも外径65.4mm、内径6
5mm及び長さ90mm)を得た。
Next, as shown in FIG. 1A, the outer diameter is 60 m.
The above green sheet was thermocompression-bonded to the outer surface of two silver cylinders 5 each having m, an inner diameter of 59 mm, and a length of 90 mm under the conditions of 60 ° C. and 30 MPa, and the green sheet laminated base material 1 and the green sheet laminated base material 2 (both Outer diameter 60.4 mm, inner diameter 60
mm and length 90 mm). On the other hand, as shown in FIG. 1 (b), the green sheet is heat-pressed on the outer surface of two silver cylinders 6 having an outer diameter of 65 mm, an inner diameter of 64 mm and a length of 90 mm under the same conditions as described above. 3 and green sheet laminated base material 4 (both have an outer diameter of 65.4 mm and an inner diameter of 6)
5 mm and a length of 90 mm) were obtained.

【0016】上記のグリーンシート積層基材1、2、3
及び4を大気中で500℃までは300℃/時間の速度
で昇温し、ついで100℃/時間の速度で885℃まで
昇温し、885℃で15分間保持した後、850℃まで
5℃/時間の速度で降温し、さらに100℃/時間の速
度で室温まで冷却した後、再び加熱して、窒素気流中で
700℃で15時間熱処理して、図1の(c)及び
(d)に示す超電導円筒7(外径60.12mm、内径6
0mm及び長さ90mm)、超電導円筒8(外径60.12
mm、内径60mm及び長さ90mm)、超電導円筒9(外径
65.12mm、内径65mm及び長さ90mm)及び超電導
円筒10(外径65.12mm、内径65mm及び長さ90
mm)となる部材を得た。
The above green sheet laminated base materials 1, 2, 3
And 4 were heated to 500 ° C. in the atmosphere at a rate of 300 ° C./hour, then heated to 885 ° C. at a rate of 100 ° C./hour, held at 885 ° C. for 15 minutes, and then heated to 850 ° C. at 5 ° C. 1 / c, and (d) of FIG. 1 after being cooled again to room temperature at a rate of 100 ° C./hour and then heated again at 700 ° C. for 15 hours in a nitrogen stream. Superconducting cylinder 7 shown (outer diameter 60.12 mm, inner diameter 6
0 mm and length 90 mm), superconducting cylinder 8 (outer diameter 60.12)
mm, inner diameter 60 mm and length 90 mm), superconducting cylinder 9 (outer diameter 65.12 mm, inner diameter 65 mm and length 90 mm) and superconducting cylinder 10 (outer diameter 65.12 mm, inner diameter 65 mm and length 90)
mm) was obtained.

【0017】次に図1の(c)に示すように上記の超電
導円筒7及び8を縦に連結して長さ180mmの円筒と
し、連結部に前記のBi系酸化物ペースト11を厚さ1
00μmに塗布し、大気中で500℃までは300℃/
時間の速度で昇温し、ついで100℃/時間の速度で8
80℃まで昇温し、880℃で15分間保持した後、8
50℃まで5℃/時間の速度で降温し、さらに100℃
/時間の速度で室温まで冷却して接合して複合円筒12
を得た。
Next, as shown in FIG. 1 (c), the superconducting cylinders 7 and 8 are vertically connected to form a cylinder having a length of 180 mm, and the Bi-based oxide paste 11 having a thickness of 1 is connected to the connecting portion.
Coated to 00 μm, 300 ° C / up to 500 ° C in air
The temperature is raised at the rate of time, and then at the rate of 100 ° C / hour for 8 hours.
After raising the temperature to 80 ° C and holding it at 880 ° C for 15 minutes,
The temperature is lowered to 50 ° C at a rate of 5 ° C / hour, and then 100 ° C.
/ Cylinder 12
Got

【0018】また上記の超電導円筒9及び10について
も上記と同様の方法で連結、接合して図1の(d)に示
すような複合円筒13を得た。この複合円筒12及び1
3を窒素気流中で、700℃で15時間熱処理して第一
の筒状体及び第二の筒状体を得た。
The superconducting cylinders 9 and 10 were also connected and joined in the same manner as described above to obtain a composite cylinder 13 as shown in FIG. 1 (d). This composite cylinder 12 and 1
3 was heat-treated at 700 ° C. for 15 hours in a nitrogen stream to obtain a first tubular body and a second tubular body.

【0019】次に図2に示すように上記の第一の筒状体
14の外側に上記の第二の筒状体15を挿入して二重の
円筒とし、超電導磁気シールド体16を得た。なお図2
において17は接合部である。
Next, as shown in FIG. 2, the second cylindrical body 15 is inserted outside the first cylindrical body 14 to form a double cylinder, and a superconducting magnetic shield 16 is obtained. . Figure 2
Reference numeral 17 is a joint portion.

【0020】得られた超電導磁気シールド体16の軸方
向に170Hzの磁場を加え、該超電導磁気シールド体
16の中心軸上の磁束密度を測定した。超電導磁気シー
ルド体内16側の磁束密度の測定には、あらかじめ出力
を校正しておいた検知コイルを用いた。また、あらかじ
めホール素子を用いてコイル電流と印加磁場の強さとの
関係を求めておき、加えられた磁場の強さは、コイル電
流から計算して求めた。印加磁場と超電導磁気シールド
体中心点の磁束密度の比からシールド効果を求めた。印
加磁場1×10-5Tの場合の測定結果を図3に示す。図
3に示されるように中心軸上でのシールド効果は円筒の
開口端部から離れるにしたがって増加し、中央では7×
104であった。この値は、開口端からの距離をz、円
筒の直径をdとすると、円筒の開口端からの磁場の漏れ
がexp(7.66z/d)に比例するという関係から
求められる値とほぼ一致する。
A magnetic field of 170 Hz was applied in the axial direction of the obtained superconducting magnetic shield 16 and the magnetic flux density on the central axis of the superconducting magnetic shield 16 was measured. For the measurement of the magnetic flux density on the side of the superconducting magnetic shield body 16 side, a detection coil whose output was calibrated in advance was used. In addition, the relationship between the coil current and the strength of the applied magnetic field was previously obtained using a Hall element, and the strength of the applied magnetic field was calculated from the coil current. The shield effect was calculated from the ratio of the applied magnetic field and the magnetic flux density at the center of the superconducting magnetic shield. The measurement results in the case of an applied magnetic field of 1 × 10 −5 T are shown in FIG. As shown in FIG. 3, the shield effect on the central axis increases as the distance from the open end of the cylinder increases, and 7 × in the center.
It was 10 4 . This value is almost the same as the value obtained from the relationship that the magnetic field leakage from the open end of the cylinder is proportional to exp (7.66z / d), where z is the distance from the open end and d is the diameter of the cylinder. To do.

【0021】実施例2 実施例1の超電導円筒9及び10に代えて図4に示すよ
うに、左右の超電導円筒の長さを45mm及び中央部の超
電導円筒の長さを90mmの3分割とし、連結部の位置を
超電導円筒7及び8の連結部と互いに異なる位置にする
ようにした以外は実施例1と同様の工程を経て超電導磁
気シールド体18を得た。
Example 2 As shown in FIG. 4, instead of the superconducting cylinders 9 and 10 of Example 1, the lengths of the left and right superconducting cylinders are 45 mm, and the length of the central superconducting cylinder is 90 mm. A superconducting magnetic shield 18 was obtained through the same steps as in Example 1 except that the positions of the connecting portions were different from the connecting portions of the superconducting cylinders 7 and 8.

【0022】実施例3 連結部に塗布したBi系酸化ペーストの焼き付けを行わ
ない以外は実施例2と同様の工程を経て超電導磁気シー
ルド体を得た。
Example 3 A superconducting magnetic shield was obtained through the same steps as in Example 2 except that the Bi type oxide paste applied to the connecting portion was not baked.

【0023】次に各実施例で得られた超電導磁気シール
ド体の中心部における磁気シールド効果の印加磁場依存
性を調べた。その結果を図5に示す。その結果、印加磁
場が1×10-5Tの場合、シールド効果は5×104
上であり、良好(通常は5×104以上が良好とされ
る)であった。
Next, the dependence of the magnetic shield effect on the applied magnetic field in the central portion of the superconducting magnetic shield obtained in each of the examples was examined. The result is shown in FIG. As a result, when the applied magnetic field was 1 × 10 −5 T, the shielding effect was 5 × 10 4 or more, which was good (usually 5 × 10 4 or more was considered good).

【0024】[0024]

【発明の効果】本発明になる超電導磁気シールド体は、
大型の焼成炉を必要とせずに大型のものを得ることがで
き、また充分な磁気シールド効果が得られ、工業的に極
めて好適な超電導磁気シールド体である。
The superconducting magnetic shield according to the present invention is
It is a superconducting magnetic shield that is industrially very suitable because a large one can be obtained without requiring a large baking furnace, and a sufficient magnetic shield effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる超電導磁気シールド体
の製造作業状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing operation state of a superconducting magnetic shield body according to an embodiment of the present invention.

【図2】本発明の一実施例になる超電導磁気シールド体
の断面図である。
FIG. 2 is a sectional view of a superconducting magnetic shield according to an embodiment of the present invention.

【図3】図2に示す超電導磁気シールド体の開口端から
の距離とシールド効果との関係を示すグラフである。
3 is a graph showing the relationship between the shield effect and the distance from the open end of the superconducting magnetic shield shown in FIG.

【図4】本発明の他の一実施例になる超電導磁気シール
ド体の断面図である。
FIG. 4 is a sectional view of a superconducting magnetic shield according to another embodiment of the present invention.

【図5】印加磁場とシールド効果との関係を示すグラフ
である。
FIG. 5 is a graph showing a relationship between an applied magnetic field and a shield effect.

【符号の説明】[Explanation of symbols]

1 グリーンシート積層基材 2 グリーンシート積層基材 3 グリーンシート積層基材 4 グリーンシート積層基材 5 銀製円筒 6 銀製円筒 7 超電導円筒 8 超電導円筒 9 超電導円筒 10 超電導円筒 11 Bi系酸化物ペースト 12 複合円筒 13 複合円筒 14 第1の筒状体 15 第2の筒状体 16 超電導磁気シールド体 17 接合部 18 超電導磁気シールド体 1 green sheet laminated base material 2 green sheet laminated base material 3 green sheet laminated base material 4 green sheet laminated base material 5 silver cylinder 6 silver cylinder 7 superconducting cylinder 8 superconducting cylinder 9 superconducting cylinder 10 superconducting cylinder 11 Bi-based oxide paste 12 composite Cylinder 13 Composite cylinder 14 First tubular body 15 Second tubular body 16 Superconducting magnetic shield body 17 Joined portion 18 Superconducting magnetic shield body

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月4日[Submission date] February 4, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 超電磁気シールド体[Title of the Invention] the superconducting magnetic shield

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は超電磁気シールド体に
関する。
The present invention relates to a super-conductivity magnetic shield.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒状超電導体をその長手方向に二つ以上
連結し、かつ連結部を前記筒状超電導体と同一組成の超
電導体材料で接合して第一の筒状体を形成し、さらに該
第一の筒状体の外側又は内側に、他の筒状超電導体をそ
の長手方向に二つ以上連結し、かつ連結部を前記筒状超
電導体と同一組成の超電導体材料で接合して第二の筒状
体を形成した多重構造の超電動磁気シールド体。
1. A first tubular body is formed by connecting two or more tubular superconductors in a longitudinal direction thereof, and joining the connecting portions with a superconductor material having the same composition as the tubular superconductor, Further, two or more other tubular superconductors are connected in the longitudinal direction to the outside or inside of the first tubular body, and the connecting portions are joined with a superconductor material having the same composition as the tubular superconductor. A multi-structure super-electric magnetic shield body in which a second cylindrical body is formed.
【請求項2】 請求項1記載の第一の筒状体の連結部と
第二の筒状体の連結部とが重なる位置にある超電動磁気
シールド体。
2. A super-electric magnetic shield body at a position where the connecting portion of the first tubular body and the connecting portion of the second tubular body according to claim 1 overlap each other.
【請求項3】 請求項1記載の第一の筒状体の連結部と
第二の筒状体の連結部とが互いに異なる位置にある超電
動磁気シールド体。
3. A super-electric magnetic shield body according to claim 1, wherein the connecting portion of the first tubular body and the connecting portion of the second tubular body are at different positions from each other.
JP6009307A 1994-01-31 1994-01-31 Superconductive magnetic shield substance Pending JPH07221489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009307A JPH07221489A (en) 1994-01-31 1994-01-31 Superconductive magnetic shield substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009307A JPH07221489A (en) 1994-01-31 1994-01-31 Superconductive magnetic shield substance

Publications (1)

Publication Number Publication Date
JPH07221489A true JPH07221489A (en) 1995-08-18

Family

ID=11716821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009307A Pending JPH07221489A (en) 1994-01-31 1994-01-31 Superconductive magnetic shield substance

Country Status (1)

Country Link
JP (1) JPH07221489A (en)

Similar Documents

Publication Publication Date Title
US5232908A (en) Method of manufacturing an oxide superconductor/metal laminate
JP2754564B2 (en) Method for producing superconducting composite
JPH09129438A (en) Oxide superconductive coil and manufacture thereof
EP0561617A1 (en) Superconducting tube for shielding magnetic field
US7722918B2 (en) Process for the preparation of high temperature superconducting bulk current leads with improved properties and superconducting bulk current leads made thereby
JPH07221489A (en) Superconductive magnetic shield substance
EP0409150B1 (en) Superconducting wire
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
EP0305300A2 (en) A method for producing a superconducting article
US5179075A (en) Method of making a low electrical resistance connection between a metal and a high tc superconducting ceramic
JPH0661682A (en) Supperconducting magnetic shield
EP0564238B1 (en) Superconducting film and process for production thereof
JPS63299012A (en) Superconductive fiber and its manufacture
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH03108704A (en) Manufacture of oxide superconducting coil
JPH038777A (en) Bond structure of oxide superconductor
JPH087675A (en) Oxide superconductive wire and its manufacture and oxide superconductor
JPH0461208A (en) Conductor for electric-current lead use
JPH0426016A (en) Oxide superconductor
JPH09263972A (en) Oxide superconducting laminated body
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH0640720A (en) Laminar oxide superconductor and its production
JPH04286104A (en) Superconducting current lead
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production