JPH07221168A - Surface polishing method of electrostatic chuck - Google Patents

Surface polishing method of electrostatic chuck

Info

Publication number
JPH07221168A
JPH07221168A JP3184694A JP3184694A JPH07221168A JP H07221168 A JPH07221168 A JP H07221168A JP 3184694 A JP3184694 A JP 3184694A JP 3184694 A JP3184694 A JP 3184694A JP H07221168 A JPH07221168 A JP H07221168A
Authority
JP
Japan
Prior art keywords
dielectric layer
stone dust
polishing
reactant
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3184694A
Other languages
Japanese (ja)
Inventor
Tetsuo Kitabayashi
徹夫 北林
Atsushi Obara
淳 小原
Atsushi Miyaji
淳 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP3184694A priority Critical patent/JPH07221168A/en
Publication of JPH07221168A publication Critical patent/JPH07221168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To enable the dielectric layer surface to be polished with high preci sion without being scratched by stone dust at all by a method wherein the dielectric layer surface is polished with stone dust softer than the dielectric layer itself to produce a reactant of both component materials of the dielectric layer and the stone dust to be mechanically removed later. CONSTITUTION:The surface of a dielectric layer 2 of an electrostatic chuck is polished with stone dust softer than the dielectric later 2 itself to create a locally high temperature and high pressure state so that a reactant of both component materials of the dielectric layer 2 and the stone dust may be chemically produced. Next, at least the reactant or the product produced after the decomposition of the reactant is mechanically removed out of the surface of the dielectric layer 2. For example, it is recommended that the dielectric layer 2 mainly comprises Al2O3 the stone dust comprises SiO2 and the reactant from the material comprising the dielectric layer 2 and the material comprising the stone dust mainly comprises kainite. Finally, the reactant is polished while feeding a polishing solution 6 containing SiO2 stone dust using a high rigid polisher 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は静電チャックの誘電体層
表面を研磨する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for polishing the surface of a dielectric layer of an electrostatic chuck.

【0002】[0002]

【従来の技術】半導体ウェハーに対して減圧下におい
て、プラズマエッチングやプラズマCVD等の処理を施
すことが従来から行われている。斯かる減圧下で半導体
ウェハーを保持するチャックとして静電力を利用したチ
ャックが知られており、この静電チャックは上面をAl2
3を主体とする誘電体層としている。そして、誘電体
層表面については、ダイヤモンド砥石による平面研削仕
上げ、ダイヤモンド砥粒、SiC砥粒、Al23砥粒等の
Al23と同等以上の硬度の砥粒を用いた研磨仕上げが
行われている。
2. Description of the Related Art Conventionally, a semiconductor wafer is subjected to a process such as plasma etching or plasma CVD under reduced pressure. A chuck utilizing electrostatic force is known as a chuck for holding a semiconductor wafer under such a reduced pressure, and this electrostatic chuck has an upper surface made of Al 2
The dielectric layer is mainly O 3 . Then, the surface of the dielectric layer is subjected to surface grinding with a diamond grindstone, polishing with diamond abrasive grains, SiC abrasive grains, Al 2 O 3 abrasive grains and the like having abrasive hardness equal to or higher than Al 2 O 3. Has been done.

【0003】[0003]

【発明が解決しようとする課題】上述したように静電チ
ャック上面の誘電体層の表面の研磨については、従来に
あってはダイヤモンド砥粒等の硬質砥粒を用いて加工精
度を高めているが、誘電体層表面に硬質砥粒による押し
込みや引っ掻き等の傷が生じる。そしてこの傷によって
半導体ウェハー脱着時にウェハーに傷を付けたり、パー
ティクルが半導体ウェハーに付着する不利がある。更
に、硬質砥粒を用いた機械的な研磨方法では誘電体層表
面に加工変質層ができ、この加工変質層は表面に歪を残
し、デバイスに悪影響を及ぼす重金属イオン等の汚染物
質が半導体ウェハーに付着することがある。
As described above, with respect to the polishing of the surface of the dielectric layer on the upper surface of the electrostatic chuck, conventionally, hard abrasive grains such as diamond abrasive grains are used to improve the processing accuracy. However, scratches such as indentation and scratching due to hard abrasive grains occur on the surface of the dielectric layer. The scratches may damage the wafer when the semiconductor wafer is attached and detached, and particles may adhere to the semiconductor wafer. Furthermore, a mechanically polishing method using hard abrasive grains creates a work-affected layer on the surface of the dielectric layer. May adhere to.

【0004】また、上記のような機械的な研磨の代りに
化学研磨や電解研磨も知られているが、加工精度の点で
劣り、高い加工精度が要求される静電チャックには適用
できない。
Although chemical polishing and electrolytic polishing are known in place of the mechanical polishing as described above, they are inferior in processing accuracy and cannot be applied to an electrostatic chuck which requires high processing accuracy.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
発明は、誘電体層表面をこれよりも軟らかい砥粒で研磨
することで誘電体層表面に誘電体層を構成する物質と砥
粒を構成する物質との反応物を化学的に生成せしめ、少
なくともこの反応物またはこの反応物を分解した後に得
られる生成物を機械的に誘電体層表面から除去するよう
にした。
In order to solve the above-mentioned problems, the present invention is to polish the surface of the dielectric layer with abrasives softer than the dielectric layer to form a dielectric layer on the surface of the dielectric layer and the abrasives. The reaction product with the substance constituting the is chemically generated, and at least the reaction product or the product obtained after decomposing the reaction product is mechanically removed from the surface of the dielectric layer.

【0006】[0006]

【作用】例えば、誘電体層を構成するAl23と砥粒を
構成するSiO2とを反応させてカイヤナイト等のシリマ
ナイトを生じさせるという化学的な面と、生じたカイヤ
ナイト等をムライト化または無定形化せしめて除去する
という機械的な面とを併せ持つメカノケミカルポリシン
グにより静電チャックの表面が研磨される。
For example, Al 2 O 3 forming the dielectric layer and SiO 2 forming the abrasive grains are reacted with each other to form sillimanite such as kyanite, and the formed kyanite is mullite. The surface of the electrostatic chuck is polished by mechanochemical polishing that has a mechanical surface of removing the material by making it amorphous or amorphous.

【0007】[0007]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は静電チャックを研磨している
状態を示す図であり、静電チャックは基板1上に誘電体
層2を形成し、これら基板1と誘電体層2との間に内部
電極3を設け、この内部電極3に高電圧を供給する給電
線4を接続している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram showing a state in which the electrostatic chuck is being polished. The electrostatic chuck forms a dielectric layer 2 on a substrate 1, and an internal portion is provided between the substrate 1 and the dielectric layer 2. An electrode 3 is provided, and a power supply line 4 for supplying a high voltage is connected to the internal electrode 3.

【0008】また、上記静電チャックは75wt%以上の
Al23、25wt%未満の遷移金属酸化物、10wt%以
下のSiO2、MgO、CaO等のガラス成分をそれぞれ含
有するグリーンシートを用意し、所定のグリーンシート
の一面に内部電極となるタングステンやモリブデンペー
ストを印刷し、この印刷面を挟むようにしてグリーンシ
ートを積層して焼成することで得られる。
The electrostatic chuck is prepared as a green sheet containing 75% by weight or more of Al 2 O 3 , less than 25% by weight of transition metal oxide, and 10% by weight or less of glass components such as SiO 2 , MgO and CaO. Then, a tungsten or molybdenum paste serving as an internal electrode is printed on one surface of a predetermined green sheet, and the green sheets are laminated so as to sandwich the printed surface and fired.

【0009】尚、焼成によって得られた静電チャックは
平面研削盤によって誘電体層2の厚さが250〜500
μm程度になるまで研削され、更にこの研削面をダイヤ
モンド砥粒及び銅ポリッシャにより平均表面粗さ(R
a)が0.25μm程度になるまで粗研磨し、この後研
磨盤5を用い本発明方法によって仕上げ研磨する。
In the electrostatic chuck obtained by firing, the dielectric layer 2 has a thickness of 250 to 500 by a surface grinder.
It is ground to about μm, and the average surface roughness (R
Rough polishing is performed until a) becomes about 0.25 μm, and then finish polishing is performed by the method of the present invention using the polishing disk 5.

【0010】仕上げ研磨は剛性の高い研磨盤5に、誘電
体層2を構成する材料よりも軟らかい砥粒、例えばSi
2砥粒を含む研磨液6を供給しながら研磨する。する
と、局部的に高温・高圧状態となり、誘電体層を構成す
るAl23と砥粒を構成するSiO2とが反応して主とし
てカイヤナイトが生成される。このカイヤナイトはmA
l23・nSiO2(m:62.9%、n:37.1%)
で表され、酸素イオンが最密充填をとり、この中にSi
イオンが正四面体、時にはAlイオン六面体的に結合し
た三斜晶系の鉱物である。また、カイヤナイトは132
5℃以上となるとムライトとシリカに分解し、研磨応力
を受け、誘電体層表面から機械的に簡単に除去され、そ
の結果誘電体層表面は平均表面粗さ(Ra)が0.15
μm以下になるように仕上げ研磨される。尚、カイヤナ
イトの他にアンダリュサイト(斜方晶系で真比重3.1〜
3.2)やシリマナイト(斜方晶系で真比重3.23〜3.25)
も若干生成されているものと考えられるが、これらはカ
イヤナイトよりも高温でムライトとシリカに分解され
る。
In the finish polishing, the polishing plate 5 having high rigidity is provided with an abrasive grain softer than the material forming the dielectric layer 2, for example, Si.
Polishing is performed while supplying a polishing liquid 6 containing O 2 abrasive grains. Then, a high temperature / high pressure state is locally generated, and Al 2 O 3 forming the dielectric layer reacts with SiO 2 forming the abrasive grains to mainly produce kyanite. This Kyanite is mA
l 2 O 3 · nSiO 2 (m: 62.9%, n: 37.1%)
, The oxygen ions take the closest packing, and in this, Si
It is a triclinic mineral in which the ions are tetrahedral and sometimes Al-ion hexahedrally bonded. In addition, Kyanite is 132
Above 5 ° C, it decomposes into mullite and silica, is subjected to polishing stress, and is mechanically and easily removed from the surface of the dielectric layer. As a result, the surface of the dielectric layer has an average surface roughness (Ra) of 0.15.
Finish polishing is performed so as to be less than μm. In addition to kyanite, andalusite (orthorhombic system with a true specific gravity of 3.1 ~
3.2) and sillimanite (orthorhombic and true specific gravity 3.23 to 3.25)
It is considered that some are also generated, but these are decomposed into mullite and silica at a higher temperature than kyanite.

【0011】以下の(表1)は使用する研磨剤等の条件
を変更して行った実験結果を示すものである。
The following (Table 1) shows the results of an experiment carried out by changing the conditions such as the polishing agent used.

【0012】[0012]

【表1】 [Table 1]

【0013】尚、実験で使用したチャックの誘電体層の
組成割合は、Al23が83wt%、遷移金属酸化物が1
0.5wt%、SiO2、MgO、CaOが合計で6.5wt%
であり、使用した研磨機の研磨盤は直径が1000mm
の硬質発泡ポリウレタン研磨クロスであり、研磨盤の回
転速度は60rpm、荷重負荷は0.2kg/cm2とし
た。また、砥粒としてはSiO2(酸化珪素)、CeO
2(酸化セリウム)、TiO2(酸化チタン)を用いた
が、これ以外にMgO(酸化マグネシウム)、Y2
3(酸化イットリウム)、SnO2(酸化スズ)等の比較
的軟らかい砥粒も使用可能である。更に、砥粒は液中に
分散させて使用するが、砥粒の液に対する割合は10〜
20%とし、液のpHは8〜13とし、研磨液の供給量
は20cc/分とした。
The composition ratio of the dielectric layer of the chuck used in the experiment was 83 wt% Al 2 O 3 and 1% transition metal oxide.
0.5 wt%, total of SiO 2 , MgO, and CaO is 6.5 wt%
The diameter of the polishing machine used is 1000 mm.
The hard foam polyurethane polishing cloth of No. 1 was used, and the rotation speed of the polishing plate was 60 rpm and the load load was 0.2 kg / cm 2 . Further, as abrasive grains, SiO 2 (silicon oxide), CeO
2 (cerium oxide) and TiO 2 (titanium oxide) were used, but other than these, MgO (magnesium oxide), Y 2 O
It is also possible to use relatively soft abrasive grains such as 3 (yttrium oxide) and SnO 2 (tin oxide). Further, the abrasive grains are used by being dispersed in a liquid, but the ratio of the abrasive grains to the liquid is 10 to 10.
The pH of the solution was 20%, the pH of the solution was 8 to 13, and the supply rate of the polishing solution was 20 cc / min.

【0014】また(表1)中のスクラッチの有無はSE
M観察にて行い、汚染レベルの評価は誘電体層表面にシ
リコンウェハーのミラー面を載置し、1KVの電圧を3
分間印加して付着した汚染物質の元素の濃度を定量し、
表面粗さは触針式の表面粗さ計を用い、JIS B06
01に従って平均表面粗さ(Ra)を測定し、研磨面の
光沢度はJIS Z8741に従ってGs(60°)を
測定した。
The presence or absence of scratches in (Table 1) is SE.
The contamination level was evaluated by M observation, and a mirror surface of a silicon wafer was placed on the surface of the dielectric layer, and a voltage of 1 KV was set to 3
Apply for a minute to quantify the concentration of the element of the attached contaminant,
The surface roughness is measured according to JIS B06 using a stylus type surface roughness meter.
The average surface roughness (Ra) was measured according to No. 01, and the glossiness of the polished surface was measured according to JIS Z8741 as Gs (60 °).

【0015】図2(a)、(b)、(c)はそれぞれ酸
化珪素砥粒、酸化セリウム砥粒及びダイヤモンド砥粒に
よって研磨した誘電体層表面の粒子構造を示す5000
倍の顕微鏡写真であり、図3(a)、(b)、(c)は
それぞれ図2(a)、(b)、(c)に示した誘電体層
表面の表面粗さの測定結果を示すグラフである。これら
の図及び(表1)からも明らかなように、本発明方法の
ように誘電体層表面を誘電体層よりも軟らかい砥粒で研
磨することで、極めて平滑な表面を形成することができ
ることが分る。
2 (a), (b) and (c) show 5000 the particle structure of the surface of the dielectric layer polished by silicon oxide abrasive grains, cerium oxide abrasive grains and diamond abrasive grains, respectively.
3 (a), (b), and (c) show the measurement results of the surface roughness of the dielectric layer surface shown in FIGS. 2 (a), (b), and (c), respectively. It is a graph shown. As is clear from these figures and (Table 1), it is possible to form an extremely smooth surface by polishing the surface of the dielectric layer with abrasives softer than the dielectric layer as in the method of the present invention. I understand.

【0016】本実験では、Al23を主成分とする誘電
体層を用いたものを説明したが、誘電体層としては、A
lN、SiC、Si34等の静電チャックに利用できる誘
電体材料を利用してもよい。これらの材料の場合であっ
ても、研磨により、mAl23・nSiO2、SiO2(無
定形)等が生成し加工することができる。
In this experiment, the one using the dielectric layer containing Al 2 O 3 as a main component was explained.
A dielectric material that can be used for an electrostatic chuck, such as 1N, SiC, or Si 3 N 4, may be used. Even for these materials, by polishing, mAl 2 O 3 · nSiO 2 , SiO 2 ( amorphous) or the like can be generated by processing.

【0017】[0017]

【発明の効果】以上に説明した如く本発明によれば、静
電チャックの誘電体層表面を誘電体層よりも軟らかい砥
粒で研磨することで局部的に高温・高圧状態として誘電
体層を構成する物質と砥粒を構成する物質との反応物を
化学的に生成せしめ、次いでこの反応物やこれが分解し
た生成物を機械的に誘電体層表面から除去するようにし
たので、高精度に誘電体層表面を研磨仕上げすることが
でき、且つ誘電体層表面に砥粒による傷(スクラッチ)
が生じることがない。したがって、パーティクルや重金
属イオンによって半導体ウェハー表面が汚染することが
防止される。
As described above, according to the present invention, by polishing the surface of the dielectric layer of the electrostatic chuck with abrasive grains softer than the dielectric layer, the dielectric layer is locally brought to a high temperature / high pressure state. Since the reaction product of the substance that constitutes the abrasive grain and the substance that constitutes the abrasive grain is chemically generated, and then this reaction product and the product decomposed by it are mechanically removed from the surface of the dielectric layer, high precision is achieved. The surface of the dielectric layer can be polished and scratches on the surface of the dielectric layer due to abrasive grains (scratch)
Does not occur. Therefore, the surface of the semiconductor wafer is prevented from being contaminated by particles or heavy metal ions.

【図面の簡単な説明】[Brief description of drawings]

【図1】静電チャックを研磨している状態を示す図FIG. 1 is a diagram showing a state in which an electrostatic chuck is being polished.

【図2】(a)は酸化珪素砥粒によって研磨した誘電体
層表面の粒子構造を示す5000倍の顕微鏡写真 (b)は酸化セリウム砥粒によって研磨した誘電体層表
面の粒子構造を示す5000倍の顕微鏡写真 (c)はダイヤモンド砥粒によって研磨した誘電体層表
面の粒子構造を示す5000倍の顕微鏡写真
FIG. 2 (a) is a 5000 × photomicrograph showing the particle structure on the surface of a dielectric layer polished with silicon oxide abrasive grains. Double magnification micrograph (c) is a 5000 times micrograph showing the particle structure of the surface of the dielectric layer polished by diamond abrasive grains.

【図3】(a)は図2(a)に示した誘電体層表面の表
面粗さの測定結果を示すグラフ (b)は図2(b)に示した誘電体層表面の表面粗さの
測定結果を示すグラフ (c)は図2(c)に示した誘電体層表面の表面粗さの
測定結果を示すグラフ
3A is a graph showing the measurement results of the surface roughness of the dielectric layer surface shown in FIG. 2A, and FIG. 3B is a surface roughness of the dielectric layer surface shown in FIG. 2B. (C) is a graph showing the measurement result of the surface roughness of the surface of the dielectric layer shown in FIG. 2 (c).

【符号の説明】[Explanation of symbols]

1…基板、2…誘電体層、3…内部電極、5…研磨盤、
6…研磨液。
1 ... Substrate, 2 ... Dielectric layer, 3 ... Internal electrode, 5 ... Polishing board,
6 ... Polishing liquid.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02N 13/00 D Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H02N 13/00 D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静電チャックの誘電体層表面を誘電体層
よりも軟らかい砥粒で研磨することで局部的に高温・高
圧状態として誘電体層を構成する物質と砥粒を構成する
物質との反応物を化学的に生成せしめ、少なくともこの
反応物またはこの反応物を分解した後に得られる生成物
を機械的に誘電体層表面から除去するようにしたことを
特徴とする静電チャックの表面研磨方法。
1. A substance constituting the dielectric layer and a substance constituting the abrasive grain are locally brought to a high temperature and high pressure state by polishing the surface of the dielectric layer of the electrostatic chuck with abrasive grains softer than the dielectric layer. The surface of an electrostatic chuck characterized in that the above-mentioned reaction product is chemically generated, and at least this reaction product or a product obtained after decomposing this reaction product is mechanically removed from the surface of the dielectric layer. Polishing method.
【請求項2】 請求項1に記載の静電チャックの表面研
磨方法において、前記誘電体層はAl23を主体として
構成され、前記砥粒はSiO2からなり、前記誘電体層を
構成する物質と砥粒を構成する物質との反応物は主とし
てカイヤナイトであることを特徴とする静電チャックの
表面研磨方法。
2. The method of polishing a surface of an electrostatic chuck according to claim 1, wherein the dielectric layer is mainly composed of Al 2 O 3, and the abrasive grains are composed of SiO 2 , and the dielectric layer is composed. A method of polishing a surface of an electrostatic chuck, characterized in that a reaction product of a substance to be formed with a substance constituting an abrasive grain is mainly kyanite.
JP3184694A 1994-02-02 1994-02-02 Surface polishing method of electrostatic chuck Pending JPH07221168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184694A JPH07221168A (en) 1994-02-02 1994-02-02 Surface polishing method of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184694A JPH07221168A (en) 1994-02-02 1994-02-02 Surface polishing method of electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH07221168A true JPH07221168A (en) 1995-08-18

Family

ID=12342427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184694A Pending JPH07221168A (en) 1994-02-02 1994-02-02 Surface polishing method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH07221168A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174419A (en) * 1995-12-14 1997-07-08 Internatl Business Mach Corp <Ibm> Polishing method with chemical machine for aluminum or aluminum alloy
JPH10189699A (en) * 1996-12-27 1998-07-21 Kyocera Corp Method of cleaning electrostatic chuck
US6809299B2 (en) 2000-07-04 2004-10-26 Ibiden Co., Ltd. Hot plate for semiconductor manufacture and testing
JP2009094166A (en) * 2007-10-04 2009-04-30 Ulvac Japan Ltd Method of cleaning electrostatic chuck
WO2015023329A1 (en) * 2013-08-10 2015-02-19 Applied Materials, Inc. A method of polishing a new or a refurbished electrostatic chuck
WO2019078936A1 (en) * 2017-10-17 2019-04-25 Applied Materials, Inc. Polishing of electrostatic substrate support geometries

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174419A (en) * 1995-12-14 1997-07-08 Internatl Business Mach Corp <Ibm> Polishing method with chemical machine for aluminum or aluminum alloy
JPH10189699A (en) * 1996-12-27 1998-07-21 Kyocera Corp Method of cleaning electrostatic chuck
US6809299B2 (en) 2000-07-04 2004-10-26 Ibiden Co., Ltd. Hot plate for semiconductor manufacture and testing
JP2009094166A (en) * 2007-10-04 2009-04-30 Ulvac Japan Ltd Method of cleaning electrostatic chuck
WO2015023329A1 (en) * 2013-08-10 2015-02-19 Applied Materials, Inc. A method of polishing a new or a refurbished electrostatic chuck
CN105453234A (en) * 2013-08-10 2016-03-30 应用材料公司 A method of polishing a new or a refurbished electrostatic chuck
KR20160042061A (en) * 2013-08-10 2016-04-18 어플라이드 머티어리얼스, 인코포레이티드 A method of polishing a new or a refurbished electrostatic chuck
TWI640395B (en) * 2013-08-10 2018-11-11 美商應用材料股份有限公司 Method of polishing a new or a refurbished electrostatic chuck
US11260498B2 (en) 2013-08-10 2022-03-01 Applied Materials, Inc. Method of polishing a new or a refurbished electrostatic chuck
US11648639B2 (en) 2013-08-10 2023-05-16 Applied Materials, Inc. Polishing jig assembly for a new or refurbished electrostatic chuck
WO2019078936A1 (en) * 2017-10-17 2019-04-25 Applied Materials, Inc. Polishing of electrostatic substrate support geometries
US10654147B2 (en) 2017-10-17 2020-05-19 Applied Materials, Inc. Polishing of electrostatic substrate support geometries

Similar Documents

Publication Publication Date Title
KR100429940B1 (en) Improved ceria powder
EP0986097B1 (en) Method for reclaiming wafer substrate
KR100222228B1 (en) Regeneration method and apparatus of wafer and substrate
US6406923B1 (en) Process for reclaiming wafer substrates
MY115213A (en) Process for recovering substrates
JP2000336344A (en) Abrasive
JPH08134435A (en) Abrasive and method for polishing
CN1330797A (en) Method of processing semiconductor wafers to build in back surfact demage
JP2014027207A (en) Dielectric body and electrostatic chuck using the same
KR20040080935A (en) Polishing Slurry
JPH07221168A (en) Surface polishing method of electrostatic chuck
JP2006303329A (en) Thin plate working method of silicon substrate and working apparatus used for it
JP3668647B2 (en) Semiconductor wafer substrate regeneration method and semiconductor wafer substrate regeneration polishing liquid
US6322425B1 (en) Colloidal polishing of fused silica
JP2017063173A (en) Method for polishing semiconductor substrate
JP3602901B2 (en) Wafer holding member and method of manufacturing the same
JP2003117806A (en) Mirror-polishing method for polycrystalline ceramics
JPS63114866A (en) Method of processing glass
US6217417B1 (en) Method for polishing thin plate and plate for holding thin plate
JP2008288240A (en) SiC CRYSTAL POLISHING METHOD
JP2002126997A (en) Cmp machining dresser
JP2628448B2 (en) Mirror polishing method for semiconductor substrate
TW410189B (en) A polishing method of glass
JPH06302568A (en) Mirror polishing apparatus with fixed abrasive
US6428395B1 (en) Method of polishing at least one surface of a silicon-based part