JPH07220859A - Ceramic heating element - Google Patents

Ceramic heating element

Info

Publication number
JPH07220859A
JPH07220859A JP934694A JP934694A JPH07220859A JP H07220859 A JPH07220859 A JP H07220859A JP 934694 A JP934694 A JP 934694A JP 934694 A JP934694 A JP 934694A JP H07220859 A JPH07220859 A JP H07220859A
Authority
JP
Japan
Prior art keywords
sintered body
layer
heating resistor
electrically insulating
resistor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP934694A
Other languages
Japanese (ja)
Other versions
JP3426678B2 (en
Inventor
Hiroaki Oyama
浩昭 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP00934694A priority Critical patent/JP3426678B2/en
Priority to US08/305,085 priority patent/US5750958A/en
Priority to DE4433505A priority patent/DE4433505C2/en
Publication of JPH07220859A publication Critical patent/JPH07220859A/en
Application granted granted Critical
Publication of JP3426678B2 publication Critical patent/JP3426678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To improve durability and reliability by setting the outermost periphery of the heating resistor layer A of the highest heating section to the specific & of the outer diameter of an electrically insulating ceramic sintered body B, locating the tip of the layer A on the inside from the tip of the sintered body B by the specific mm, and forming the cross section on the layer A on the sintered body B side in a circle. CONSTITUTION:The outermost periphery 9 of a heating resistor layer 3 corresponding to a U-shaped highest heating section 8 of a ceramic heating element 1 is set to 6-25% of the outer diameter 10 of an electrically insulating ceramic sintered body 2. The tip of the layer 3 is buried to the inside of the sintered body 2 by a distance L of 0.3-1.5mm from the tip of the sintered body 2, and a heating resistor layer 11 having the resistance lower than that of the layer 3 and nearly the same width is laminated at the end section of the layer 3. End sections of the layer 11 are made narrower in width than the layer 3, protruded from the end sections of the layer 3, and connected to electrode extracting layers 6, 7 via lead sections 4, 5. The tip of the sintered body 2 is formed into nearly a sphere, and the cross section where the layer 3 is buried is formed into a circle. The thermal shock resistance of l000 deg.C or above is provided, and durability and reliability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1000℃以上の高温用
のセラミック発熱体に関し、とりわけディーゼルエンジ
ンの始動時やアイドリング時に副燃焼室内を急速に予熱
する自己飽和型グロープラグをはじめ、液体や気体の各
種加熱器、および石油やガス等を用いた各種暖房器や瞬
間湯沸器等の加熱点火用ヒーターに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heating element for high temperatures of 1000 ° C. or higher, and particularly to a self-saturation type glow plug which rapidly preheats a sub combustion chamber at the time of starting a diesel engine or idling, and a liquid or gas. And various heaters using oil and gas, and heaters for heating and igniting such as instant water heaters.

【0002】[0002]

【従来の技術】従来よりディーゼルエンジンの始動促進
に用いられるグロープラグや各種加熱器や暖房器、瞬間
湯沸器等の加熱用及び点火用ヒーターとして、耐熱金属
製のシース内にニッケル(Ni)−クロム(Cr)等を
主体とする高融点金属線から成る発熱抵抗体を耐熱絶縁
粉末とともに充填埋設したシーズヒーターが使用されて
いた。
2. Description of the Related Art Nickel (Ni) is used in a sheath made of heat-resistant metal as a heater for heating and igniting glow plugs, various heaters, heaters, instantaneous water heaters, etc., which have been conventionally used to accelerate the starting of diesel engines. A sheathed heater has been used in which a heating resistor made of a high melting point metal wire mainly composed of chromium (Cr) or the like is filled and embedded together with heat resistant insulating powder.

【0003】しかしながら、前記シーズヒーターは、耐
熱金属製のシース内に充填された耐熱絶縁粉末を介して
発熱抵抗体の熱を伝えるために熱伝導が悪く、短時間の
急速昇温が困難であり、その上、耐摩耗性や耐熱性、耐
食性等、耐久性に劣る上、確実な着火という安全性に不
安があるという問題があった。
However, since the sheathed heater transfers heat of the heat-generating resistor through the heat-resistant insulating powder filled in the sheath made of heat-resistant metal, heat conduction is poor and rapid temperature rise in a short time is difficult. In addition, there is a problem in that the durability is poor such as wear resistance, heat resistance, and corrosion resistance, and there is concern about safety such as reliable ignition.

【0004】そこで、短時間の急速昇温が可能で、耐摩
耗性や耐熱性、耐食性等、耐久性に優れた発熱体とし
て、無機導電材から成る発熱抵抗体を熱伝導性が良好な
電気絶縁性セラミック焼結体中に埋設一体化したセラミ
ック発熱体が、内燃機関のグロープラグをはじめ、前述
の各種加熱点火用ヒーターとして広く利用されるように
なってきた。
Therefore, a heating resistor made of an inorganic conductive material is used as a heating element excellent in durability such as wear resistance, heat resistance, corrosion resistance and the like, which is capable of rapid temperature rise in a short time, and has excellent thermal conductivity. Ceramic heating elements embedded and integrated in an insulating ceramic sintered body have come to be widely used as glow heating heaters for internal combustion engines, as well as various heating and ignition heaters described above.

【0005】しかしながら、前記セラミック発熱体は、
電気絶縁性セラミック焼結体の熱伝導性が良好なために
発熱抵抗体の埋設状態が加熱領域の温度分布に大きく影
響し、所定の温度域を所定の位置に均一に得難く、その
上、電気絶縁性セラミック焼結体と発熱抵抗体との熱膨
張差からセラミック発熱体自体にクラックを発生し、断
線を生じ易いという問題があった。
However, the ceramic heating element is
Due to the good thermal conductivity of the electrically insulating ceramic sintered body, the embedded state of the heating resistor greatly affects the temperature distribution of the heating region, and it is difficult to obtain a predetermined temperature range uniformly at a predetermined position. There has been a problem that cracks are easily generated in the ceramic heating element itself due to a difference in thermal expansion between the electrically insulating ceramic sintered body and the heating resistor, which easily causes disconnection.

【0006】そこで前記問題を解消するものとして、図
4に示すように高強度で耐酸化性に優れた電気絶縁性セ
ラミック焼結体16中に、位置や寸法を特定した高融点
金属から成る発熱抵抗体15を埋設したセラミックヒー
タ17が提案されている(実開平2−20293号公
報、実開平5−31191号公報参照)。
In order to solve the above-mentioned problem, as shown in FIG. 4, heat generation of a refractory metal whose position and dimensions are specified in an electrically insulating ceramic sintered body 16 having high strength and excellent oxidation resistance. A ceramic heater 17 in which the resistor 15 is embedded has been proposed (see Japanese Utility Model Laid-Open No. 2-20293 and Japanese Utility Model Laid-Open No. 5-31191).

【0007】[0007]

【発明が解決しようとする課題】前記セラミックヒータ
17では、発熱部の温度分布は設計値に近くなり、電気
絶縁性セラミック焼結体16と発熱抵抗体15の熱膨張
差によるクラック発生も軽減されるようにはなってい
る。
In the ceramic heater 17, the temperature distribution of the heating portion is close to the design value, and the occurrence of cracks due to the difference in thermal expansion between the electrically insulating ceramic sintered body 16 and the heating resistor 15 is reduced. It is supposed to be.

【0008】しかしながら、前記セラミックヒータ17
を1000℃以上の高温用のセラミック発熱体として使
用した場合、例えばディーゼルエンジンのグロープラグ
では、確実な着火と始動性を損なわないようにするため
に最高発熱部を先端より5mm以内に設計する先端発熱
を採用することから、始動時に先端部近傍で赤熱した最
高発熱部のセラミック発熱体表面に、急激に発熱温度よ
り極めて低い温度の液体燃料が直接接触することがあ
り、一方、その他の加熱点火用ヒーターの稼働時にも、
温度の低い液体や気体等の各種媒体や燃料が、発熱して
赤熱した加熱点火用ヒーター先端部近傍の最高発熱部に
直接接触することがある。
However, the ceramic heater 17
When used as a ceramic heating element for high temperatures of 1000 ° C or higher, for example, in a glow plug of a diesel engine, the maximum heat generating part is designed within 5 mm from the tip to prevent reliable ignition and startability. Because heat is used, liquid fuel with a temperature extremely lower than the exothermic temperature may suddenly come into direct contact with the surface of the ceramic heating element of the highest exothermic part that glows red near the tip when starting, while other heating ignition Even when the heater for
Various media such as liquid or gas having a low temperature and fuel may directly contact the highest heat generating portion near the tip of the heating and ignition heater, which is heated and red.

【0009】そのような場合の温度差は950℃を越え
る場合があり、しかもその温度差は先端部の最高発熱部
付近に局所的に生じることが多いことから、稼働中に前
記温度差による熱衝撃がセラミック発熱体に加わり、該
セラミック発熱体にクラックを生じて発熱抵抗体自体が
断線する恐れがあり、耐久性に不安が残る上、確実な着
火という安全性と信頼性に劣るという課題があった。
In such a case, the temperature difference may exceed 950 ° C., and since the temperature difference often occurs locally near the highest heat generating portion at the tip, the temperature difference due to the temperature difference during operation is caused. Impact may be applied to the ceramic heating element, which may cause cracks in the ceramic heating element to cause the heating resistor itself to be disconnected, leaving anxiety about durability, as well as a problem of inferior safety and reliability of reliable ignition. there were.

【0010】[0010]

【発明の目的】本発明は前記欠点に鑑み開発されたもの
で、その目的は、先端発熱と急速昇温特性を維持しなが
ら、稼働中に低温度の液体や気体の燃料、あるいは加熱
媒体等が急激にセラミック発熱体の最高発熱部付近に直
接接触して局部的に極めて大きな温度差を生じるような
熱衝撃を受けた場合でも、セラミック発熱体にクラック
を発生して発熱抵抗体自体が断線したりすることがな
く、長時間の連続稼働時の加熱冷却の繰り返しに耐える
高強度かつ耐摩耗性や耐熱性、耐食性等、耐久性と信頼
性に優れたセラミック発熱体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned drawbacks, and an object thereof is to maintain a low temperature liquid or gaseous fuel, a heating medium or the like while operating while maintaining tip heat generation and rapid temperature rising characteristics. Is abruptly directly contacted with the vicinity of the maximum heat generation part of the ceramic heating element and is locally subjected to a thermal shock that causes an extremely large temperature difference, cracks occur in the ceramic heating element and the heating resistor itself is disconnected. It is to provide a ceramic heating element that has high strength and withstands repeated heating / cooling during continuous operation for a long time, and has excellent durability and reliability such as wear resistance, heat resistance, and corrosion resistance. .

【0011】[0011]

【課題を解決するための手段】本発明のセラミック発熱
体は、電気絶縁性セラミック焼結体中に、例えばスクリ
ーン印刷方法等で形成した2層以上の無機導電材から成
る発熱抵抗体層と、該発熱抵抗体層に接続した高融点金
属の線材から成るリード部と、該リード部に接続する無
機導電材から成る層状の電極取り出し層を、それぞれ電
気絶縁性セラミック焼結体中に埋設して一体化し、少な
くとも最高発熱部の前記発熱抵抗体層表面の最外周が、
電気絶縁性セラミック焼結体の外径に対し6〜25%の
距離lだけ該電気絶縁性セラミック焼結体の表面より内
側に、かつ発熱抵抗体層の先端が電気絶縁性セラミック
焼結体の先端から0.3〜1.5mm内側に位置し、少
なくとも最高発熱部から先端側の断面形状が円形を成す
ように構成したものであり、少なくとも前記電気絶縁性
セラミック焼結体の最高発熱部が1000℃以上の温度
差の熱衝撃抵抗を有するか、あるいはその表面粗さが
0.4〜3.0μm Rmax であることがより望ましいも
のである。
A ceramic heating element of the present invention comprises a heating resistor layer made of, for example, two or more layers of inorganic conductive material formed by, for example, a screen printing method in an electrically insulating ceramic sintered body. A lead portion made of a wire material of a high melting point metal connected to the heating resistor layer and a layered electrode lead-out layer made of an inorganic conductive material connected to the lead portion are embedded in an electrically insulating ceramic sintered body. Integrated, at least the outermost periphery of the heating resistor layer surface of the highest heating portion,
A distance 1 of 6 to 25% with respect to the outer diameter of the electrically insulating ceramic sintered body is located inside the surface of the electrically insulating ceramic sintered body, and the tip of the heating resistor layer is made of the electrically insulating ceramic sintered body. It is located 0.3 to 1.5 mm inside from the tip, and is configured such that the cross-sectional shape of the tip side from at least the highest heat generating portion is circular, and at least the highest heat generating portion of the electrically insulating ceramic sintered body is It is more desirable to have a thermal shock resistance with a temperature difference of 1000 ° C. or more, or to have a surface roughness of 0.4 to 3.0 μm R max .

【0012】[0012]

【作用】本発明のセラミック発熱体によれば、電気絶縁
性セラミック焼結体中に、無機導電材の発熱抵抗体層
と、該発熱抵抗体層に接続したリード部と、該リード部
に接続した電極取り出し層を埋設し、少なくとも最高発
熱部の前記発熱抵抗体層の最外周が、電気絶縁性セラミ
ック焼結体の外径に対し6〜25%の距離lだけ該電気
絶縁性セラミック焼結体の表面より内側に、かつ発熱抵
抗体層の先端が電気絶縁性セラミック焼結体の先端から
0.3〜1.5mm内側に位置するようにするととも
に、少なくとも最高発熱部から先端側の断面形状を円形
とし、より望ましくは前記セラミック発熱体の少なくと
も最高発熱部が1000℃以上の温度差の熱衝撃抵抗を
有するか、もしくは0.4〜3.0μm Rmax の表面粗
さを有することから、電気絶縁性セラミック焼結体の強
度が維持されるとともに、良好な熱伝導性から発熱抵抗
体層を囲む電気絶縁性セラミック焼結体が熱衝撃を緩和
するように作用するものである。
According to the ceramic heating element of the present invention, a heating resistor layer of an inorganic conductive material, a lead portion connected to the heating resistor layer, and a lead portion connected to the lead portion are provided in an electrically insulating ceramic sintered body. And the outermost periphery of the heating resistor layer of at least the highest heat generating portion is embedded at a distance 1 of 6 to 25% of the outer diameter of the electrically insulating ceramic sintered body. The inside of the body surface and the tip of the heating resistor layer should be located 0.3 to 1.5 mm inside the tip of the electrically insulating ceramic sintered body, and at least the cross section from the highest heat generating portion to the tip side. The shape is circular, and more preferably, at least the highest heating portion of the ceramic heating element has a thermal shock resistance with a temperature difference of 1000 ° C. or more, or has a surface roughness of 0.4 to 3.0 μm R max. , Electric The strength of the insulating ceramic sintered body is maintained, electrically insulating ceramic sintered body which surrounds the heating resistor layer from good thermal conductivity is one which acts to reduce thermal shock.

【0013】[0013]

【実施例】以下、本発明のセラミック発熱体を図面に基
づき説明する。図1は本発明のセラミック発熱体の一実
施例を示す斜視図であり、図2は本発明のセラミック発
熱体の最高発熱部における横断面を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ceramic heating element of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the ceramic heating element of the present invention, and FIG. 2 is a view showing a cross section of the highest heating portion of the ceramic heating element of the present invention.

【0014】図1及び図2において、1は電気絶縁性セ
ラミック焼結体2中に、層状の無機導電材から成る発熱
抵抗体層3と、発熱抵抗体層3に接続したリード部4、
5と、リード部4、5に接続した電極取り出し層6、7
を埋設したセラミック発熱体である。
In FIGS. 1 and 2, reference numeral 1 denotes an electrically insulating ceramic sintered body 2, a heating resistor layer 3 made of a layered inorganic conductive material, and a lead portion 4 connected to the heating resistor layer 3.
5 and the electrode extraction layers 6 and 7 connected to the lead portions 4 and 5.
Is a ceramic heating element in which is embedded.

【0015】セラミック発熱体1は、略U字状を成した
少なくとも最高発熱部8に該当する発熱抵抗体層3の最
外周9が、電気絶縁性セラミック焼結体2の外径10に
対して6〜25%の距離lだけ、かつ発熱抵抗体層3の
先端が電気絶縁性セラミック焼結体2の先端から0.3
〜1.5mmの距離だけそれぞれ電気絶縁性セラミック
焼結体2の表面より内側に埋設されている。
In the ceramic heating element 1, at least the outermost periphery 9 of the heating resistor layer 3 corresponding to at least the highest heating portion 8 having a substantially U-shape has an outer diameter 10 of the electrically insulating ceramic sintered body 2. Only the distance 1 of 6 to 25%, and the tip of the heating resistor layer 3 is 0.3 from the tip of the electrically insulating ceramic sintered body 2.
Each of them is buried inside the surface of the electrically insulating ceramic sintered body 2 by a distance of up to 1.5 mm.

【0016】そして、略U字状の層状の無機導電材から
成る発熱抵抗体層3の各端部に、発熱抵抗体層3より低
抵抗のほぼ同幅の発熱抵抗体層11を積層するととも
に、発熱抵抗体層11の端部を発熱抵抗体層3の幅より
狭く形成して発熱抵抗体層3の各端部より突出させ、突
出した発熱抵抗体層11を介してタングステン(W)の
線材から成るリード部4、5を接続する。
A heating resistor layer 11 having a resistance lower than that of the heating resistor layer 3 and having substantially the same width is laminated on each end of the heating resistor layer 3 made of a substantially U-shaped layered inorganic conductive material. The end portions of the heating resistor layer 11 are formed to be narrower than the width of the heating resistor layer 3 so as to project from the respective ends of the heating resistor layer 3, and tungsten (W) of tungsten is formed through the protruding heating resistor layer 11. The lead parts 4 and 5 made of wire are connected.

【0017】次いで、リード部4、5の他端に無機導電
材から成る層状の複数個に分割した電極取り出し層6、
7をそれぞれ接続するように形成して埋設し、電極取り
出し層6、7の一部をセラミック焼結体2の外周面に露
出させるとともに、発熱抵抗体層3側の電気絶縁性セラ
ミック焼結体2の先端が略球面で、少なくとも発熱抵抗
体層3を埋設したセラミック焼結体2の断面が円形を成
すように構成されている。
Next, at the other ends of the lead portions 4 and 5, an electrode lead-out layer 6 divided into a plurality of layered layers made of an inorganic conductive material,
7 are formed so as to be connected to each other and embedded, and a part of the electrode lead-out layers 6 and 7 is exposed on the outer peripheral surface of the ceramic sintered body 2, and the electrically insulating ceramic sintered body on the side of the heating resistor layer 3 is also formed. 2 has a substantially spherical tip, and at least the ceramic sintered body 2 in which the heating resistor layer 3 is embedded has a circular cross section.

【0018】尚、前記発熱抵抗体層3は、電気絶縁性セ
ラミック焼結体2中に発熱抵抗体層と電気絶縁性セラミ
ック層を交互に積層して発熱抵抗体層を2層以上に形成
しても良い。
The heating resistor layer 3 has two or more heating resistor layers formed by alternately laminating the heating resistor layers and the electrically insulating ceramic layers in the electrically insulating ceramic sintered body 2. May be.

【0019】前記少なくとも最高発熱部8に該当する発
熱抵抗体層3の最外周9の位置が、少なくとも最高発熱
部8に該当する電気絶縁性セラミック焼結体2の外径1
0に対して6〜25%の距離lに、かつ発熱抵抗体層3
の先端が電気絶縁性セラミック焼結体2の先端から0.
3〜1.5mmの距離に位置する場合には、先端発熱と
することができるとともに、急速昇温特性を損なうこと
なく950℃以上の温度差の大きな熱衝撃抵抗を有する
が、冷熱サイクルの高付加耐久試験での耐久性の点を考
慮すると前記最外周9の位置は11〜24%で前記発熱
抵抗体層3の先端の位置は0.5〜1.3mmが良く、
とりわけ抵抗変化率も考慮すると前記最外周9の位置は
16〜19%で前記発熱抵抗体層3の先端の位置は0.
8〜1.2mmが最も望ましくなる。
The position of the outermost periphery 9 of the heating resistor layer 3 corresponding to at least the highest heat generating portion 8 is at least the outer diameter 1 of the electrically insulating ceramic sintered body 2 corresponding to the highest heat generating portion 8.
At a distance 1 of 6 to 25% with respect to 0 and the heating resistor layer 3
From the tip of the electrically insulating ceramic sintered body 2 to the tip of.
When it is located at a distance of 3 to 1.5 mm, it can generate heat at the tip and has a large thermal shock resistance with a temperature difference of 950 ° C. or more without impairing the rapid temperature rising characteristics, but has a high cooling cycle. Considering the durability in the additional durability test, the position of the outermost periphery 9 is 11 to 24%, and the position of the tip of the heating resistor layer 3 is preferably 0.5 to 1.3 mm.
In particular, considering the rate of resistance change, the position of the outermost periphery 9 is 16 to 19%, and the position of the tip of the heating resistor layer 3 is 0.
8 to 1.2 mm is most desirable.

【0020】一方、前記少なくとも最高発熱部8に該当
する電気絶縁性セラミック焼結体2の表面粗さの値は、
小さければ小さい程、望ましくなるが、研磨加工コスト
の点からは前記表面粗さは0.4〜3.0μm Rmax
望ましく、強度を考慮すると0.6〜1.8μm Rmax
が良く、更に熱衝撃抵抗の点を加味すると0.8〜1.
5μm Rmax が最も望ましい。
On the other hand, the value of the surface roughness of the electrically insulating ceramic sintered body 2 corresponding to at least the highest heat generating portion 8 is
The smaller the size, the more desirable it is, but from the viewpoint of polishing cost, the surface roughness is preferably 0.4 to 3.0 μm R max , and considering the strength, 0.6 to 1.8 μm R max.
Is good, and considering the point of thermal shock resistance, 0.8-1.
Most preferred is 5 μm R max .

【0021】また、電極取り出し層6、7の無機導電材
の導通抵抗は、発熱抵抗体層3より100〜160Ω程
度低く設定することが必要であり、更に電極取り出し層
6、7は複数に分割することが望ましく、その他、電極
取り出し層6、7は発熱抵抗体層3と同層数設けても良
いが、スルーホール等で電気的に接続して単一層で形成
しても良い。
Further, it is necessary to set the conduction resistance of the inorganic conductive material of the electrode lead-out layers 6 and 7 to be lower than that of the heating resistor layer 3 by about 100 to 160Ω, and the electrode lead-out layers 6 and 7 are divided into a plurality of parts. In addition, the electrode lead-out layers 6 and 7 may be provided in the same number as the heating resistor layer 3, or may be formed as a single layer by being electrically connected through a through hole or the like.

【0022】図3は本発明のセラミック発熱体をディー
ゼルエンジンの始動促進に用いる自己飽和型グロープラ
グに適用した一実施例を示す要部断面図である。
FIG. 3 is a cross-sectional view of essential parts showing an embodiment in which the ceramic heating element of the present invention is applied to a self-saturation type glow plug used for promoting the starting of a diesel engine.

【0023】図3では電気絶縁性セラミック焼結体2中
に、2層から成る無機導電材の発熱抵抗体層3と、発熱
抵抗体層3の各端部に接続したリード部4、5と、各リ
ード部4、5に接続した複数に分割された電極取り出し
層6、7を埋設した断面形状が円形を成すセラミック発
熱体1に、筒状金具12を外嵌めし、セラミック発熱体
1の側面を研磨して露出させた電極取り出し層6とろう
接して一方の電極端子とし、セラミック発熱体1の一端
に露出させた電極取り出し層7と電極取り出し金具13
を接続して他方の電極端子としてそれぞれ導出し、取付
金具14に組付けて電気的に接続するとともに正負の電
極を互いに絶縁した自己飽和型グロープラグが構成され
ている。
In FIG. 3, in the electrically insulating ceramic sintered body 2, a heating resistor layer 3 made of two layers of inorganic conductive material, and lead portions 4 and 5 connected to each end of the heating resistor layer 3 are formed. , A cylindrical metal fitting 12 is externally fitted to the ceramic heating element 1 having a circular cross-sectional shape in which a plurality of divided electrode lead-out layers 6 and 7 connected to the respective lead parts 4 and 5 are embedded. The electrode lead-out layer 7 and the electrode lead-out metal fitting 13 exposed at one end of the ceramic heating element 1 are brazed to the electrode lead-out layer 6 exposed by polishing the side surface to form one electrode terminal.
Are connected to each other and led out as the other electrode terminal, assembled to the fitting 14 to be electrically connected, and a positive and negative electrodes are insulated from each other to form a self-saturation type glow plug.

【0024】本発明のセラミック発熱体の電気絶縁性セ
ラミック焼結体としては、高温での耐酸化性や強度に優
れた窒化珪素(Si3 4 )を主成分とする窒化珪素質
焼結体やサイアロンが好適である。
The electrically insulating ceramic sintered body of the ceramic heating element of the present invention is a silicon nitride sintered body containing silicon nitride (Si 3 N 4 ) as a main component, which is excellent in oxidation resistance and strength at high temperatures. And sialon are preferred.

【0025】また、無機導電材から成る発熱抵抗体層あ
るいは層状の電極取り出し層の主成分は、タングステン
(W)、モリブデン(Mo)、レニウム(Re)等の高
融点金属やタングステン−レニウム(W−Re)等の合
金の他、例えばタングステンカーバイド(WC)、窒化
チタン(TiN)や硼化ジルコニウム(ZrB2 )等の
第4a族、第5a族、第6a族の炭化物または窒化物等
があり、とりわけタングステンカーバイド(WC)が設
計のし易さ及び耐久性の点で最も好ましい。
The main component of the heating resistor layer or the layered electrode lead-out layer made of an inorganic conductive material is a refractory metal such as tungsten (W), molybdenum (Mo), rhenium (Re) or tungsten-rhenium (W). In addition to alloys such as —Re), there are, for example, carbides or nitrides of Group 4a, Group 5a, and Group 6a such as tungsten carbide (WC), titanium nitride (TiN) and zirconium boride (ZrB 2 ). In particular, tungsten carbide (WC) is most preferable in terms of ease of design and durability.

【0026】更に、電気絶縁性セラミック焼結体が、窒
化珪素(Si3 4 )を主成分とする窒化珪素質焼結体
の場合には、発熱抵抗体層あるいは電極取り出し層はタ
ングステンカーバイド(WC)を主成分とし、電気絶縁
性セラミック焼結体の主成分である窒化珪素(Si3
4 )粉末を適宜添加混合したものが熱膨張の点から好適
である。
Furthermore, when the electrically insulating ceramic sintered body is a silicon nitride sintered body containing silicon nitride (Si 3 N 4 ) as a main component, the heating resistor layer or the electrode take-out layer is made of tungsten carbide ( WC) as a main component and silicon nitride (Si 3 N 3 ) as a main component of the electrically insulating ceramic sintered body.
4 ) From the viewpoint of thermal expansion, it is preferable to appropriately add and mix powder.

【0027】即ち、前記無機導電材から成る発熱抵抗体
層を、例えばスクリーン印刷法等で形成する場合には、
熱膨張率を考慮すると炭化タングステン(WC)が65
〜95重量%、窒化珪素(Si3 4 )が5〜35重量
%の組成から成るものが良く、とりわけ炭化タングステ
ン(WC)が75〜90重量%、窒化珪素(Si
3 4 )が10〜25重量%の組成が高温用のセラミッ
ク発熱体としての熱膨張率の点からは最も好ましい。
That is, a heating resistor made of the inorganic conductive material
When the layer is formed by, for example, a screen printing method,
Considering the coefficient of thermal expansion, tungsten carbide (WC) is 65
~ 95 wt%, silicon nitride (Si3NFour) Is 5 to 35 weight
% Composition, especially carbonized tungsten.
75 to 90% by weight of silicon (WC), silicon nitride (Si
3N Four) 10 to 25% by weight of the composition for high temperature ceramic
(C) It is most preferable from the viewpoint of the coefficient of thermal expansion as a heating element.

【0028】更に、製造時に前記発熱抵抗体層が断線し
たりしないようにするためには、前記発熱抵抗体層の厚
さは少なくとも最高発熱部で2.3〜150μm が良
く、とりわけ焼結一体化する際に発熱抵抗体層にクラッ
ク等の不都合を発生しないようにするためには、前記発
熱抵抗体層の厚さは少なくとも最高発熱部で8〜53μ
m の範囲が望ましい。
Further, in order to prevent the heating resistor layer from being broken during manufacturing, the thickness of the heating resistor layer is preferably 2.3 to 150 μm at least in the highest heat generating portion, and particularly, the sintered integral layer. In order to prevent inconveniences such as cracks from occurring in the heat-generating resistor layer when the temperature is reduced, the thickness of the heat-generating resistor layer is at least 8 to 53 μm at the highest heat generating portion.
A range of m is desirable.

【0029】一方、リード部には、高融点金属としてタ
ングステン(W)やモリブデン(Mo)、レニウム(R
e)等の他に、タングステン−レニウム(W−Re)等
の合金が挙げられるが、比抵抗が低く、焼成一体化して
も特性が変化し難いタングステン(W)から成る線材が
好適であり、その抵抗値は80〜120Ω程度が、また
線径はセラミック発熱体外径に対して6〜15%程度の
ものが望ましい。
On the other hand, in the lead portion, tungsten (W), molybdenum (Mo), rhenium (R
In addition to e) and the like, alloys such as tungsten-rhenium (W-Re) can be cited. However, a wire rod made of tungsten (W), which has a low specific resistance and whose characteristics are hard to change even after firing and integration, is preferable, The resistance value is preferably about 80 to 120Ω, and the wire diameter is preferably about 6 to 15% of the outer diameter of the ceramic heating element.

【0030】本発明のセラミック発熱体を評価するにあ
たり、先ず、高純度の窒化珪素(Si3 4 )粉末に、
焼結助剤としてイットリア(Y2 3 )や希土類元素の
酸化物を添加混合して調製した造粒体を使用し、プレス
成形法等、周知の成形法により平板状の窒化珪素を主成
分とするセラミック成形体を作製する。
In evaluating the ceramic heating element of the present invention, first, a high-purity silicon nitride (Si 3 N 4 ) powder is added.
A granulated product prepared by adding and mixing yttria (Y 2 O 3 ) or an oxide of a rare earth element as a sintering aid is used, and flat plate-shaped silicon nitride is used as a main component by a well-known molding method such as a press molding method. A ceramic molded body is manufactured.

【0031】次に、タングステンカーバイド(WC)と
窒化珪素(Si3 4 )の各微粉末を所定量混合した原
料粉末に溶媒を加えてペーストを調製し、スクリーン印
刷法により設計抵抗値に基づき、各種寸法の略U字形状
のパターンと略U字形状のパターンの端部に重ねて幅を
狭くした突出部を有するパターンをそれぞれセラミック
成形体表面に順次形成し、セラミック成形体の側面から
前記パターンの最外周までの距離を種々設定した。
Next, a solvent is added to a raw material powder prepared by mixing a predetermined amount of each fine powder of tungsten carbide (WC) and silicon nitride (Si 3 N 4 ) to prepare a paste, and the paste is prepared by screen printing based on the designed resistance value. A pattern having a substantially U-shaped pattern of various dimensions and a pattern having a projecting portion with a narrow width overlapped on an end of the substantially U-shaped pattern are sequentially formed on a surface of the ceramic molded body, and the pattern is formed from a side surface of the ceramic molded body. Various distances to the outermost periphery of the pattern were set.

【0032】一方、電極取り出し層は、85重量%のタ
ングステンカーバイド(WC)と15重量%の窒化珪素
(Si3 4 )の各微粉末から成るペーストを使用して
前記セラミック成形体の発熱抵抗体層と反対側の端部表
面に、それぞれ前記同様にして幅約0.7mm、厚さ約
70μm のパターンを4個、セラミック成形体の側面ま
で平行に所定の配置で形成した。
On the other hand, for the electrode take-out layer, a heating resistance of the ceramic molded body was prepared by using a paste composed of 85% by weight of tungsten carbide (WC) and 15% by weight of fine powder of silicon nitride (Si 3 N 4 ). Four patterns each having a width of about 0.7 mm and a thickness of about 70 μm were formed on the end surface on the side opposite to the body layer in a predetermined arrangement in parallel to the side surface of the ceramic molded body, each having a width of about 0.7 mm and a thickness of about 70 μm.

【0033】尚、前記発熱抵抗体及び電極取り出し層を
形成するペーストには、窒化硼素(BN)を適宜添加し
て電気絶縁性セラミック焼結体との熱膨張を調整するこ
とができる。
In addition, boron nitride (BN) can be appropriately added to the paste for forming the heating resistor and the electrode lead-out layer to adjust the thermal expansion with the electrically insulating ceramic sintered body.

【0034】次に、発熱抵抗体層と電極取り出し層を同
一面上にそれぞれ印刷形成したセラミック成形体と、他
のセラミック成形体との間に、リード部として直径0.
25mmのタングステン(W)線を、略U字状の層状の
無機導電材から成る発熱抵抗体層に重ねて形成した低抵
抗の発熱抵抗体層を介して、前記略U字状に形成した発
熱抵抗体層と電極取り出し層にそれぞれ接続するように
挟み込み、更に、その上に前記同様のタングステン
(W)線を、発熱抵抗体層と電極取り出し層を印刷形成
しないもう一つのセラミック成形体で挟み込み、炭素
(C)を含む還元性の雰囲気下、1750℃の温度で1
時間、加圧焼成した。
Next, between the ceramic molded body in which the heating resistor layer and the electrode lead-out layer are formed by printing on the same surface, and another ceramic molded body, a diameter of 0.
Heat generated in the above-mentioned U-shape through a low-resistance heating resistor layer formed by stacking a 25 mm tungsten (W) wire on the heating resistor layer made of a substantially U-shaped layered inorganic conductive material. It is sandwiched so that it is connected to the resistor layer and the electrode lead-out layer, respectively, and the same tungsten (W) wire as the above is sandwiched therewith with another ceramic molded body on which the heating resistor layer and the electrode lead-out layer are not formed by printing. 1 at a temperature of 1750 ° C. under a reducing atmosphere containing carbon (C)
It was baked under pressure for a time.

【0035】かくして得られた2層の発熱抵抗体層を有
するセラミック焼結体の周囲を研磨し、発熱抵抗体層側
の先端を略球面とするとともに断面円形に加工し、埋設
した各電極取り出し層の端面を円柱側面に露出させ、直
径約3.5mm、長さ約54mmのセラミック発熱体を
作製した。
The ceramic sintered body having the two heating resistor layers thus obtained was ground around its circumference, and the tip on the heating resistor layer side was formed into a substantially spherical surface and processed into a circular cross section, and each embedded electrode was taken out. The end surface of the layer was exposed on the side surface of the cylinder, and a ceramic heating element having a diameter of about 3.5 mm and a length of about 54 mm was produced.

【0036】次に前記セラミック発熱体の少なくとも電
極取り出し層の露出部に、メタライズ法やメッキ法等に
よりニッケル(Ni)等の金属被膜を形成した後、セラ
ミック発熱体の側面に露出した一方の電極取り出し層と
接続するように筒状金具を外嵌めし、還元性の雰囲気中
で銀ろうにて接合して負電極とし、他方の電極取り出し
層に、線材またはキャップ状の金具より成る電極取り出
し金具を前記同様に銀ろうにて接合して正電極として接
続し、正負の電極を導出した評価用のセラミック発熱体
を作製した。
Next, a metal coating of nickel (Ni) or the like is formed on at least the exposed portion of the electrode heating layer of the ceramic heating element by a metallizing method or a plating method, and then one electrode exposed on the side surface of the ceramic heating element. A tubular metal fitting is externally fitted so as to be connected to the take-out layer, joined with silver brazing in a reducing atmosphere to form a negative electrode, and the other electrode take-out layer is a wire rod or a cap-like metal fitting. In the same manner as above, they were joined with silver brazing and connected as a positive electrode, and a positive and negative electrode was derived to produce a ceramic heating element for evaluation.

【0037】次いで、前記評価用のセラミック発熱体を
使用し、11〜24Vの直流電圧を印加して飽和温度に
達した後、放射温度計にて非接触で筒状金具から露出し
たセラミック発熱体の先端からの表面温度分布を測定
し、最高発熱部の位置を特定した後、前記評価用のセラ
ミック発熱体をX線透過撮影し、撮影フィルムを投影機
で拡大して最高発熱部に該当する位置の発熱抵抗体層の
最外周から電気絶縁性セラミック焼結体表面までの寸法
を測定し、電気絶縁性セラミック焼結体の外径に対する
距離lを算出した。
Next, using the ceramic heating element for evaluation, a direct heating voltage of 11 to 24 V was applied to reach the saturation temperature, and then the ceramic heating element was exposed from the cylindrical metal fitting in a non-contact manner with a radiation thermometer. After the surface temperature distribution from the tip of the is measured and the position of the highest heat generating portion is specified, the ceramic heat generating element for evaluation is radiographed by X-ray, and the photographic film is magnified with a projector to correspond to the highest heat generating portion. The dimension from the outermost periphery of the heating resistor layer at the position to the surface of the electrically insulating ceramic sintered body was measured, and the distance 1 to the outer diameter of the electrically insulating ceramic sintered body was calculated.

【0038】また、前記同様にしてX線透過撮影フィル
ムからセラミック発熱体の先端から埋設した発熱抵抗体
層の先端迄の距離Lを測定して設計値を確認した。
Further, the design value was confirmed by measuring the distance L from the tip of the ceramic heating element to the tip of the embedded heating resistor layer from the X-ray radiographic film in the same manner as described above.

【0039】一方、前記評価用セラミック発熱体の少な
くとも最高発熱部を含む側面を長手方向にJIS−B0
601の規格に準じて表面粗さをRmax で計測した。
On the other hand, the side surface including at least the highest heat generating portion of the ceramic heating element for evaluation is longitudinally aligned with JIS-B0.
The surface roughness was measured by R max according to the standard of 601.

【0040】以上の結果に基づき、前記評価用セラミッ
ク発熱体に11〜24Vの直流電圧を印加して発熱さ
せ、最高発熱部の温度を非接触で計測しながら、設定温
度に到達したのを確認後、溶融した半田浴中に筒状金具
から露出したセラミック発熱体を3回浸漬して最高発熱
部と半田浴との温度差の熱衝撃を加えた後、クラックの
有無を実体顕微鏡で目視検査するとともに、蛍光浸透探
傷法で検出し、クラックを発生しない温度差で熱衝撃抵
抗を評価した。
Based on the above results, a direct current voltage of 11 to 24 V was applied to the ceramic heating element for evaluation to generate heat, and it was confirmed that the set temperature was reached while the temperature of the highest heating part was measured without contact. After that, the ceramic heating element exposed from the cylindrical metal fitting is immersed in the molten solder bath three times, and the thermal shock of the temperature difference between the highest heating point and the solder bath is applied. Then, the presence or absence of cracks is visually inspected with a stereoscopic microscope. At the same time, the thermal shock resistance was evaluated by the temperature difference that did not generate cracks by detecting with the fluorescent penetrant flaw detection method.

【0041】また、前記評価用のセラミック発熱体の一
部を使用して11Vの直流電圧を印加し、通電してから
800℃の温度に到達するまでの時間を求めて急速昇温
特性を評価した。更に、前記評価用のセラミック発熱体
に11〜24Vの直流電圧を5分間通電した後、通電を
停止して2分間圧搾空気を吹きつけ強制冷却する工程を
1サイクルとする高負荷耐久試験を、10000サイク
ルまで実施し、試験前後で測定したセラミック発熱体の
抵抗値が、耐久試験後に20%以上変化したものを不良
と判定し、耐久性を評価した。以上の結果を表1に示
す。
A rapid heating characteristic was evaluated by using a part of the ceramic heating element for evaluation and applying a direct current voltage of 11 V to obtain the time from the application of electricity until the temperature reaches 800 ° C. did. Furthermore, a high load endurance test in which one cycle includes a step in which a direct current voltage of 11 to 24 V is applied to the ceramic heating element for evaluation for 5 minutes, the energization is stopped, and compressed air is blown for 2 minutes for forced cooling, When the resistance value of the ceramic heating element measured before and after the test was changed up to 10,000 cycles and changed by 20% or more after the durability test, it was judged as defective and the durability was evaluated. The above results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】尚、前記評価用セラミック発熱体を組み込
んだ自己飽和型グロープラグを,4気筒のディーゼルエ
ンジンの台上試験装置に取り付け、燃料噴射角度を変え
て露出したセラミック発熱体に燃料が直接接触するよう
にし、該ディーゼルエンジンを最高回転数、全負荷の条
件で100時間運転する耐久試験を行ったが、正常に稼
働していることが確認でき、試験後に非破壊検査を実施
したところ、本発明に係るセラミック発熱体を使用した
自己飽和型グロープラグには、いずれもクラック等の異
常は認められなかった。
The self-saturation glow plug incorporating the evaluation ceramic heating element was attached to a bench test apparatus of a 4-cylinder diesel engine, and the fuel was brought into direct contact with the exposed ceramic heating element while changing the fuel injection angle. As a result, a durability test was conducted in which the diesel engine was operated for 100 hours under conditions of maximum rotation speed and full load. However, it was confirmed that the diesel engine was operating normally, and a non-destructive inspection was conducted after the test. No abnormalities such as cracks were observed in any of the self-saturating glow plugs using the ceramic heating element according to the invention.

【0044】また、加熱点火用ヒーターとして本発明の
セラミック発熱体を使用した場合にも、熱衝撃でクラッ
クを発生したりすることはなく、確実に着火して安全性
が確保できていることを確認した。
Even when the ceramic heating element of the present invention is used as a heater for heating and igniting, cracks are not generated due to thermal shock, and it is possible to securely ignite and ensure safety. confirmed.

【0045】[0045]

【発明の効果】叙上の如く、本発明のセラミック発熱体
は、電気絶縁性セラミック焼結体中に、2層以上の無機
導電材の発熱抵抗体層と、該発熱抵抗体層に接続したリ
ード部と、該リード部に接続した電極取り出し層を埋設
し、少なくとも最高発熱部に該当する前記発熱抵抗体層
の最外周が、電気絶縁性セラミック焼結体の外径に対し
6〜25%の距離だけ、かつ発熱抵抗体層の先端が電気
絶縁性セラミック焼結体の先端から0.3〜1.5mm
の距離だけ電気絶縁性セラミック焼結体の表面より内側
に位置し、少なくとも最高発熱部から先端側の断面形状
を円形としたことから、先端発熱を維持しながら急速昇
温特性を損なうことなく、稼働中にセラミック発熱体が
極めて大きな温度差を生じるような熱衝撃を受けても、
セラミック発熱体にクラックを発生したりせず、長時間
の連続稼働時の熱履歴に耐え、確実に着火して安全性を
確保できる耐久性と信頼性に優れたディーゼルエンジン
用の自己飽和型グロープラグをはじめ、各種加熱点火用
ヒーターとして最適なセラミック発熱体を得ることがで
きる。
As described above, the ceramic heating element of the present invention has a heating resistor layer made of two or more layers of inorganic conductive material and connected to the heating resistor layer in an electrically insulating ceramic sintered body. The lead portion and the electrode lead-out layer connected to the lead portion are embedded, and at least the outermost periphery of the heating resistor layer corresponding to the highest heating portion is 6 to 25% of the outer diameter of the electrically insulating ceramic sintered body. And the tip of the heating resistor layer is 0.3 to 1.5 mm from the tip of the electrically insulating ceramic sintered body.
Since it is located inside the surface of the electrically insulating ceramic sintered body by a distance of at least, and the cross-sectional shape from the highest heat generating portion to the tip side is circular, at the same time, maintaining the tip heat generation, without impairing the rapid temperature rise characteristics, Even if the ceramic heating element receives a thermal shock that causes an extremely large temperature difference during operation,
A self-saturating glow for diesel engines that has excellent durability and reliability that can withstand thermal history during long-term continuous operation without cracking the ceramic heating element and ensure safety by igniting reliably. It is possible to obtain a ceramic heating element that is most suitable as a heater for various heating and ignition including plugs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミック発熱体の一実施例を示
す断面図である。
FIG. 1 is a sectional view showing an embodiment of a ceramic heating element according to the present invention.

【図2】本発明に係るセラミック発熱体の最高発熱部に
おける横断面を示す図である。
FIG. 2 is a view showing a cross section of the highest heat generating portion of the ceramic heat generating element according to the present invention.

【図3】本発明に係るセラミック発熱体をディーゼルエ
ンジンの始動促進に用いる自己飽和型グロープラグに適
用した一実施例を示す要部断面図である。
FIG. 3 is a cross-sectional view of a main part showing an embodiment in which the ceramic heating element according to the present invention is applied to a self-saturation glow plug used to accelerate starting of a diesel engine.

【図4】従来のセラミックヒータをディーゼルエンジン
のグロープラグに適用した要部を示す断面図である。
FIG. 4 is a sectional view showing a main part of a conventional ceramic heater applied to a glow plug of a diesel engine.

【符号の説明】[Explanation of symbols]

1 セラミック発熱体 2 電気絶縁性セラミック焼結体 3 発熱抵抗体層 4、5 リード部 6、7 電極取り出し層 8 最高発熱部 9 最外周 10 外径 DESCRIPTION OF SYMBOLS 1 Ceramic heating element 2 Electrically insulating ceramic sintered body 3 Heating resistor layer 4, 5 Lead part 6, 7 Electrode extraction layer 8 Maximum heat generating part 9 Outermost periphery 10 Outer diameter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性セラミック焼結体中に、2層以
上から成る無機導電材の発熱抵抗体層と、該発熱抵抗体
層に接続したリード部と、該リード部に接続した電極取
り出し層を埋設し、少なくとも最高発熱部の発熱抵抗体
層の最外周が、電気絶縁性セラミック焼結体の外径に対
し6〜25%の距離lだけ該電気絶縁性セラミック焼結
体の表面より内側に、かつ発熱抵抗体層の先端が電気絶
縁性セラミック焼結体の先端から0.3〜1.5mm内
側に位置し、少なくとも最高発熱部から先端側の断面形
状を円形と成すことを特徴とするセラミック発熱体。
1. A heating resistor layer made of an inorganic conductive material comprising two or more layers, a lead portion connected to the heating resistor layer, and an electrode connected to the lead portion in an electrically insulating ceramic sintered body. A layer is embedded, and at least the outermost periphery of the heating resistor layer of the highest heat generating portion is separated from the surface of the electrically insulating ceramic sintered body by a distance 1 of 6 to 25% of the outer diameter of the electrically insulating ceramic sintered body. It is characterized in that the tip of the heating resistor layer is located inside and 0.3 to 1.5 mm inside the tip of the electrically insulating ceramic sintered body, and the cross-sectional shape of at least the highest heat generating portion from the tip side is circular. And a ceramic heating element.
【請求項2】前記無機導電材の発熱抵抗体層を埋設した
電気絶縁性セラミック焼結体の少なくとも最高発熱部
が、1000℃以上の熱衝撃抵抗を有することを特徴と
する請求項1記載のセラミック発熱体。
2. An electrically insulating ceramic sintered body in which a heating resistor layer of the inorganic conductive material is embedded has at least the highest heat generating portion having a thermal shock resistance of 1000 ° C. or higher. Ceramic heating element.
【請求項3】前記無機導電材の発熱抵抗体層を埋設した
電気絶縁性セラミック焼結体の少なくとも最高発熱部の
表面粗さが、0.4〜3.0μm Rmax であることを特
徴とする請求項1記載のセラミック発熱体。
3. The surface roughness of at least the highest heat generating portion of the electrically insulating ceramic sintered body in which the heat generating resistor layer of the inorganic conductive material is embedded is 0.4 to 3.0 μm R max. The ceramic heating element according to claim 1.
JP00934694A 1993-09-20 1994-01-31 Ceramic heating element Expired - Fee Related JP3426678B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00934694A JP3426678B2 (en) 1994-01-31 1994-01-31 Ceramic heating element
US08/305,085 US5750958A (en) 1993-09-20 1994-09-13 Ceramic glow plug
DE4433505A DE4433505C2 (en) 1993-09-20 1994-09-20 ceramic glow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00934694A JP3426678B2 (en) 1994-01-31 1994-01-31 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH07220859A true JPH07220859A (en) 1995-08-18
JP3426678B2 JP3426678B2 (en) 2003-07-14

Family

ID=11717917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00934694A Expired - Fee Related JP3426678B2 (en) 1993-09-20 1994-01-31 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP3426678B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132949A (en) * 1999-10-29 2001-05-18 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
JP2001176647A (en) * 1999-12-20 2001-06-29 Ngk Spark Plug Co Ltd Ceramic heating element and blow plug for diesel engine equipped with the same
JP2003025195A (en) * 2001-07-10 2003-01-29 Ngk Spark Plug Co Ltd Device for manufacturing ceramic element
JP2005300046A (en) * 2004-04-13 2005-10-27 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
WO2005117492A1 (en) * 2004-05-27 2005-12-08 Kyocera Corporation Ceramic heater, and glow plug using the same
WO2019102708A1 (en) * 2017-11-21 2019-05-31 ボッシュ株式会社 Glow plug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132949A (en) * 1999-10-29 2001-05-18 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
JP2001176647A (en) * 1999-12-20 2001-06-29 Ngk Spark Plug Co Ltd Ceramic heating element and blow plug for diesel engine equipped with the same
JP2003025195A (en) * 2001-07-10 2003-01-29 Ngk Spark Plug Co Ltd Device for manufacturing ceramic element
JP4676653B2 (en) * 2001-07-10 2011-04-27 日本特殊陶業株式会社 Ceramic element manufacturing equipment
JP2005300046A (en) * 2004-04-13 2005-10-27 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
JP4546756B2 (en) * 2004-04-13 2010-09-15 日本特殊陶業株式会社 Ceramic heater and glow plug
WO2005117492A1 (en) * 2004-05-27 2005-12-08 Kyocera Corporation Ceramic heater, and glow plug using the same
JPWO2005117492A1 (en) * 2004-05-27 2008-04-03 京セラ株式会社 Ceramic heater and glow plug using the same
US7935912B2 (en) 2004-05-27 2011-05-03 Kyocera Corporation Ceramic heater, and glow plug using the same
WO2019102708A1 (en) * 2017-11-21 2019-05-31 ボッシュ株式会社 Glow plug
JPWO2019102708A1 (en) * 2017-11-21 2020-10-22 ボッシュ株式会社 Glow plug
EP3736493A4 (en) * 2017-11-21 2021-06-02 Bosch Corporation Glow plug

Also Published As

Publication number Publication date
JP3426678B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
KR101195918B1 (en) Ceramic heater and glow plug
JP4969641B2 (en) Ceramic heater, glow plug using this ceramic heater
EP0601727B1 (en) Ceramic glow plug heater having matching coefficients of thermal expansion
US20040178185A1 (en) Glow plug and method of manufacturing the same
US20180331507A1 (en) Spark ignition device for an internal combustion engine and central electrode assembly therefore
WO2012014872A1 (en) Heater and glow plug provided with same
JP3426678B2 (en) Ceramic heating element
JP3078418B2 (en) Ceramic heating element
JPWO2013129597A1 (en) Heater and glow plug equipped with the same
JP2004061041A (en) Ceramic glow plug
JP3439807B2 (en) Ceramic heating element
JPH07139737A (en) Ceramic heater
JPH07151332A (en) Ceramic glow plug
JPS61235613A (en) Glow plug
JPH0798121A (en) Ceramic glow plug
JP2004319459A (en) Ceramic heating resistor and heater for oxygen probe using the same
JP2735721B2 (en) Ceramic heating element
JP4019004B2 (en) Ceramic heater and glow plug using the same
JPH10335050A (en) Ceramic heater
JPH1022064A (en) Ceramic heating element
JP3004134B2 (en) Ceramic heating element
JP3964305B2 (en) Ceramic heater
JPH10177892A (en) Ceramic heater
JPH0517354U (en) Ceramic heater
JPH1154246A (en) Ceramic heating body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110509

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130509

LAPS Cancellation because of no payment of annual fees