JPH07220631A - Method of forming fluorescent film - Google Patents

Method of forming fluorescent film

Info

Publication number
JPH07220631A
JPH07220631A JP1027694A JP1027694A JPH07220631A JP H07220631 A JPH07220631 A JP H07220631A JP 1027694 A JP1027694 A JP 1027694A JP 1027694 A JP1027694 A JP 1027694A JP H07220631 A JPH07220631 A JP H07220631A
Authority
JP
Japan
Prior art keywords
fluorescent film
bulb
ray tube
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027694A
Other languages
Japanese (ja)
Inventor
Miyuki Yamane
未有希 山根
Nushito Takahashi
主人 高橋
Nobuo Tsumaki
伸夫 妻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1027694A priority Critical patent/JPH07220631A/en
Publication of JPH07220631A publication Critical patent/JPH07220631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To get a cathode-ray tube long in life and also, reduce the power consumption sharply. CONSTITUTION:In a process of forming a fluorescent film 5 on the inner face of the face part 1a of a bulb 1 by sedimentation, the fluorescent film 5 is dried, and then it is soaked in water again, and hot blast 8 is blown against it. The temperature of the hot blast 8 shall be not less than the temperature equivalent to the disconnection energy of water molecules. Hereby, the gas molecules discharged during a heat treatment process decrease, and the gas molecules remaining in a bulb at the time of a cathode-ray tube being completed are reduced. Moreover, the vacuum pollution inside the cathode-ray tube by the increase of currents of electron irradiation accompany in the progress of high brightness is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブラウン管の製造方法、
特に、蛍光膜形成工程に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a cathode ray tube,
In particular, it relates to a fluorescent film forming step.

【0002】[0002]

【従来の技術】バルブ内面の蛍光膜の形成は、特開昭62
−195827号公報に記載されているような工程で行われ
る。図1に示すように、まずバルブ1のフェース部1a
を下に向けて、純水に酢酸バリウムを混合したゲル化促
進剤2を投入する。その後、水ガラスを比重調整したも
のに蛍光体4を混合した蛍光体懸濁液3を投入し、その
ままバルブを静置させる。この間に蛍光体4はバルブ部
1のフェース部1aの内面に沈殿し、バルブ内の処理液
が澄んでくる。そしてバルブ1を傾斜させながら処理済
の廃液を排水し、その後、フェース部1aの内面に沈殿
した蛍光膜の乾燥が行われる。その後、蛍光膜上にアル
ミ膜が蒸着される。この際、できるだけ平滑なアルミ蒸
着膜を形成する目的で、有機懸濁液のフィルミング塗布
が行われている。そしてブラウン管は図2に示すよう
に、黒鉛膜形成工程3,アルミ膜形成工程4,熱処理工
程5,エージング工程6,補強工程7が行われ完成す
る。
2. Description of the Related Art The formation of a fluorescent film on the inner surface of a bulb is disclosed in JP-A-62-62.
-195827 gazette is performed in the process as described. As shown in FIG. 1, first, the face portion 1 a of the valve 1
Facing downward, the gelling agent 2 in which pure water is mixed with barium acetate is charged. After that, the phosphor suspension 3 in which the phosphor 4 is mixed with water glass whose specific gravity has been adjusted is added, and the bulb is left standing as it is. During this time, the phosphor 4 is deposited on the inner surface of the face portion 1a of the bulb portion 1, and the treatment liquid in the bulb becomes clear. Then, the treated waste liquid is drained while inclining the bulb 1, and then the fluorescent film deposited on the inner surface of the face portion 1a is dried. Then, an aluminum film is deposited on the fluorescent film. At this time, for the purpose of forming an aluminum vapor-deposited film that is as smooth as possible, film coating of an organic suspension is performed. Then, as shown in FIG. 2, the cathode ray tube is completed by performing a graphite film forming step 3, an aluminum film forming step 4, a heat treatment step 5, an aging step 6, and a reinforcing step 7.

【0003】[0003]

【発明が解決しようとする課題】完成されたブラウン管
内の蛍光体や水ガラスなどを含めた構成部材に水分等の
ガス分子が残っていると、電子銃の動作中にバルブ内の
温度が上昇したり、内壁に電子が衝撃することなどによ
ってこれらのガス分子が放出され、ブラウン管内の真空
が悪化して電子放射特性を劣化させる。これがブラウン
管の寿命を短縮させる大きな要因である。そのため、図
2に示すようにブラウン管の製造工程内の熱処理工程5
で構成部材に取り込まれているガス分子をできる限り放
出させ、バルブ内に残留するガス分子の低減を図ってい
る。
If gas molecules such as moisture remain in the constituent members including the phosphor and water glass in the completed cathode ray tube, the temperature inside the bulb rises during the operation of the electron gun. These gas molecules are released due to the impact of electrons on the inner wall, which deteriorates the vacuum in the cathode ray tube and deteriorates the electron emission characteristics. This is a major factor in shortening the life of the cathode ray tube. Therefore, as shown in FIG. 2, the heat treatment step 5 in the cathode ray tube manufacturing step is performed.
The gas molecules taken into the component are released as much as possible to reduce the gas molecules remaining in the valve.

【0004】熱処理工程5において、まず蛍光膜上に塗
布されていた有機懸濁液を除去するためにバルブを大気
中で加熱する大気中加熱工程51が行われる。この時に
バルブ内に放出されるガス分子で最も多いのは水蒸気で
ある。これらのガス分子はネック部からバルブの外に排
出されるが、ネック部は非常に細いためバルブ内に放出
されたガス分子は容易には大気中に放出されず、一部は
バルブ内に残留してしまう。そして、バルブの管壁が常
温まで下がるとバルブ内のあらゆるところに再吸着し、
一部は結晶水として取り込まれてしまう。そのため、最
終的にはブラウン管内を真空に排気する真空排気工程5
3内でバルブ内に残留したガス分子を再度バルブ内に放
出させバルブの外に排出させている。しかし、真空排気
工程53では、前工程でネック部に電子銃が取り付けら
れる封止工程52が行われており排気管が非常に細くな
っている。そのため、放出されたガス分子を排出させる
ことが非常に困難になり、排出し切るには長時間を要し
てしまう。そこで、真空排気工程53が行われる前段階
までにバルブ内に残留,吸着しているガス分子をできる
だけ低減させておく必要がある。
In the heat treatment step 5, first, an in-air heating step 51 of heating the bulb in the air to remove the organic suspension applied on the fluorescent film is performed. The largest number of gas molecules released into the valve at this time is water vapor. These gas molecules are discharged from the neck to the outside of the valve, but the neck is so thin that the gas molecules released inside the valve are not easily released into the atmosphere, but some remain inside the valve. Resulting in. Then, when the bulb wall drops to room temperature, it re-adsorbs everywhere inside the bulb,
Part of it is taken in as crystal water. Therefore, finally, the vacuum evacuation step 5 for evacuating the inside of the cathode ray tube to a vacuum.
The gas molecules remaining in the valve in 3 are released into the valve again and discharged outside the valve. However, in the vacuum evacuation process 53, the sealing process 52 in which the electron gun is attached to the neck portion is performed in the previous process, and the exhaust pipe is extremely thin. Therefore, it becomes very difficult to discharge the released gas molecules, and it takes a long time to completely discharge them. Therefore, it is necessary to reduce the gas molecules remaining and adsorbed in the valve as much as possible before the evacuation step 53 is performed.

【0005】本発明の目的は、蛍光膜形成時に蛍光膜内
に取り込まれる水分等を減少させ、更に再吸着しにくい
蛍光膜の形成方法を提供することにある。これにより、
熱処理工程5でバルブ内に放出される水分等のガス分子
が低減されるため、ブラウン管内の真空が向上し、寿命
の長いブラウン管の製造を可能とする。
An object of the present invention is to provide a method for forming a fluorescent film which reduces moisture and the like taken into the fluorescent film during the formation of the fluorescent film and is less likely to be re-adsorbed. This allows
Since gas molecules such as moisture released into the bulb in the heat treatment step 5 are reduced, the vacuum in the cathode ray tube is improved, and a cathode ray tube having a long life can be manufactured.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めには、熱処理工程の前に蛍光膜内の水分量を低減して
おくことが有効である。つまり、本発明は、蛍光体が沈
殿法によりバルブ部のフェース部内面に塗布され乾燥が
行われた後、再度水をバルブ内に入れてある程度放置す
る。その水を排水後、ネック部からガス導入管をバルブ
内に挿入しガスを吹き付けて行う。この時の吹き付け温
度を水分子が容易に脱離,放出される脱離エネルギに相
当する温度以上とすることを特徴とする。具体的には水
の脱離エネルギは120℃付近なので、高温熱風の温度
は120℃以上にすればよい。なお、水分子の放出を更
に促進するには150℃以上にすることが望ましい。導
入するガスは、水分量の少ないガス、例えば、乾燥空
気,乾燥窒素,乾燥アルゴンなどがより効果的である。
また、蛍光膜全体に熱風が吹き付けられるように、ガス
導入管先端が広口構造としたり、回転を伴わせて行うこ
とも有効である。
In order to solve the above problems, it is effective to reduce the amount of water in the fluorescent film before the heat treatment step. That is, in the present invention, after the phosphor is applied to the inner surface of the face portion of the bulb portion by the precipitation method and dried, water is again put into the bulb and left to some extent. After draining the water, a gas inlet pipe is inserted into the valve from the neck portion and gas is blown to the valve. It is characterized in that the spraying temperature at this time is equal to or higher than the temperature corresponding to the desorption energy at which water molecules are easily desorbed and released. Specifically, since the desorption energy of water is around 120 ° C., the temperature of the hot hot air may be 120 ° C. or higher. It should be noted that the temperature is preferably 150 ° C. or higher to further accelerate the release of water molecules. As the gas to be introduced, a gas having a small water content, for example, dry air, dry nitrogen, dry argon or the like is more effective.
Further, it is also effective to make the tip of the gas introduction tube have a wide-mouthed structure or to rotate it so that hot air is blown to the entire fluorescent film.

【0007】[0007]

【作用】ブラウン管の製造工程において、蛍光体を沈殿
法により接着剤の役割を果たす水ガラスとともにバルブ
部のフェース部内面に塗布され、乾燥が行われる。蛍光
体塗布後乾燥を行う際、接着剤の役割を果たす水ガラス
はSiO2 を遊離させて硬化していく。二酸化炭素は蛍
光膜内に残留している水と反応して炭酸イオン(CO3~)
となり、水ガラスからSiO2を遊離させると共に、炭
酸塩(Na2CO3,K2CO3等)を形成する。炭酸塩を
加熱すると、100−300℃付近で多量のガスが放出
される。そのため図2に示したような熱処理工程では大
きなガス源となる。そこで炭酸塩は吸湿性で溶解しやす
いため、乾燥後に再度水に浸漬させることにより炭酸塩
を溶解し、その後高温熱風を吹き付けることによって水
分を効率良く蒸発させ、蛍光膜に水分が残存することを
防ぐ。
In the manufacturing process of the cathode ray tube, the phosphor is applied to the inner surface of the face portion of the bulb portion by the precipitation method together with water glass which plays the role of an adhesive, and is dried. When the phosphor is coated and then dried, the water glass that functions as an adhesive releases SiO 2 and hardens. Carbon dioxide reacts with the water remaining in the fluorescent film to react with carbonate ions (CO 3 ~)
Thus, SiO 2 is liberated from the water glass and a carbonate (Na 2 CO 3 , K 2 CO 3, etc.) is formed. When carbonate is heated, a large amount of gas is released near 100 to 300 ° C. Therefore, it becomes a large gas source in the heat treatment process as shown in FIG. Therefore, since carbonates are hygroscopic and easily dissolved, the carbonates are dissolved by re-immersing them in water after drying, and then high-temperature hot air is blown to efficiently evaporate the water, so that the water remains on the fluorescent film. prevent.

【0008】[0008]

【実施例】以下に本発明の実施例を説明する。図4に示
した工程で蛍光膜を形成する。始めに図1に示すように
蛍光体を沈殿塗布する。まずバルブ1のフェース部1a
を下向きにし、純水に酢酸バリウムを混合したゲル化促
進剤2を投入する。その後蛍光体同士及び蛍光体とガラ
スとの接着剤の役割を果たす水ガラスを比重調整し蛍光
体を混合した蛍光体懸濁液3を投入してそのまま静置す
る。この間に蛍光体4はバルブ1のフェース部1a内面
に沈殿し、バルブ内の処理廃液が澄んでくる。次にバル
ブ1を傾斜させながら処理済の廃液が排水され、蛍光膜
の乾燥が行われる。蛍光膜の乾燥後再度水を浸漬する。
ある程度浸漬させた後その水を排水し、図5に示すよう
に高温熱風を吹き付ける。バルブ1のネック部6よりバ
ルブ1内にガス導入管7が挿入され熱風空気が吹き付け
られる。吹き付け用のガスは乾燥空気のように水分が含
まれていないことが重要であり、その他に乾燥窒素や乾
燥アルゴンも同様な効果が得られる。またコストを別に
すれば、乾燥ヘリウム,乾燥ネオン,乾燥クリプトンな
どの希ガスでもよい。又、形成された蛍光膜の剥離を防
止するために水を霧状にして吹き付けてもよい。その
後、図2に示すような工程で、黒鉛塗布3,アルミ膜蒸
着4,熱処理工程5,エージング工程6,補強工程7が
行われ、ブラウン管が完成される。
EXAMPLES Examples of the present invention will be described below. A fluorescent film is formed in the process shown in FIG. First, as shown in FIG. 1, a phosphor is applied by precipitation. First, the face portion 1a of the valve 1
Is turned downward, and the gelation accelerator 2 in which pure water is mixed with barium acetate is added. Then, the specific gravity of the water glass, which plays the role of an adhesive between the phosphors and between the phosphors and the glass, is adjusted, and the phosphor suspension 3 in which the phosphors are mixed is added and allowed to stand. During this time, the phosphor 4 is deposited on the inner surface of the face portion 1a of the bulb 1, and the processing waste liquid in the bulb becomes clear. Next, the treated waste liquid is drained while the valve 1 is tilted, and the fluorescent film is dried. After the fluorescent film is dried, it is immersed in water again.
After soaking it to some extent, the water is drained and hot hot air is blown as shown in FIG. A gas introduction pipe 7 is inserted into the valve 1 from the neck portion 6 of the valve 1 and hot air is blown. It is important that the gas for blowing does not contain water like dry air, and dry nitrogen or dry argon can also obtain the same effect. Also, except for the cost, a rare gas such as dry helium, dry neon, or dry krypton may be used. Further, in order to prevent the formed fluorescent film from peeling off, water may be atomized and sprayed. Then, in a process as shown in FIG. 2, a graphite coating 3, an aluminum film deposition 4, a heat treatment process 5, an aging process 6 and a reinforcing process 7 are performed to complete a cathode ray tube.

【0009】本発明によれば蛍光膜から放出されるガス
分子、特に水分子が低減されるため、熱処理工程でバル
ブ内に放出されるガス分子が低減される。そのためバル
ブ内に放出されたガス分子の排気が容易となり、バルブ
内を従来より高真空で封じ切ることができるようにな
る。これにより、高輝度化に伴う電子放射の電流増加に
よるブラウン管内の真空汚染が低減され、更にブラウン
管の寿命を延長させることにつながる。
According to the present invention, gas molecules, especially water molecules, released from the fluorescent film are reduced, so that gas molecules released into the bulb during the heat treatment process are reduced. Therefore, the gas molecules released into the valve can be easily exhausted, and the inside of the valve can be closed with a higher vacuum than before. As a result, vacuum contamination in the cathode ray tube due to an increase in electron emission current due to higher brightness is reduced, which further extends the life of the cathode ray tube.

【0010】[0010]

【発明の効果】本発明は、ブラウン管を構成している蛍
光膜の表面や内部に取り込まれてしまう水分等のガス分
子を低減させる。更に再吸着しにくい表面を形成する。
これにより熱処理工程で放出されるガス分子が減少す
る。したがって、ブラウン管が完成した時点でバルブ内
に残留するガス分子が減少し、より高真空のブラウン管
を得ることができる。つまり、電子放射特性に経時変化
の少ない、寿命の長いブラウン管となる。更に、今後の
高輝度化に伴う電子放射の電流増加によるブラウン管内
の真空汚染も低減できる。又、蛍光膜や黒鉛膜からのガ
ス分子の放出を低減させたことに伴い、バルブ内を高真
空化するために実施していた熱処理工程において、真空
排気工程でのバルブ部への加熱温度の低温化や時間履歴
の短縮を図ることができ、消費電力が大きく削減でき
る。
INDUSTRIAL APPLICABILITY The present invention reduces gas molecules such as moisture taken into the surface or inside of the fluorescent film constituting the cathode ray tube. Further, it forms a surface that is difficult to be re-adsorbed.
This reduces the gas molecules released in the heat treatment process. Therefore, when the cathode ray tube is completed, the number of gas molecules remaining in the bulb is reduced, and a higher vacuum cathode ray tube can be obtained. In other words, the cathode ray tube has a long life and little change in electron emission characteristics over time. Furthermore, vacuum contamination in the cathode ray tube due to an increase in electron emission current due to future high brightness can be reduced. In addition, due to the reduction of gas molecule emission from the fluorescent film and the graphite film, in the heat treatment process that was performed to make the inside of the valve high vacuum, the heating temperature of the valve part during the vacuum exhaust process was changed. The temperature can be lowered and the time history can be shortened, and the power consumption can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来の蛍光膜形成工程の説明図。FIG. 1 is an explanatory view of a fluorescent film forming process according to the present invention and the related art.

【図2】ブラウン管の製造工程を示すフローチャート。FIG. 2 is a flowchart showing a manufacturing process of a cathode ray tube.

【図3】本発明の蛍光膜の形成工程を示すフローチャー
ト。
FIG. 3 is a flowchart showing steps of forming a fluorescent film of the present invention.

【図4】本発明による水浸漬後の蛍光膜に高温空気吹き
付けを説明するバルブの側断面図。
FIG. 4 is a side sectional view of a bulb for explaining hot air blowing on a fluorescent film after immersion in water according to the present invention.

【符号の説明】[Explanation of symbols]

1…バルブ、1a…フェース部、2…ゲル化促進剤、3
…蛍光体懸濁液、4…蛍光体、5…蛍光膜、6…ネッ
ク、7…ガス導入管、8…高温空気。
1 ... Bulb, 1a ... Face part, 2 ... Gelation accelerator, 3
... phosphor suspension, 4 phosphor, 5 phosphor film, 6 neck, 7 gas inlet tube, 8 hot air.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バルブ内にゲル化促進剤を投入し、次に蛍
光体を分散した前記蛍光体の懸濁液を投入して静置して
バルブの内面に前記蛍光体を沈殿させた後、前記バルブ
内の処理廃液を排水し蛍光膜を乾燥し前記蛍光膜を形成
する工程において、前記バルブ内の前記処理廃液を排水
し高温乾燥した前記蛍光膜を、再度水に浸漬し高温熱風
を吹き付け、前記高温熱風の温度を前記蛍光膜に含まれ
ている水分子の脱離エネルギに対応する温度以上で行う
ことを特徴とする蛍光膜の形成方法。
1. A gelling accelerator is put into the bulb, and then a suspension of the phosphor in which the phosphor is dispersed is placed and allowed to stand to precipitate the phosphor on the inner surface of the bulb. In the step of draining the processing waste liquid in the bulb and drying the fluorescent film to form the fluorescent film, the processing waste liquid in the bulb is drained and the fluorescent film dried at high temperature is again immersed in water to obtain hot hot air. A method for forming a fluorescent film, characterized in that the spraying is performed at a temperature of the high-temperature hot air at a temperature higher than the temperature corresponding to the desorption energy of water molecules contained in the fluorescent film.
JP1027694A 1994-02-01 1994-02-01 Method of forming fluorescent film Pending JPH07220631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027694A JPH07220631A (en) 1994-02-01 1994-02-01 Method of forming fluorescent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027694A JPH07220631A (en) 1994-02-01 1994-02-01 Method of forming fluorescent film

Publications (1)

Publication Number Publication Date
JPH07220631A true JPH07220631A (en) 1995-08-18

Family

ID=11745796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027694A Pending JPH07220631A (en) 1994-02-01 1994-02-01 Method of forming fluorescent film

Country Status (1)

Country Link
JP (1) JPH07220631A (en)

Similar Documents

Publication Publication Date Title
JP2000156160A (en) Vacuum device, and manufacture of plasma display unit
JP2000076989A (en) Manufacture of gas discharge panel and gas discharge panel
JPH07220631A (en) Method of forming fluorescent film
US4213663A (en) Wet carbon-dioxide treatment of partially-completed CRT
JPH06295667A (en) Drying of fluorescent screen
JPH07335123A (en) Fluorescent screen forming method
JPH024093B2 (en)
JP2000082416A (en) Phosphor screen and its formation method
US5360361A (en) Method of manufacturing a display tube
KR920004637B1 (en) Method manufacturing color crt
JPH08190857A (en) Manufacture of shadow mask
KR100211429B1 (en) Cleaning method of cathode ray tube
JPH08329838A (en) Method for forming shadow mask
JPH08212976A (en) Low pressure mercury discharge lamp and manufacture thereof
US2777743A (en) Manufacture of lamps with luminescent screens
JPH026185B2 (en)
JPS6255257B2 (en)
JPH08315731A (en) Manufacture of cathode ray tube
JPH06203755A (en) Manufacture of cathode-ray tube
JPS61281432A (en) Manufacture of fluorescent lamp
JPH0523009B2 (en)
JPS58128633A (en) Manufacturing method for color cathode-ray tube
JP2005209462A (en) Processing method of dielectric protecting film and plasma display panel
KR20080090748A (en) Manufacturing method of plasma display panel
JPS58158836A (en) Reclaim of cathode ray tube