JPH0722059A - Flat solid electrolyte fuel cell - Google Patents

Flat solid electrolyte fuel cell

Info

Publication number
JPH0722059A
JPH0722059A JP5159401A JP15940193A JPH0722059A JP H0722059 A JPH0722059 A JP H0722059A JP 5159401 A JP5159401 A JP 5159401A JP 15940193 A JP15940193 A JP 15940193A JP H0722059 A JPH0722059 A JP H0722059A
Authority
JP
Japan
Prior art keywords
fuel gas
cell
stack
fuel
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5159401A
Other languages
Japanese (ja)
Other versions
JP3064746B2 (en
Inventor
Shunsuke Taniguchi
俊輔 谷口
Koji Yasuo
耕司 安尾
Noboru Ishida
登 石田
Yukinori Akiyama
幸徳 秋山
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5159401A priority Critical patent/JP3064746B2/en
Publication of JPH0722059A publication Critical patent/JPH0722059A/en
Application granted granted Critical
Publication of JP3064746B2 publication Critical patent/JP3064746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To decrease a temperature difference between a center cell and end cells so as to enhance cell life by causing fuel gas to exchange heat with a cell stack as it circulates through a supply line. CONSTITUTION:Fuel gas supply side buffers 14a-14d are connected to respective internal manifold supply holes 9a-9d and fuel gas discharge side buffers 15a-15d are connected to respective internal manifold discharge holes 10a-10d. Fuel gas discharge holes 16a-16d for discharging fuel gas out of a cell are formed within the respective buffers 15a-15d. The fuel gas rises within a cell stack via a fuel gas preheating pipe 7 at the center of the cell stack, absorbing the heat of the cell and reaching a higher temperature. Heat at the center of a cell plane is absorbed by a gas preheating portion 6, so the fuel gas exchanges heat with the stack as it circulates through the preheating portion 6 serving as a fuel gas supply line. Thereby the temperature difference between the center portion and the peripheral portion of the cell plane is decreased, the fuel gas is efficiently heated, and cell life can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平板型固体電解質燃料電
池に関し、詳しくは燃料ガス供給構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate type solid electrolyte fuel cell, and more particularly to improvement of a fuel gas supply structure.

【0002】[0002]

【従来の技術】燃料電池は供給されるガスの化学エネル
ギーを直接電気エネルギーに変換するので、高い発電効
率が期待できる。特に固体電解質燃料電池(SOFC)
は、リン酸型燃料電池(PAFC),溶融炭酸塩型燃料
電池(MCFC)に次ぐ第三世代の燃料電池として注目
されている。
2. Description of the Related Art A fuel cell directly converts chemical energy of a supplied gas into electric energy, so that high power generation efficiency can be expected. Especially solid oxide fuel cell (SOFC)
Has attracted attention as a third generation fuel cell next to the phosphoric acid fuel cell (PAFC) and the molten carbonate fuel cell (MCFC).

【0003】一般に、SOFCは完全固体化した燃料電
池といわれるように、電解質として主に(ZrO2
0.9 (Y2 3 0.1 等の2価又は3価の金属酸化物を
固溶した酸化ジルコニウム(安定化ジルコニア)を使用
するため、電解質(液)損失の問題がないという利点が
ある。また、これら電解質の電荷担体は酸素イオンであ
るが、この酸素イオンの導電率は常温では極めて低く、
通常約1000℃という高温でSOFCを作動させてい
るので、高品質な排熱が得られる,廃熱の利用を含める
と前記PAFCやMCFCに比べてエネルギー効率を向
上させることができる,燃料ガスの選択の巾が増える,
高電流密度で作動させることができる等の利点もある。
In general, SOFC is mainly used as an electrolyte (ZrO 2 ) as it is called a completely solidified fuel cell.
Since zirconium oxide (stabilized zirconia) in which a divalent or trivalent metal oxide such as 0.9 (Y 2 O 3 ) 0.1 is dissolved is used, there is an advantage that there is no problem of electrolyte (liquid) loss. Further, the charge carriers of these electrolytes are oxygen ions, but the conductivity of these oxygen ions is extremely low at room temperature,
Since the SOFC is normally operated at a high temperature of about 1000 ° C., high-quality exhaust heat can be obtained. When the use of waste heat is included, the energy efficiency can be improved compared to the PAFC and MCFC. More choices,
It also has the advantage that it can be operated at a high current density.

【0004】従来、SOFCの開発は円筒型が先行して
いたが、現在では体積当りの発電効率の増加が見込まれ
る平板型SOFCの開発が脚光を浴びている。また、近
年では平板型SOFCの高容量化の要請が高まり、その
ためセルの大型化(大面積化)が図られている。
Conventionally, the development of the SOFC was preceded by the cylindrical type, but now, the development of the flat type SOFC, which is expected to increase the power generation efficiency per volume, is in the limelight. Further, in recent years, there has been an increasing demand for higher capacity flat plate SOFCs, and as a result, cells have been made larger (larger area).

【0005】[0005]

【発明が解決しようとする課題】ところで、従来は燃料
ガスを外部予熱器等で所定温度まで昇温した後、電池内
に供給して発電を行っていたが、セルの大型化に伴い多
量の燃料ガスを供給する必要が生じた。したがって、外
部予熱器等の能力増大や大型化を図る必要があり、その
ためコストの増大を招くという課題があった。
By the way, conventionally, the fuel gas was heated to a predetermined temperature by an external preheater or the like and then supplied into the battery to generate electric power. It became necessary to supply fuel gas. Therefore, it is necessary to increase the capacity and increase the size of the external preheater and the like, which causes an increase in cost.

【0006】また、セルの大面積化に伴って発電時の発
熱量が増大し、そのためセル平面での温度差が増大し、
セル劣化が早まるという課題もあった。本発明は上記課
題に鑑み、コストの増大を抑制すると共に、セル平面の
温度差を抑制し、電池寿命が向上した非常に優れた平板
型固体電解質燃料電池を提供することを目的とする。
Further, as the area of the cell becomes larger, the amount of heat generated during power generation increases, which increases the temperature difference in the cell plane,
There is also a problem that cell deterioration is accelerated. In view of the above problems, it is an object of the present invention to provide a very excellent flat plate solid electrolyte fuel cell that suppresses an increase in cost, suppresses a temperature difference between cell planes, and has an improved cell life.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、以下のことを特徴とする。 電解質板の両面に燃料極と酸化剤極とを配して成る
セルと,セパレータとを積層させて電池スタックを構成
する平板型固体電解質燃料電池において、前記電池スタ
ックの中心部近傍にスタック内を積層方向に貫通する燃
料ガス供給通路を形成し、該燃料ガス供給通路内を流通
する間に燃料ガスが電池スタックと熱交換する構成であ
ることを特徴とする。 前記燃料ガス供給通路を内外二重構造にすると共
に、燃料ガスが内側供給通路と外側供給通路の一方から
他方に折り返す状態で流れる構成としたことを特徴とす
る。
The present invention is characterized by the following in order to solve the above problems. In a flat plate type solid electrolyte fuel cell in which a cell formed by stacking a fuel electrode and an oxidizer electrode on both surfaces of an electrolyte plate and a separator is laminated to form a cell stack, a stack is formed near the center of the cell stack. A feature is that a fuel gas supply passage that penetrates in the stacking direction is formed and the fuel gas exchanges heat with the cell stack while flowing through the fuel gas supply passage. The fuel gas supply passage has an internal / external double structure, and the fuel gas flows in a state of being folded back from one of the inner supply passage and the outer supply passage to the other.

【0008】[0008]

【作用】上記の構成によれば、セルの発熱が奪われに
くく周辺部に比べて温度が高い電池スタックの中心部近
傍に燃料ガス供給通路を形成したので、燃料ガスは前記
燃料ガス供給通路内を流れる間にセルの発熱を奪って高
温になる。したがって、高温の燃料ガスを各セルに十分
に供給することができるので、セルの大型化に伴って燃
料ガスの供給量が増加した場合でも、その増加分を従来
のように外部予熱器等に依存する必要がない。その結
果、外部予熱器等の能力増大や大型化を図る必要がない
ので、コストの増大を抑制することができる。
According to the above construction, the fuel gas supply passage is formed in the vicinity of the central portion of the cell stack where the heat generation of the cell is hard to be taken and the temperature is higher than the peripheral portion. While flowing through, the heat of the cell is taken away and the temperature becomes high. Therefore, the high-temperature fuel gas can be sufficiently supplied to each cell, and even if the supply amount of the fuel gas increases as the size of the cell increases, the increased amount is supplied to the external preheater or the like as in the conventional case. You don't have to depend on it. As a result, there is no need to increase the capacity or increase the size of the external preheater or the like, so that it is possible to suppress an increase in cost.

【0009】また、セル平面の中心部の熱は前記燃料ガ
ス通路内を流れる燃料ガスによって奪われるため、セル
平面の中心部と周辺部との温度差が抑制され、その結果
セル劣化を抑制することができる。更に、上記の構成
によれば、燃料ガスは電池スタック内を積層方向に対向
して流れるため、電池スタック内の積層方向での温度差
が互いに打ち消され、電池スタックの中央部側セルと端
部側セルとの温度差が緩和され、電池寿命も向上する。
Further, since the heat of the central portion of the cell plane is taken by the fuel gas flowing in the fuel gas passage, the temperature difference between the central portion and the peripheral portion of the cell plane is suppressed, and as a result, cell deterioration is suppressed. be able to. Further, according to the above configuration, the fuel gas flows in the cell stack so as to face each other in the stacking direction, so that the temperature difference in the stacking direction in the cell stack is canceled by each other, and the central cell and the end portion of the cell stack are The temperature difference from the side cell is alleviated, and the battery life is also improved.

【0010】[0010]

【実施例】【Example】

〔実施例〕図1は本発明の一実施例に係る平板型固体電
解質燃料電池(10セルスタック)の概略構成を示す模
式図であり、この電池スタック1は後述するバイポーラ
プレート2とセル3とを交互に積層させ、燃料ガスバッ
ファプレート4及びガスコネクタープレート5で挟持し
た構造である。前記電池スタック1の中央部には積層方
向に貫通する燃料ガス予熱部6が形成され、また該燃料
ガス予熱部6内はアルミナ等の絶縁性セラミックスから
成る燃料ガス予熱管7が積層方向に延設されて二重構造
になっている。尚、セル3とバイポーラプレート2、或
いは各セル3間の気密は、パイレックスガラス等の非導
電性高粘度融体から成るシール剤(図示せず)を使用し
た。
[Embodiment] FIG. 1 is a schematic view showing a schematic structure of a flat plate type solid electrolyte fuel cell (10 cell stack) according to an embodiment of the present invention. This cell stack 1 includes a bipolar plate 2 and a cell 3 which will be described later. Are alternately stacked and sandwiched between the fuel gas buffer plate 4 and the gas connector plate 5. A fuel gas preheating portion 6 penetrating in the stacking direction is formed in the center of the cell stack 1, and a fuel gas preheating tube 7 made of insulating ceramics such as alumina extends in the stacking direction in the fuel gas preheating portion 6. It is installed and has a double structure. For airtightness between the cells 3 and the bipolar plates 2 or between the cells 3, a sealant (not shown) made of a non-conductive high viscosity melt such as Pyrex glass was used.

【0011】図2はバイポーラプレート2の平面図であ
り、大きさ250mm×250mmのインコネル600等の
耐熱合金から成り、中央部には前記燃料ガス予熱部6が
形成されている。また、該プレート2の片面には図に示
すようにリブ8a〜8dが形成され、該リブ8a〜8d
によって酸化剤ガス流路が4つの領域に仕切られてい
る。尚、図示しないが、該プレート2の反対側の面にも
前記リブ8a〜8dと略同一形状のリブが形成され、該
リブによって燃料ガス流路が4つの領域に仕切られてい
る。ここで、酸化剤ガスと燃料ガスとはセル内を対向し
て流れるようになっており、電池反応に寄与した後の温
度の高い燃料ガスが電池スタック1の中央部側を流れる
ように、内部マニホールド供給孔9a〜9d及び内部マ
ニホールド排出孔10a〜10dが夫々設けられてい
る。尚、図中11a〜11dは酸化剤ガスを供給するた
めの内部マニホールド孔を夫々示している。
FIG. 2 is a plan view of the bipolar plate 2, which is made of a heat-resistant alloy such as Inconel 600 having a size of 250 mm × 250 mm, and the fuel gas preheating portion 6 is formed in the central portion. Further, ribs 8a to 8d are formed on one surface of the plate 2 as shown in the drawing, and the ribs 8a to 8d are formed.
The oxidant gas flow path is divided into four regions by. Although not shown, ribs having substantially the same shape as the ribs 8a to 8d are also formed on the opposite surface of the plate 2, and the ribs divide the fuel gas passage into four regions. Here, the oxidant gas and the fuel gas are arranged to flow in the cell so as to face each other, and the fuel gas having a high temperature after contributing to the cell reaction flows inside the cell stack 1 so that the fuel gas flows inside the cell stack 1. Manifold supply holes 9a-9d and internal manifold discharge holes 10a-10d are provided, respectively. Incidentally, 11a to 11d in the drawing respectively show internal manifold holes for supplying the oxidizing gas.

【0012】図3はセル3の平面図であり、前記バイポ
ーラプレート2と略同じ大きさ(250mm×250mm)
である。このセル3は、内部マニホールド孔9a〜9
d,10a〜10d及び11a〜11dを形成した電解
質板(大きさ100mm×150mm,厚さ0.2mm)12a
〜12dの両面に、燃料極13a〜13d及び酸化剤極
(図示せず)を配して成る4枚の単セル3a〜3dを組
み合わせ、各電解質板12a〜12dに形成した内部マ
ニホールド孔を前記バイポーラプレート2のそれと対応
させると共に、中央部には前記燃料ガス予熱部6を形成
した。このように小型の単セル3a〜3d(大きさ10
0mm×150mm)を複数組み合わせることにより大型の
セル3(大きさ250mm×250mm)を構成すれば、強
度が脆く壊れやすい電解質板12a〜12dの大型化を
図ることなくセル3の大面積化を実現できるという利点
がある。
FIG. 3 is a plan view of the cell 3, which has substantially the same size as the bipolar plate 2 (250 mm × 250 mm).
Is. This cell 3 has internal manifold holes 9a-9
Electrolyte plate (size 100 mm × 150 mm, thickness 0.2 mm) 12a on which d, 10a to 10d and 11a to 11d are formed
.. to 12d on both sides thereof are combined with four unit cells 3a to 3d formed by arranging fuel electrodes 13a to 13d and an oxidizer electrode (not shown), and the internal manifold holes formed in each of the electrolyte plates 12a to 12d are described above. The fuel gas preheating portion 6 was formed in the central portion while corresponding to that of the bipolar plate 2. In this way, the small single cells 3a to 3d (size 10
If a large cell 3 (size 250 mm x 250 mm) is configured by combining a plurality of 0 mm x 150 mm), a large area of the cell 3 is realized without increasing the size of the electrolyte plates 12a to 12d, which are fragile and easily broken. There is an advantage that you can.

【0013】ここで、前記単セル3a〜3dを以下のよ
うにして作製した。先ず、3mol%Y2 3 部分安定
化ジルコニア(PSZ)から成る電解質板12a〜12
dの片面に酸化ニッケル及び8mol%Y2 3 安定化
ジルコニア(YSZ)から成るスラリーをスクリーン印
刷法により塗布した後、焼成して燃料極13a〜13d
を形成した。一方、前記電解質板12a〜12dの他方
の面にランタンストロンチウムマンガネート(La0.9
Sr0.1 MnO3 )とYSZとから成るスラリーを、ス
クリーン印刷法により塗布後、焼成して酸化剤極(図示
せず)を形成した。
Here, the unit cells 3a to 3d were manufactured as follows. First, electrolyte plates 12a to 12 made of 3 mol% Y 2 O 3 partially stabilized zirconia (PSZ).
A slurry of nickel oxide and 8 mol% Y 2 O 3 -stabilized zirconia (YSZ) was applied to one surface of d by a screen printing method, and then baked to burn the fuel electrodes 13a to 13d.
Was formed. On the other hand, the other surface to lanthanum strontium manganate of the electrolyte plate 12 a to 12 d (La 0.9
A slurry of Sr 0.1 MnO 3 ) and YSZ was applied by a screen printing method and then baked to form an oxidizer electrode (not shown).

【0014】図4は電池スタック1の下端に設けられる
ガスコネクタープレート5の斜視図であり、各燃料ガス
供給側バッファ14a〜14dは各内部マニホールド供
給孔9a〜9dと連結し、各燃料ガス排出側バッファ1
5a〜15dは各内部マニホールド排出孔10a〜10
dと連結している。また、この燃料ガス排出側バッファ
15a〜15d内には燃料ガスを電池外に排出するため
の燃料ガス排出孔16a〜16dが形成されている。
FIG. 4 is a perspective view of the gas connector plate 5 provided at the lower end of the cell stack 1. The fuel gas supply side buffers 14a to 14d are connected to the internal manifold supply holes 9a to 9d to discharge the fuel gas. Side buffer 1
5a to 15d are internal manifold discharge holes 10a to 10d.
It is connected to d. Further, in the fuel gas discharge side buffers 15a to 15d, fuel gas discharge holes 16a to 16d for discharging the fuel gas to the outside of the cell are formed.

【0015】以下、上記の如く構成された平板型固体電
解質燃料電池における燃料ガスの予熱方法について、図
1〜図4を用いて具体的に説明する。先ず、電池外の外
部予熱器(図示せず)によって一定温度まで昇温された
燃料ガスは、電池スタック1中央部の燃料ガス予熱管7
を介して電池スタック1内を上昇する。ここで、燃料ガ
ス予熱管7が設けられる電池スタック1の中央部はセル
の発熱が奪われにくく周辺部に比べて温度が高いので、
燃料ガスは前記燃料ガス予熱管7内を流れる間にセルの
発熱を奪ってより高温になる。また、セル平面の中心部
の発熱は前記燃料ガス予熱部6に奪われるため、セル平
面の中心部と周辺部との温度差が抑制される。
Hereinafter, a method of preheating fuel gas in the flat plate type solid oxide fuel cell having the above-mentioned structure will be specifically described with reference to FIGS. First, the fuel gas heated to a constant temperature by an external preheater (not shown) outside the cell is used as a fuel gas preheating pipe 7 at the center of the cell stack 1.
The inside of the battery stack 1 is raised via the. Here, in the central portion of the battery stack 1 in which the fuel gas preheating pipe 7 is provided, the heat of the cells is hard to be deprived and the temperature is higher than the peripheral portion,
While the fuel gas flows through the fuel gas preheating pipe 7, the fuel gas deprives the cells of heat generation and becomes higher in temperature. Further, the heat generated in the central portion of the cell plane is taken by the fuel gas preheating section 6, so that the temperature difference between the central portion and the peripheral portion of the cell plane is suppressed.

【0016】次に、この加熱された燃料ガスは燃料ガス
バッファプレート4に入り、電池スタック1上端側の端
部セル3に熱を与えた後、燃料ガス予熱部6内(即ち、
燃料ガス予熱管7の外周側)を下降し、電池スタック1
最下端のガスコネクタープレート5に設けた燃料ガス供
給側バッファ14a〜14dに供給され、電池スタック
1下端側の端部セル3に熱を与える。ここで、前記燃料
ガス予熱管7の内周側と外周側とでは、燃料ガスの流れ
る方向が逆であるので、電池スタック1積層方向の温度
差を抑制することができる。加えて、燃料ガスバッファ
プレート4及び燃料ガス供給側バッファ14a〜14d
内では燃料ガスが一時的に貯留されるため、電池スタッ
ク1上端側の端部セル3及び電池スタック1下端側の端
部セル3を加熱し、電池スタック1中央部側セルと端部
側セルとの温度差を抑制することもできる。
Next, the heated fuel gas enters the fuel gas buffer plate 4, heats the end cells 3 on the upper end side of the cell stack 1, and then, in the fuel gas preheating section 6 (that is,
Lower the fuel gas preheating tube 7) to the cell stack 1
It is supplied to the fuel gas supply side buffers 14a to 14d provided on the gas connector plate 5 at the lowermost end, and heats the end cells 3 on the lower end side of the cell stack 1. Here, since the flow direction of the fuel gas is opposite between the inner peripheral side and the outer peripheral side of the fuel gas preheating pipe 7, it is possible to suppress the temperature difference in the stacking direction of the cell stack 1. In addition, the fuel gas buffer plate 4 and the fuel gas supply side buffers 14a to 14d
Since the fuel gas is temporarily stored therein, the end cells 3 on the upper end side of the battery stack 1 and the end cells 3 on the lower end side of the battery stack 1 are heated, and the center side cells and the end side cells of the battery stack 1 are heated. It is also possible to suppress the temperature difference between and.

【0017】続いて、この燃料ガスは内部マニホールド
供給孔9a〜9dを介して電池スタック1内を上昇する
間に、各単セル3a〜3dに分配される。そして、電池
反応に寄与した後の高温の燃料ガスは内部マニホールド
排出孔10a〜10dを介して電池スタック1内を下降
して、前記ガスコネクタープレート5の燃料ガス排出側
バッファ15a〜15dに入り、燃料ガス排出孔16a
〜16dを介して電池外に排出される。この場合、電池
スタック1の中央部側には燃料ガスの排出側が設けられ
ているため、中央部の燃料ガス予熱部6に熱を効率的に
与えることができる。その結果、この燃料ガス予熱部6
及び燃料ガス予熱管7内を流れる燃料ガスを効率よく加
熱することができる。
Subsequently, the fuel gas is distributed to the unit cells 3a to 3d while ascending in the cell stack 1 through the internal manifold supply holes 9a to 9d. Then, the high temperature fuel gas after contributing to the cell reaction descends in the cell stack 1 through the internal manifold discharge holes 10a to 10d and enters the fuel gas discharge side buffers 15a to 15d of the gas connector plate 5, Fuel gas discharge hole 16a
It is discharged to the outside of the battery through ~ 16d. In this case, since the fuel gas discharge side is provided on the central portion side of the cell stack 1, heat can be efficiently applied to the fuel gas preheating portion 6 in the central portion. As a result, this fuel gas preheating unit 6
Also, the fuel gas flowing in the fuel gas preheating pipe 7 can be efficiently heated.

【0018】このように構成された電池スタックを、以
下(A)スタックと称する。 〔比較例〕図5は従来の平板型固体電解質燃料電池(1
0セルスタック)を示す斜視図であり、電解質板31
(大きさ200mm×200mm)の両面に上記実施例1と
同様にして燃料極32及び酸化剤極(図示せず)を配し
たセル33と,バイポーラプレート34とを積層させた
構造であり、燃料ガスの予熱は電池外に設けた外部予熱
器(図示せず)のみで行った。
The battery stack thus constructed is hereinafter referred to as (A) stack. [Comparative Example] FIG. 5 shows a conventional flat plate solid oxide fuel cell (1
0 is a perspective view showing a zero cell stack),
A cell 33 having a fuel electrode 32 and an oxidizer electrode (not shown) arranged on both sides (size 200 mm × 200 mm) in the same manner as in Example 1 and a bipolar plate 34 are laminated, The gas was preheated only by an external preheater (not shown) provided outside the battery.

【0019】このように構成された電池スタックを、以
下(X)スタックと称する。 〔実験1〕上記本発明の(A)スタックと比較例の
(X)スタックとを用いて、電流密度とセル面内温度差
との関係について調べたので、その結果を図6に示す。
尚、実験は一定流量の燃料ガス及び酸化剤ガスを供給
し、スタック近傍で電池温度を1000℃に制御した場
合における、電池スタックの下から6番目のセルの下面
側に接するバイポーラプレートの中央部付近と周辺部と
の温度差を測定するという条件である。
The battery stack thus constructed is hereinafter referred to as (X) stack. [Experiment 1] The relationship between the current density and the in-plane temperature difference of the cell was investigated using the (A) stack of the present invention and the (X) stack of the comparative example. The results are shown in FIG.
In the experiment, when the fuel gas and the oxidant gas were supplied at a constant flow rate and the cell temperature was controlled at 1000 ° C in the vicinity of the stack, the central portion of the bipolar plate in contact with the lower surface side of the sixth cell from the bottom of the cell stack. The condition is that the temperature difference between the vicinity and the peripheral portion is measured.

【0020】図6から明らかなように、比較例の(X)
スタックでは電流密度の増大に伴ってセル面内温度差が
著しく上昇するのに対して、本発明の(A)スタックで
は温度差が比較例の(X)スタックに比べて半分以下に
抑制されていることが認められる。この場合、本発明の
(A)スタックの電極有効面積は、比較例の(X)スタ
ックのそれに比べてはるかに大きく、発熱量が大きいこ
とからも、本発明の(A)スタックではセル面内の温度
差が有効に抑制されていることは明らかである。
As is apparent from FIG. 6, (X) of the comparative example.
In the stack, the temperature difference in the cell plane significantly increases as the current density increases, whereas in the stack (A) of the present invention, the temperature difference is suppressed to half or less as compared with the stack (X) of the comparative example. It is recognized that In this case, the effective electrode area of the (A) stack of the present invention is much larger than that of the (X) stack of the comparative example, and the calorific value is large. It is clear that the temperature difference of 1 is effectively suppressed.

【0021】これは、本発明の(A)スタックではセル
の発熱が中央部に設けた燃料ガス予熱部での燃料ガスの
予熱に有効に利用されるため中央部と周辺部との温度差
が抑制されるのに対して、比較例の(X)スタックでは
中央部での放熱が起こりにくいためであると思われる。
尚、無負荷の状態では、中央部の温度が周辺部より低い
ため、比較例の(X)スタックに比べ本発明の(A)ス
タックの方がセル面内温度差が大きくなっているが、実
際の使用に際しては、無負荷時はガス流量を少なくする
ため、この温度差は緩和される。 〔実験2〕上記本発明の(A)スタックと比較例の
(X)スタックとを用いて、電流密度と電池スタック積
層方向の温度差との関係について調べたので、その結果
を図7に示す。尚、実験はバイポーラプレートの中央部
付近の温度を測定し、電池スタック内の最大温度と最小
温度との温度差について調べ、その他は上記実験1と同
様の条件である。
This is because in the stack (A) of the present invention, the heat generation of the cells is effectively utilized for preheating the fuel gas in the fuel gas preheating section provided in the central portion, so that the temperature difference between the central portion and the peripheral portion is small. It is considered that this is because the (X) stack of the comparative example is less likely to radiate heat at the central portion, while being suppressed.
In the unloaded state, the temperature of the central portion is lower than that of the peripheral portion, so that the (A) stack of the present invention has a larger cell surface temperature difference than the (X) stack of the comparative example. In actual use, the gas flow rate is reduced when there is no load, so this temperature difference is alleviated. [Experiment 2] The relationship between the current density and the temperature difference in the stacking direction of the battery stack was examined using the (A) stack of the present invention and the (X) stack of the comparative example. The results are shown in FIG. 7. . In the experiment, the temperature in the vicinity of the center of the bipolar plate was measured, and the temperature difference between the maximum temperature and the minimum temperature in the battery stack was examined, and the other conditions were the same as those in the experiment 1.

【0022】図7から明らかなように、比較例の(X)
スタックにおいては無負荷時でも温度差が大きく、また
電流密度の増大に伴ってスタック内温度差も上昇するの
に対して、本発明の(A)スタックでは電流密度の増加
に係わらず、スタック内温度差が略一定であることが認
められる。これは、本発明の(A)スタックでは燃料ガ
ス予熱管の内周側と外周側とで燃料ガスの流れが逆であ
るため、電池スタック内の積層方向での温度差が互いに
打ち消され、電池スタックの中央部側セルと端部側セル
との温度差が抑制されるのに加えて、電池スタックの最
上端及び最下端に設けた燃料ガスバッファプレート4及
びガスコネクタープレート5に一時的に燃料ガスが貯留
されるので、電池スタックの端部側セルの温度が上昇
し、積層方向中央部との温度差が抑制されるためである
と思われる。 〔その他の事項〕 上記実施例においては、燃料ガス予熱部6内を燃料
ガス予熱配管7によって二重構造としたが、本発明は何
らこれに限定されるものではなく、一重又は三重構造と
することも可能である。しかしながら、二重構造であれ
ば燃料ガスを積層方向に対向して流すことにより、積層
方向の温度差を抑制することができるため好ましい。 また、バイポーラプレート2の材質としてインコネ
ル600等の耐熱合金を使用したが、ランタンクロマイ
ト等の導電性セラミックスを使用することも勿論可能で
ある。 更に、反応ガスを内部マニホールド方式によって供
給したが、外部マニホールド方式によって供給すること
も勿論可能である。
As is apparent from FIG. 7, (X) of the comparative example.
In the stack, the temperature difference is large even when there is no load, and the temperature difference in the stack rises as the current density increases, whereas in the stack (A) of the present invention, the temperature difference in the stack increases regardless of the increase in the current density. It can be seen that the temperature difference is approximately constant. This is because, in the stack (A) of the present invention, the flow of the fuel gas is opposite between the inner peripheral side and the outer peripheral side of the fuel gas preheating tube, so that the temperature difference in the stacking direction in the cell stack is canceled by each other, In addition to suppressing the temperature difference between the cells on the center side and the cells on the end side of the stack, the fuel gas buffer plate 4 and the gas connector plate 5 provided at the uppermost and lowermost ends of the battery stack temporarily receive fuel. It is considered that this is because the gas is stored, so that the temperature of the end-side cells of the battery stack rises and the temperature difference from the central portion in the stacking direction is suppressed. [Other Matters] In the above embodiment, the inside of the fuel gas preheating section 6 has a double structure by the fuel gas preheating pipe 7, but the present invention is not limited to this and has a single or triple structure. It is also possible. However, the double structure is preferable because the temperature difference in the stacking direction can be suppressed by causing the fuel gas to flow in the stacking direction so as to face each other. Although a heat-resistant alloy such as Inconel 600 is used as the material of the bipolar plate 2, it is of course possible to use conductive ceramics such as lanthanum chromite. Furthermore, although the reaction gas is supplied by the internal manifold system, it is of course possible to supply it by the external manifold system.

【0023】[0023]

【発明の効果】以上の本発明によれば、セルの発熱が奪
われにくく周辺部に比べて温度が高い電池スタックの中
心部近傍に燃料ガス供給通路を形成したので、燃料ガス
は前記燃料ガス供給通路内を流れる間にセルの発熱を奪
って高温になる。したがって、高温の燃料ガスを各セル
に十分に供給することができるので、セルの大型化に伴
って燃料ガスの供給量が増加した場合でも、その増加分
を従来のように外部予熱器等に依存する必要がない。そ
の結果、外部予熱器等の能力増大や大型化を図る必要が
ないので、コストの増大を抑制することができるといっ
た優れた効果を奏する。
According to the present invention described above, since the fuel gas supply passage is formed in the vicinity of the central portion of the cell stack, in which the heat generation of the cell is hardly taken away and the temperature is higher than the peripheral portion, the fuel gas is the above-mentioned fuel gas. While flowing in the supply passage, the heat of the cell is taken away and the temperature becomes high. Therefore, the high-temperature fuel gas can be sufficiently supplied to each cell, and even if the supply amount of the fuel gas increases as the size of the cell increases, the increased amount is supplied to the external preheater or the like as in the conventional case. You don't have to depend on it. As a result, it is not necessary to increase the capacity or increase the size of the external preheater or the like, so that an excellent effect of suppressing an increase in cost can be achieved.

【0024】また、セル平面の中心部の熱は前記燃料ガ
ス通路内を流れる燃料ガスによって奪われるため、セル
平面の中心部と周辺部との温度差が抑制され、その結果
セル劣化を抑制することができる。更に、上記の構成
によれば、燃料ガスは電池スタック内を積層方向に対向
して流れるため、電池スタック内の積層方向での温度差
が互いに打ち消され、電池スタックの中央部側セルと端
部側セルとの温度差が緩和され、電池寿命も向上する。
Further, since the heat of the central portion of the cell plane is taken by the fuel gas flowing in the fuel gas passage, the temperature difference between the central portion and the peripheral portion of the cell plane is suppressed, and as a result, cell deterioration is suppressed. be able to. Further, according to the above configuration, the fuel gas flows in the cell stack so as to face each other in the stacking direction, so that the temperature difference in the stacking direction in the cell stack is canceled by each other, and the central cell and the end portion of the cell stack are The temperature difference from the side cell is alleviated, and the battery life is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る平板型固体電解質燃料
電池(10セルスタック)の概略構成を示す模式図であ
る。
FIG. 1 is a schematic diagram showing a schematic configuration of a flat plate type solid electrolyte fuel cell (10 cell stack) according to an embodiment of the present invention.

【図2】バイポーラプレートの平面図である。FIG. 2 is a plan view of a bipolar plate.

【図3】セルの平面図である。FIG. 3 is a plan view of a cell.

【図4】ガスコネクタープレートの斜視図である。FIG. 4 is a perspective view of a gas connector plate.

【図5】従来の平板型固体電解質燃料電池(10セルス
タック)を示す斜視図である。
FIG. 5 is a perspective view showing a conventional flat plate solid oxide fuel cell (10 cell stack).

【図6】上記本発明の(A)スタックと比較例の(X)
スタックとを用いた場合における、電流密度とセル面内
温度差1の関係を示すグラフである。
FIG. 6 is a stack of the present invention (A) and a comparative example (X).
It is a graph which shows the relationship of current density and cell surface temperature difference 1 when using a stack.

【図7】上記本発明の(A)スタックと比較例の(X)
スタックとを用いた場合における、電流密度と電池スタ
ック積層方向の温度差との関係を示すグラフである。
FIG. 7 (A) stack of the present invention and (X) of a comparative example.
6 is a graph showing the relationship between the current density and the temperature difference in the stacking direction of the battery stack when using a stack.

【符号の説明】[Explanation of symbols]

1 電池スタック 2 セパレータ 3a〜3d セル 6 燃料ガス供給通路 12a〜12d 電解質板 13a〜13d 燃料極 DESCRIPTION OF SYMBOLS 1 Battery stack 2 Separator 3a-3d Cell 6 Fuel gas supply passage 12a-12d Electrolyte plate 13a-13d Fuel electrode

【手続補正書】[Procedure amendment]

【提出日】平成5年9月9日[Submission date] September 9, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】次に、この加熱された燃料ガスは燃料ガス
バッファプレート4に入り、電池スタック1上端部と熱
交換した後、燃料ガス予熱部6内(即ち、燃料ガス予熱
管7の外周側)を下降し、電池スタック1最下端のガス
コネクタープレート5に設けた燃料ガス供給側バッファ
14a〜14dに供給され、電池スタック1下端側の端
部セル3に熱を与える。ここで、前記燃料ガス予熱管7
の内周側と外周側とでは、燃料ガスの流れる方向が逆で
あるので、電池スタック1積層方向の温度差を抑制する
ことができる。加えて、燃料ガスバッファプレート4及
び燃料ガス供給側バッファ14a〜14d内では燃料ガ
スが一時的に貯留されるため、電池スタック1上端側の
端部セル3及び電池スタック1下端側の端部セル3と十
分熱交換され、電池スタック1内の温度分布の均熱化が
促進される。
Next, this heated fuel gas enters the fuel gas buffer plate 4 and heats up with the upper end of the cell stack 1.
After the replacement, the fuel gas preheating section 6 (that is, the outer peripheral side of the fuel gas preheating tube 7) descends and is supplied to the fuel gas supply side buffers 14a to 14d provided on the gas connector plate 5 at the lowermost end of the cell stack 1. , Heat is applied to the end cells 3 on the lower end side of the battery stack 1. Here, the fuel gas preheating pipe 7
Since the flow direction of the fuel gas is opposite between the inner peripheral side and the outer peripheral side, the temperature difference in the stacking direction of the cell stack 1 can be suppressed. In addition, since the fuel gas is temporarily stored in the fuel gas buffer plate 4 and the fuel gas supply side buffers 14a to 14d, the end cell 3 on the upper end side of the battery stack 1 and the end cell on the lower end side of the battery stack 1 Three and ten
The heat is exchanged so that the temperature distribution in the battery stack 1 can be made uniform.
Be promoted.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 幸徳 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukinori Akiyama 2-18 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質板の両面に燃料極と酸化剤極とを
配して成るセルと,セパレータとを積層させて電池スタ
ックを構成する平板型固体電解質燃料電池において、 前記電池スタックの中心部近傍にスタック内を積層方向
に貫通する燃料ガス供給通路を形成し、該燃料ガス供給
通路内を流通する間に燃料ガスが電池スタックと熱交換
する構成であることを特徴とする平板型固体電解質燃料
電池。
1. A flat solid electrolyte fuel cell in which a cell stack is formed by stacking a cell having a fuel electrode and an oxidizer electrode on both sides of an electrolyte plate, and a separator, wherein a central portion of the cell stack is provided. A flat plate type solid electrolyte characterized in that a fuel gas supply passage penetrating the stack in the stacking direction is formed in the vicinity, and the fuel gas exchanges heat with the cell stack while flowing through the fuel gas supply passage. Fuel cell.
【請求項2】 前記燃料ガス供給通路を内外二重構造に
すると共に、燃料ガスが内側供給通路と外側供給通路の
一方から他方に折り返す状態で流れる構成としたことを
特徴とする請求項1記載の平板型固体電解質燃料電池。
2. The fuel gas supply passage has an internal / external double structure, and the fuel gas flows in a state of returning from one of the inner supply passage and the outer supply passage to the other. Flat-plate solid oxide fuel cell.
JP5159401A 1993-06-29 1993-06-29 Flat solid electrolyte fuel cell Expired - Fee Related JP3064746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5159401A JP3064746B2 (en) 1993-06-29 1993-06-29 Flat solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5159401A JP3064746B2 (en) 1993-06-29 1993-06-29 Flat solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0722059A true JPH0722059A (en) 1995-01-24
JP3064746B2 JP3064746B2 (en) 2000-07-12

Family

ID=15692971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5159401A Expired - Fee Related JP3064746B2 (en) 1993-06-29 1993-06-29 Flat solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3064746B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
US5952116A (en) * 1995-02-16 1999-09-14 Siemens Aktiengesellschaft Solid electrolyte high temperature fuel cell module and method for its operation
KR100418626B1 (en) * 2001-10-17 2004-02-14 한국전력공사 Molten Carbonate Fuel Cell
WO2005060034A3 (en) * 2003-12-17 2005-11-17 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005537611A (en) * 2002-07-19 2005-12-08 ダイムラークライスラー・アクチェンゲゼルシャフト Internal gas controlled fuel cell
JP2006054117A (en) * 2004-08-12 2006-02-23 Sony Corp Fuel battery device and its operation method
WO2005060028A3 (en) * 2003-12-17 2006-04-13 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008021595A (en) * 2006-07-14 2008-01-31 Ngk Spark Plug Co Ltd Solid-oxide fuel cell module
WO2008090744A1 (en) * 2007-01-25 2008-07-31 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack
JP2008251495A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2008251493A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2009093842A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2009245627A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid oxide fuel cell
US8288051B2 (en) 2007-01-25 2012-10-16 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack
JP2014503109A (en) * 2011-01-21 2014-02-06 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Solid oxide fuel cell stack
WO2015087913A1 (en) * 2013-12-11 2015-06-18 日本特殊陶業株式会社 Fuel cell stack and fuel cell module
US9368812B2 (en) 2010-12-15 2016-06-14 Honda Motor Co., Ltd. Fuel cell stack
JP2017010721A (en) * 2015-06-19 2017-01-12 日本特殊陶業株式会社 Fuel cell stack

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
US5952116A (en) * 1995-02-16 1999-09-14 Siemens Aktiengesellschaft Solid electrolyte high temperature fuel cell module and method for its operation
KR100418626B1 (en) * 2001-10-17 2004-02-14 한국전력공사 Molten Carbonate Fuel Cell
US7972748B2 (en) 2002-07-19 2011-07-05 Daimler Ag Internally gas regulated fuel cell
JP2005537611A (en) * 2002-07-19 2005-12-08 ダイムラークライスラー・アクチェンゲゼルシャフト Internal gas controlled fuel cell
US8039170B2 (en) 2002-07-19 2011-10-18 Daimler Ag Internally gas regulated fuel cell
WO2005060034A3 (en) * 2003-12-17 2005-11-17 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2005060028A3 (en) * 2003-12-17 2006-04-13 Honda Motor Co Ltd Fuel cell and fuel cell stack
US7601453B2 (en) 2003-12-17 2009-10-13 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US7659027B2 (en) 2003-12-17 2010-02-09 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2006054117A (en) * 2004-08-12 2006-02-23 Sony Corp Fuel battery device and its operation method
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008021595A (en) * 2006-07-14 2008-01-31 Ngk Spark Plug Co Ltd Solid-oxide fuel cell module
US8288051B2 (en) 2007-01-25 2012-10-16 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack
WO2008090744A1 (en) * 2007-01-25 2008-07-31 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack
JP2008251493A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2008251495A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2009093842A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2009245627A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Solid oxide fuel cell
US9368812B2 (en) 2010-12-15 2016-06-14 Honda Motor Co., Ltd. Fuel cell stack
JP2014503109A (en) * 2011-01-21 2014-02-06 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Solid oxide fuel cell stack
WO2015087913A1 (en) * 2013-12-11 2015-06-18 日本特殊陶業株式会社 Fuel cell stack and fuel cell module
JP6093452B2 (en) * 2013-12-11 2017-03-08 日本特殊陶業株式会社 Fuel cell stack and fuel cell module
US10181608B2 (en) 2013-12-11 2019-01-15 Ngk Spark Plug Co., Ltd. Fuel cell stack and fuel cell module
JP2017010721A (en) * 2015-06-19 2017-01-12 日本特殊陶業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JP3064746B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP3064746B2 (en) Flat solid electrolyte fuel cell
JP3350167B2 (en) Molten carbonate fuel cell
JP2007531240A (en) Fuel cell device with unequal active area
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JP3516325B2 (en) Honeycomb structure solid oxide fuel cell
JP2007059359A (en) Operation control method of solid oxide fuel cell system
JP2007280652A (en) Flat-plate solid oxide fuel cell stack and its method for avoiding fuel shortage
EP2860806B1 (en) Stack structure of fuel cell
US20230155157A1 (en) Fuel cell column including stress mitigation structures
AU718046B2 (en) High-temperature fuel cell and high-temperature fuel cell stack
JP3244308B2 (en) Solid oxide fuel cell system
JP3244310B2 (en) Solid oxide fuel cell
JP3276649B2 (en) Fuel cell
JP2948453B2 (en) Solid oxide fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JP3213400B2 (en) Method for manufacturing solid oxide fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPH06150958A (en) Solid electrolyte fuel cell
JP6983017B2 (en) Fuel cell stack
JPH10189023A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JP4513396B2 (en) Solid oxide fuel cell
JP2005259489A (en) Solid oxide fuel cell, air electrode collector and film forming method
JPH0412468A (en) High-temperature fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees