JPH07219247A - Monolayer electrophotographic photoreceptor - Google Patents

Monolayer electrophotographic photoreceptor

Info

Publication number
JPH07219247A
JPH07219247A JP7153694A JP7153694A JPH07219247A JP H07219247 A JPH07219247 A JP H07219247A JP 7153694 A JP7153694 A JP 7153694A JP 7153694 A JP7153694 A JP 7153694A JP H07219247 A JPH07219247 A JP H07219247A
Authority
JP
Japan
Prior art keywords
group
latent image
transfer
formula
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7153694A
Other languages
Japanese (ja)
Inventor
Takeo Yamaguchi
剛男 山口
Masao Yoshikawa
雅夫 吉川
Tetsuo Suzuki
哲郎 鈴木
Hiroshi Kondo
浩 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7153694A priority Critical patent/JPH07219247A/en
Publication of JPH07219247A publication Critical patent/JPH07219247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enable a photoreceptor to be excellent in electrification property, high in sensitivity and high in transfer potential of a latent image by using a polymer material showing ferroelectric property as the binder. CONSTITUTION:A monolayer org. photoreceptor is formed directly on a conductive base body or through a base coating layer. The photosensitive layer contains dispersion of granular charge producing material and org. hole transfer material in a binder comprising a ferroelectric polymer. The photoreceptor consists of a conductive base body 1, photosensitive layer 2, charge producing pigment 21, and org. hole transfer material 22 dispersed in a molecular state in a binder 23. The binder 23 gives not only good dispersion of the charge producing material and the transfer material in a molecular state, but also an effect to improve the electrostatic transfer property of the photoreceptor required for the latent image transfer process. When the photoreceptor is electrified, the inner polarity generating in the resin film increase the change transfer performance of the charge producing material 21 and the org. hole transfer material, which gives good results to the electrostatic transfer process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機電子写真感光体に係
わるもので、さらに詳細には電子写真複写機やプリンタ
などに利用できる電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member that can be used in an electrophotographic copying machine or a printer.

【0002】[0002]

【従来の技術】電子写真プロセスに用いられる感光体と
しては、従来セレン、セレン−テルル合金、砒化セレ
ン、硫化カドミウム等の無機化合物が使用されてきた。
しかしこれらの材料は毒性が強く、またアモルファス状
態で使用されるために取扱いが厄介であり、さらに数十
μmの厚さに真空蒸着する必要があるために製造コスト
が高い等の欠点があった。有機感光体は無機感光体に比
べて、毒性が低く、軽量、可撓性、生産性に優れている
ことから注目されており、上記欠点を克服するものとし
て、有機感光性材料を用いた電子写真感光体(OPC)
の開発が積極的になされ、一部実用に供されるようにな
ってきた。これらの感光体は、電荷発生機能を有する層
(CGL)と電荷輸送機能を有する層(CTL)に機能
分離をした積層型構成のものが主流となっており、もっ
ぱら負帯電プロセスに用いられている。これは電荷発生
材料、正孔移動材料、アクセプタ性材料等を同一膜中に
分散混合したいわゆる単層構造の感光体では、帯電性、
感度、静電的性質等の諸特性が疲労現象により実用レベ
ル以下まで低下し易いという傾向が高いのに対し、積層
型感光体ではこれらの欠点を極力抑制することが可能で
ある上に、機械的強度に富み、厚膜の設計が可能なCT
Lを感光体表面に配することにより、プロセスに供せら
れた時に充分な耐久性を感光体に保持させることが可能
となるからである。ただし、高速プロセスにおいても支
障の無い程度の高い電荷移動度を示す有機材料は、現在
のところほとんど正孔移動の性質を有するドナー性化合
物に限定されているために、ドナー性化合物で形成され
たCTLを表面側に配置した感光体では、その帯電極性
は負帯電となる。
2. Description of the Related Art Conventionally, inorganic compounds such as selenium, selenium-tellurium alloys, selenium arsenide, and cadmium sulfide have been used as photoreceptors used in electrophotographic processes.
However, these materials have drawbacks that they are highly toxic, they are difficult to handle because they are used in an amorphous state, and they require high-cost production because they need to be vacuum-deposited to a thickness of several tens of μm. . Organic photoreceptors are attracting attention because they are less toxic, lighter, more flexible, and more productive than inorganic photoreceptors. Photoreceptor (OPC)
Has been actively developed and has come to be partially put into practical use. Most of these photoreceptors have a laminated structure in which a layer having a charge generating function (CGL) and a layer having a charge transporting function (CTL) are functionally separated, and are mainly used in a negative charging process. There is. This is because the charge generation material, the hole transfer material, the acceptor material, and the like are dispersed and mixed in the same film in a so-called single-layer structure photoreceptor,
While various characteristics such as sensitivity and electrostatic properties tend to be lowered to practical levels or less due to fatigue phenomena, the laminated-type photoconductor can suppress these defects as much as possible. CT with high dynamic strength and thick film design
By disposing L on the surface of the photoconductor, it becomes possible to maintain sufficient durability on the photoconductor when it is subjected to the process. However, since the organic materials exhibiting a high charge mobility that does not hinder the high speed process are limited to the donor compounds having the property of hole transfer at present, they are formed by the donor compounds. In the photoconductor having the CTL on the surface side, the charging polarity is negative.

【0003】しかしながら、このような機能分離型積層
構成には新たな問題が派生してきている。その一つ目は
感光体の負帯電に由来するものである。一般に電子写真
プロセスでは信頼性の高い帯電方式として、コロナ放電
方式を採用しているが、周知のごとく当該コロナ放電は
正極性と比べて負極性の方が不安定であるため、スコロ
トロン帯電方式を採用せねばならないが、コロトロンと
比べて部品コストが高く、コストアップの一要因となっ
ている。その二つ目は負極性コロナ放電はオゾンの発生
をより多く伴うために、その外部流出を防ぐ目的でオゾ
ンフィルタを採用しているが、これもコストアップに直
結していることである。加えて、現状広く用いられてい
る二成分トナーは感光体極性が正帯電の方が環境的変動
に対して安定であり、この添加らも正帯電方式の方が望
ましい。その三つ目は感光体の積層構造に由来するもの
である。すなわち、積層型感光体を製造するためには、
少なくとも二工程以上の塗布が必要であるが、感度、耐
久性のバランスを保持しながら良好な画像を得るために
はCGLの膜厚をサブミクロンオーダーで制御せねばな
らず、製造コストの引き上げ要因となっている。
However, a new problem has arisen in such a function-separated laminated structure. The first is derived from the negative charging of the photoconductor. Generally, in the electrophotographic process, a corona discharge method is adopted as a highly reliable charging method, but as is well known, the corona discharge is more unstable in the negative polarity than in the positive polarity. Although it must be adopted, the cost of parts is higher than that of the corotron, which is one of the reasons for the cost increase. Secondly, since the negative corona discharge is accompanied by more generation of ozone, the ozone filter is adopted for the purpose of preventing the outflow of ozone, but this is also directly related to the cost increase. In addition, two-component toners that are widely used at present are more stable against environmental fluctuations when the photoconductor polarity is positively charged, and the positive charging method is also preferable for these additions. The third is derived from the laminated structure of the photoconductor. That is, in order to manufacture a laminated type photoreceptor,
It is necessary to apply at least two steps or more, but in order to obtain a good image while maintaining the balance of sensitivity and durability, the film thickness of CGL must be controlled in the submicron order, which is a factor of increasing the manufacturing cost. Has become.

【0004】そこで、上記機能分離型の積層構成感光体
に対抗して、近年単層構成感光体が見直されており、例
えば特公昭34−10966号公報にはポリ−N−ビニ
ルカルバゾールと2,4,7−トリニトロ−9−フルオ
レノンを含有した電荷移動錯体型単層感光体が提案さ
れ、以降特公昭48−25658号公報および特公昭4
8−38430号公報にはピリリウム系染料とポリ−N
−ビニルカルバゾールからなる共晶錯体型単層感光体が
提案されている。さらに、特開昭54−1633では電
荷発生顔料を電荷輸送物質であるドナーとアクセプタと
共に樹脂中に分散した単層感光体が、さらに特開平3−
2556050ではアクセプタとしてジフェノキノン誘
導体を用いた上記と同様の構成の単層感光体の提案がな
されている。しかしながらこれらの感光体はいずれも、
光感度、耐久性の点で劣っており、さらに実用化されて
いる積層型感光体の成分を単に分散したものでは感度以
外に帯電性、耐久性等が劣るものが多く、未だ実用的に
満足できるものでは無かった。
Therefore, in recent years, a single-layer photosensitive member has been reviewed to counter the above-mentioned function-separated laminated photosensitive member. For example, Japanese Patent Publication No. 34-10966 discloses poly-N-vinylcarbazole and 2, A charge transfer complex type single-layer photosensitive material containing 4,7-trinitro-9-fluorenone has been proposed, and is disclosed in Japanese Patent Publication Nos. 48-25658 and 4-4.
No. 8-38430 discloses a pyrylium dye and poly-N.
A eutectic complex-type single-layer photoconductor comprising vinylcarbazole has been proposed. Further, in JP-A-54-1633, a single-layer photoreceptor in which a charge-generating pigment is dispersed in a resin together with a donor and an acceptor which are charge-transporting substances is further disclosed in JP-A-3-1633.
2556050 proposes a single-layer photoreceptor having the same structure as described above using a diphenoquinone derivative as an acceptor. However, all of these photoreceptors
It is inferior in terms of photosensitivity and durability, and many of the laminated type photoreceptors that have been put into practical use are simply dispersed, and in addition to sensitivity, there are many inferior electrification properties, durability, etc. It wasn't possible.

【0005】一方、電子写真方の一方式である潜像転写
方式は、上記用いられるカールソン法と異なり、感光体
と静電潜像保持が可能な静電記録体の間に電圧を印加す
ることにより、感光体上に形成された静電潜像を静電記
録体上に転写し、しかる後に転写された静電潜像を現像
し可視化するものである。この方式は古くから知られて
いて、例えばR.M.シャファート著「電子写真」(共
立出版、昭和48年)、70頁にTESI(潜像転写)
法の記載がある。それによると、潜像転写法には、感光
体上に先ず静電潜像が作られ次に静電記録体上に該静電
像を転写する逐次法と、静電記録体と感光体を接触した
状態で静電製造を作る直接法がある。
On the other hand, the latent image transfer system, which is one of the electrophotographic systems, differs from the above-mentioned Carlson method in that a voltage is applied between the photoconductor and an electrostatic recording medium capable of holding an electrostatic latent image. In this way, the electrostatic latent image formed on the photoconductor is transferred onto the electrostatic recording body, and then the transferred electrostatic latent image is developed and visualized. This method has been known for a long time. M. Schafert's "Electronic Photography" (Kyoritsu Publishing, 1973), TESI (Latent Image Transfer) on page 70
There is a description of the law. According to it, in the latent image transfer method, a sequential method in which an electrostatic latent image is first formed on a photoconductor and then the electrostatic image is transferred to the electrostatic recording body, and an electrostatic recording body and a photoconductor are used. There is a direct method of making electrostatic production in contact.

【0006】潜像転写法はカールソン法と比べ、記録体
として導電層と誘電層が必要であるため普通紙を用いる
ことができない欠点があるが、感光体上の静電潜像を直
接現像する必要がないため、電子写真プロセスに必要な
各種ユニットを電子写真感光体回りに配置する装置設計
の余裕度が高いメリットがある。このようなメリットを
生かし、電子写真装置の創生期の頃には逐次潜像転写法
を採用した複写機が市販されたこともあった。このよう
な複写機に用いられた電子写真感光体として、蒸着Se
層を電荷発生層とし、ポリビニルカルバゾールを電荷輸
送層に用いた積層型感光体がある。しかしながら、この
ような逐次転写方式を用いた複写機に適応可能な感光体
は、特殊な特性を持つ必要はなく、上記カールソン法用
の電子写真用感光体をそのまま逐次転写方式の潜像転写
プロセス用の感光体として用いることが可能である。こ
れに対し、同時転写方式では感光体に対する工夫が逐次
転写以上に要求されるため、例えば特開昭56−436
65では高耐圧要請に対し絶縁層を設ける提案がなされ
ている。
The latent image transfer method has a drawback that plain paper cannot be used because it requires a conductive layer and a dielectric layer as a recording medium as compared with the Carlson method, but the electrostatic latent image on the photoconductor is directly developed. Since it is not necessary, there is a merit that there is a high margin in the device design in which various units necessary for the electrophotographic process are arranged around the electrophotographic photosensitive member. Taking advantage of such merits, a copying machine employing a sequential latent image transfer method was commercially available in the early days of the electrophotographic apparatus. As an electrophotographic photosensitive member used in such a copying machine, vapor deposition Se is used.
There is a laminated type photoreceptor in which a layer is used as a charge generation layer and polyvinylcarbazole is used as a charge transport layer. However, a photoconductor that can be applied to a copying machine using such a sequential transfer system does not need to have special characteristics, and the electrophotographic photoconductor for the Carlson method can be used as it is for the latent image transfer process of the sequential transfer system. It can be used as a photoconductor for use. On the other hand, in the simultaneous transfer method, a device for the photoconductor is required to be more effective than the sequential transfer, and therefore, for example, JP-A-56-436.
No. 65 proposes to provide an insulating layer to meet the demand for high breakdown voltage.

【0007】しかしながら、最近では、このようなカー
ルソン法の適用範囲の中でカールソン法と対抗するので
はなく、カールソン法では困難な高品質な電子写真画像
出力用に潜像転写法を見直し検討がなされている。潜像
転写方式では現像後の転写工程が必要でないため、カー
ルソン法と比べ本質的に高精細な高品質画像が得られる
可能性を有しているからである。
However, recently, instead of competing with the Carlson method within the range of application of the Carlson method, the latent image transfer method is reviewed and examined for high quality electrophotographic image output which is difficult with the Carlson method. Has been done. This is because the latent image transfer method does not require a transfer step after development, and thus has a possibility of obtaining an essentially high-definition and high-quality image as compared with the Carlson method.

【0008】このような高品質画像出力装置に用いられ
る潜像転写方式用の感光体としては、感度が高く、繰り
返しによる電位の安定が重要な要素であるが、とりわ
け、転写電位が高くとれる必要がある。転写電位が低い
と出力画像の濃度が低くなる。転写電位を高めるには、
潜像転写時に感光体の電位と記録体導電層の電位の差を
大きくするよう転写電圧を印加すればよいが、転写電圧
を高くし過ぎると、画像ぬけのような異常画像が発生す
る問題が生じる。また、記録体の誘電層を厚くすると記
録体の電位が向上するが、この場合でも、転写された電
荷量は増大しない。高画質化のためプロセス速度を遅く
したシステムでは、現像濃度は主として記録体の表面電
荷量で決定されるため、このような方策では画像濃度を
高くすることができないことが理解される。
As a photoreceptor for a latent image transfer system used in such a high-quality image output device, sensitivity is high and stability of potential due to repetition is an important factor. Above all, it is necessary that the transfer potential be high. There is. If the transfer potential is low, the density of the output image will be low. To increase the transfer potential,
A transfer voltage may be applied so as to increase the difference between the potential of the photoconductor and the potential of the conductive layer of the recording medium at the time of latent image transfer, but if the transfer voltage is set too high, an abnormal image such as image loss may occur. Occurs. Further, if the dielectric layer of the recording material is thickened, the electric potential of the recording material is improved, but even in this case, the transferred charge amount does not increase. It is understood that in a system in which the process speed is slowed down to improve the image quality, the development density is mainly determined by the surface charge amount of the recording material, and thus such a measure cannot increase the image density.

【0009】以上の問題を考慮すると、高画質潜像転写
用プロセスには、静電記録体の転写電位を高く確保でき
る電子写真感光体が望まれていることが離解される。し
かしながら、従来用いられてきた電子写真感光体を潜像
転写プロセスに用いた場合、直ちに高い転写電位が得ら
れるかどうかは不明であった。実際に、積層型感光体を
該プロセスに適用した場合には転写電位としては、かな
り低いものしか得られなかった。
In view of the above problems, it is understood that an electrophotographic photosensitive member which can secure a high transfer potential of the electrostatic recording material is desired for the high quality latent image transfer process. However, it has been unclear whether a high transfer potential can be obtained immediately when a conventionally used electrophotographic photoreceptor is used in a latent image transfer process. In fact, when the multi-layer type photoconductor was applied to the process, the transfer potential was rather low.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、帯電
性、感度に優れ、潜像転写電位が高くとれる潜像転写用
の電子写真感光体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photosensitive member for transferring a latent image, which is excellent in charging property and sensitivity and has a high latent image transfer potential.

【0011】[0011]

【課題を解決するための手段】本発明者らは、単層型で
正帯電性あるいは正負両帯電性に適した有機電子写真感
光体についていろいろな角度から検討を重ねてきた結
果、感光層構成成分として、強誘電性を示す高分子を結
着剤として用い、これとともに電荷発生物質、有機正孔
移動物質および有機アクセプタ性化合物を用いることで
望ましい電子写真感光体が得られることを見い出した。
さらに本発明者らは、本電子写真感光体が従来のカール
ソンプロセスのみならず、静電潜像転写プロセスでも良
好な効果を示すことを見いだし、本発明を完成するに至
った。
The inventors of the present invention have made various studies on a single-layer type organic electrophotographic photosensitive member which is suitable for positive charging property or both positive and negative charging properties. It has been found that a desirable electrophotographic photoreceptor can be obtained by using a polymer having ferroelectricity as a component and a charge generating substance, an organic hole transfer substance and an organic acceptor compound together with the binder.
Furthermore, the present inventors have found that the present electrophotographic photosensitive member exhibits a good effect not only in the conventional Carlson process but also in the electrostatic latent image transfer process, and completed the present invention.

【0012】すなわち、本発明によれば、電子写真感光
体上に静電潜像を形成した後に、該感光体の表面側に静
電記録体を接触させ、該感光体と該静電記録体の間に電
圧を印加して静電記録体上に感光体に対応した静電潜像
を転写し、しかる後該静電記録体上の静電潜像を可視化
する潜像転写方式の電子写真法に用いられる電子写真感
光体において、導電性基体上に直接または下引き層を介
して単層の有機感光体を設けてなり、その感光層が少な
くとも粒子状で電荷発生物質、有機正孔輸送物質が強誘
電性高分子よりなる結着剤中に分散されたことを特徴と
し、かつ該有機正孔輸送物質として、好ましくは後記一
般式(4)〜(10)で表される化合物を用いる電子写
真感光体、さらに前記有機正孔輸送物質に対し重量組成
比が1/5〜50/1、好ましくは1/5〜5/1の間
にある有機アクセプタ性化合物が添加されたことを特徴
とする電子写真感光体が提供される。
That is, according to the present invention, after the electrostatic latent image is formed on the electrophotographic photosensitive member, the electrostatic recording member is brought into contact with the surface side of the photosensitive member so as to contact the photosensitive member and the electrostatic recording member. A latent image transfer type electrophotography in which a voltage is applied between the two to transfer an electrostatic latent image corresponding to the photoconductor onto the electrostatic recording body, and then the electrostatic latent image on the electrostatic recording body is visualized. In the electrophotographic photoreceptor used in the method, a single-layer organic photoreceptor is provided on a conductive substrate directly or via an undercoat layer, and the photosensitive layer is at least in a particulate form, and a charge generating substance and an organic hole transporting material are formed. The substance is dispersed in a binder composed of a ferroelectric polymer, and as the organic hole transporting substance, compounds represented by the following general formulas (4) to (10) are preferably used. The electrophotographic photoreceptor, and the weight composition ratio to the organic hole transporting material is 1/5 to 50. 1, preferably electrophotographic photoreceptor characterized in that the organic acceptor compound is between 1 / 5-5 / 1 is added is provided.

【0013】本発明の感光体は、典型的には図1(a)
で示される構成よりなる。1は導電性基体、2は感光
層、21で電荷発生顔料、22は結着剤23に分子状に
分散された有機正孔輸送物質を表している。また図1
(b)は、分子状に分散された有機アクセプタ性化合物
24が添加された本発明の別の感光体を表している。本
発明における結着剤の役割は電荷発生物質の良好な分散
と、輸送物質の分子状の分散ばかりでなく、潜像転写プ
ロセスで必要とされる感光体の静電転写能をより向上す
ることも担っている。しかしながら、現状では強誘電性
を有する高分子を結着剤として用いた場合に良好な結果
をもたらすのか、完全には把握できていないが、帯電し
たときに該樹脂膜中に生じる内部分極が電荷発生物質、
有機正孔輸送物質の電荷輸送能を高め、本静電転写プロ
セスに良好な結果を与えるものと推定される。これら強
誘電性結着剤の感光層全体に占める量は他の添加剤量か
ら換算して20〜90wt%が適しており、好ましくは
30〜70wt%である。本発明の感光層の厚さは5〜
30μmが好ましい。これより薄いと帯電性が低下し、
厚いと感光体の静電容量が低下し転写電位の低下を来た
す。本発明で用いることができる強誘電性高分子剤量を
具体的に例示すると、以下のものがある。
The photoreceptor of the present invention is typically shown in FIG.
It has the configuration shown in. Reference numeral 1 is a conductive substrate, 2 is a photosensitive layer, 21 is a charge generating pigment, and 22 is an organic hole transporting substance molecularly dispersed in a binder 23. See also FIG.
(B) represents another photoreceptor of the present invention to which the organic acceptor compound 24 dispersed in a molecular form is added. The role of the binder in the present invention is not only good dispersion of the charge generating substance and molecular dispersion of the transporting substance, but also improving the electrostatic transfer ability of the photoreceptor required in the latent image transfer process. I am also responsible. However, at present, it is not completely understood whether good results are obtained when a polymer having ferroelectricity is used as a binder, but the internal polarization generated in the resin film when charged is due to charge Source,
It is presumed that the charge transporting ability of the organic hole transporting material is enhanced, and that this electrostatic transfer process gives good results. The amount of these ferroelectric binders occupying the entire photosensitive layer is preferably 20 to 90 wt% in terms of the amount of other additives, and preferably 30 to 70 wt%. The photosensitive layer of the present invention has a thickness of 5 to
30 μm is preferable. If it is thinner than this, the chargeability will decrease,
If it is thick, the electrostatic capacity of the photoconductor is reduced, and the transfer potential is reduced. Specific examples of the amount of the ferroelectric polymer agent that can be used in the present invention are as follows.

【0014】〔ポリフッ化ビニリデンに代表されるフッ
素系樹脂〕具体的には、ポリフッ化ビニリデン(PVD
F)、フッ化ビニリデン−三フッ化エチレン共重合体
〔P(VDF/TrFE)〕、フッ化ビニリデン−四フ
ッ化エチレン共重合体〔P(VDF/TeFE)〕、フ
ッ化ビニリデン−フッ化ビニル共重合体〔P(VDF/
VF)〕、フッ化ビニリデン−四フッ化エチレン−六フ
ッ化プロピレン三成分共重合体〔P(VDF/TeFE
/HFP)〕、フッ化ビニリデン−パ−フルオロアセト
ン共重合体〔P(VDF/PFA)〕等が挙げられる
が、この中でも、強誘電特性および有機溶剤への溶解性
の面から〔P(VDF/TrFE)〕、〔P(VDF/
PFA)〕、〔P(VDF/TeFE)〕などが好まし
い。
[Fluorine Resin Represented by Polyvinylidene Fluoride] Specifically, polyvinylidene fluoride (PVD)
F), vinylidene fluoride-trifluoroethylene copolymer [P (VDF / TrFE)], vinylidene fluoride-tetrafluoroethylene copolymer [P (VDF / TeFE)], vinylidene fluoride-vinyl fluoride Copolymer [P (VDF /
VF)], vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene ternary copolymer [P (VDF / TeFE
/ HFP)], vinylidene fluoride-pa-fluoroacetone copolymer [P (VDF / PFA)] and the like. Among them, from the viewpoint of ferroelectric properties and solubility in organic solvents, [P (VDF / TrFE)], [P (VDF /
PFA)], [P (VDF / TeFE)] and the like are preferable.

【0015】〔下記の繰り返し単位(1)を有するナイ
ロン系強誘電性高分子〕
[Nylon-based ferroelectric polymer having the following repeating unit (1)]

【化1】 (ここで、m、nは1、3、5、7、9であるり、xは
重合度を表す。) 〔下記繰り返し単位(2)を有するウレタン系強誘電性
高分子〕
[Chemical 1] (Here, m and n are 1, 3, 5, 7, and 9, and x represents the degree of polymerization.) [Urethane-based ferroelectric polymer having the following repeating unit (2)]

【化2】 (ここで、mは6、7、nは3、5であり、xは重合度
を表す。) 〔下記繰り返し単位(3)を有するチオ尿素系強誘電性
高分子〕
[Chemical 2] (Here, m is 6, 7 and n is 3, 5 and x represents the degree of polymerization.) [Thiourea-based ferroelectric polymer having the following repeating unit (3)]

【化3】 (ここで、mは5、7、9であり、xは重合度を表
す。)
[Chemical 3] (Here, m is 5, 7, and 9, and x represents the degree of polymerization.)

【0016】また、次に本発明者らは正孔輸送物質につ
いても検討を行い、特に正帯電で使用する場合を想定し
て、発生した正孔が正孔輸送物質が分子状に分散された
マトリックス高率よく注入され高速に移動するような高
い正孔移動度を有するものを選定した。本発明で好まし
く用いられる正孔輸送物質としては、具体的に下記一般
式(4)〜(10)で示されるものが例示される。 (式中、Ar1、Ar2及びAr3は無置換の、またはア
ルキル基、アルコキシ基、チオアルコキシ基、アリール
オキシ基、ハロゲン原子、シアノ基、ニトロ基もしくは
アミノ基で置換されたアリール基、又は複素環基を表
す。)
Next, the inventors of the present invention are concerned with the hole transport material.
Even if it is used, it is necessary to consider it, especially assuming that it will be used with positive charging.
Then, the generated holes are dispersed in the hole transport material in a molecular form.
Matrix Highly injected and highly movable
A material having a high hole mobility was selected. Preferred in the present invention
The hole transporting substances that are commonly used include
Examples are shown by the formulas (4) to (10). (In the formula, Ar1, Ar2And Ar3Is an unsubstituted or
Alkyl group, alkoxy group, thioalkoxy group, aryl
Oxy group, halogen atom, cyano group, nitro group or
Represents an aryl group substituted with an amino group or a heterocyclic group
You )

【化4】 (式中、R1及びR2は水素原子、アルキル基又はアリー
ル基を表し、またR1、R2の間で環を形成していてもよ
い。Ar1はアリーレン基または複素環基を表す。Ar2
及びAr3はアルキル基、アリール基、又は複素環基を
表す。) (式中、Ar1、Ar2及びAr3は無置換の、または、
アルキル基、アルコキシ基、ハロゲン原子、シアノ基、
ニトロ基もしくはアミノ基で置換されたアリール基、又
は複素環基を表す。)
[Chemical 4](In the formula, R1And R2Is a hydrogen atom, an alkyl group or aryl
Represents a R group, and R1, R2You may form a ring between
Yes. Ar1Represents an arylene group or a heterocyclic group. Ar2
And Ar3Is an alkyl group, an aryl group, or a heterocyclic group
Represent ) (In the formula, Ar1, Ar2And Ar3Is unsubstituted or
Alkyl group, alkoxy group, halogen atom, cyano group,
An aryl group substituted with a nitro group or an amino group, or
Represents a heterocyclic group. )

【化5】 (式中、Ar1、Ar2、Ar5及びAr6は無置換の、ま
たはアルキル基、アルコキシ基、ハロゲン原子、シアノ
基、ニトロ基もしくはアミノ基で置換されたアリール基
を表し、Ar3及びAr4は無置換アリーレン基又は上記
置換基で置換されたアリーレン基を表す。)
[Chemical 5] (In the formula, Ar 1 , Ar 2 , Ar 5 and Ar 6 represent an aryl group which is unsubstituted or substituted with an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group or an amino group, and Ar 3 and Ar 4 represents an unsubstituted arylene group or an arylene group substituted with the above substituents.)

【化6】 (式中、Ar1、Ar2、Ar3及びAr4は無置換の、ま
たはアルキル基、アルコキシ基、ハロゲン原子、シアノ
基、ニトロ基もしくはアミノ基で置換されたアリール基
を表し、Xはアルキレン基、硫黄、酸素又は(CH=C
H)n(nは1以上の整数)を表す。) (式中、Ar1は無置換の、またはアルキル基、アルコ
キシ基、ハロゲン原子、シアノ基、ニトロ基もしくはア
ミノ基で置換されたアリール基又は複素環基を表し、A
2及びAr3はアルキル基、フェニル基又はナフチル基
を表す。)
[Chemical 6](In the formula, Ar1, Ar2, Ar3And ArFourIs the
Or alkyl group, alkoxy group, halogen atom, cyano
Aryl groups substituted with groups, nitro groups or amino groups
X is an alkylene group, sulfur, oxygen or (CH = C
H)n(N is an integer of 1 or more). ) (In the formula, Ar1Is an unsubstituted or alkyl group,
Xy group, halogen atom, cyano group, nitro group or
Represents an aryl group or a heterocyclic group substituted with a mino group,
r2And Ar3Is an alkyl group, phenyl group or naphthyl group
Represents )

【化7】 (式中、Ar1、Ar2、Ar3及びAr4は無置換の、ま
たはアルキル基、アルコキシ基、ハロゲン原子もしくは
アミノ基で置換されたアリール基、又は複素環基を表
す。また、nは0または1の整数を表す。) これらの具体例を表1に示す。
[Chemical 7] (In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 each represent an unsubstituted or alkyl group, an alkoxy group, an aryl group substituted with a halogen atom or an amino group, or a heterocyclic group. It represents an integer of 0 or 1.) Specific examples thereof are shown in Table 1.

【0017】[0017]

【表1−(1)】 [Table 1- (1)]

【0018】[0018]

【表1−(2)】 [Table 1- (2)]

【0019】[0019]

【表1−(3)】 [Table 1- (3)]

【0020】[0020]

【表2−(1)】 [Table 2- (1)]

【0021】[0021]

【表2−(2)】 [Table 2- (2)]

【0022】[0022]

【表2−(3)】 [Table 2- (3)]

【0023】[0023]

【表3−(1)】 [Table 3- (1)]

【0024】[0024]

【表3−(2)】 [Table 3- (2)]

【0025】[0025]

【表4−(1)】 [Table 4- (1)]

【0026】[0026]

【表4−(2)】 [Table 4- (2)]

【0027】[0027]

【表5−(1)】 [Table 5- (1)]

【0028】[0028]

【表5−(2)】 [Table 5- (2)]

【0029】[0029]

【表5−(3)】 [Table 5- (3)]

【0030】[0030]

【表6−(1)】 [Table 6- (1)]

【0031】[0031]

【表6−(2)】 [Table 6- (2)]

【0032】[0032]

【表6−(3)】 [Table 6- (3)]

【0033】[0033]

【表6−(4)】 [Table 6- (4)]

【0034】[0034]

【表7−(1)】 [Table 7- (1)]

【0035】図2は逐次転写方式における静電潜像の転
写を表している。図中、3は静電記録体、31は静電記
録体の誘電層、32は静電記録体の導電層、4は導電ロ
ーラ、5は転写時の印加電圧を示している。尚、印加電
圧値の設定により、感光体の帯電部が転写されるモード
(ポジ転写)と感光体の非帯電部あるいは低帯電部が転
写されるモード(ネガ転写)が選択できる。
FIG. 2 shows the transfer of an electrostatic latent image in the sequential transfer system. In the figure, 3 is an electrostatic recording medium, 31 is a dielectric layer of the electrostatic recording medium, 32 is a conductive layer of the electrostatic recording medium, 4 is a conductive roller, and 5 is an applied voltage at the time of transfer. By setting the applied voltage value, it is possible to select a mode in which the charged portion of the photosensitive member is transferred (positive transfer) and a mode in which the non-charged portion or the low charged portion of the photosensitive member is transferred (negative transfer).

【0036】本発明のこのような感光体は帯電性と感度
に優れ、逐次転写プロセスに用いると、白抜けのような
異常画像が出現しない転写条件で、記録体の転写電位を
十分な現像濃度が達成できるところまで高くとれる。こ
の理由は現在明瞭ではなく、今後更に検討が必要である
が、帯電性と感度が高いことも次の理由から転写電位が
高くとれることにつながっているものと推定される。
Such a photoreceptor of the present invention is excellent in charging property and sensitivity, and when used in a sequential transfer process, the transfer potential of the recording medium is set to a sufficient developing density under a transfer condition in which an abnormal image such as a blank area does not appear. Can be as high as possible. The reason for this is not clear at present, and further investigation is required in the future, but it is presumed that high chargeability and high sensitivity also lead to a high transfer potential for the following reasons.

【0037】高画質化を目指した場合には、顕像化まで
の各プロセスを緩やかな条件で実施する必要があり、遅
いプロセス速度となる。このような場合、帯電から転写
までに多くの時間を要すことになる。帯電性が不良な感
光体を用いた場合には、暗減衰速度が速いため、画像部
と非画像部の電位コントラストが低下し、転写後の静電
記録体上の電位コントラストも低くなってしまう。
In order to improve the image quality, it is necessary to carry out each process up to the visualization under mild conditions, resulting in a slow process speed. In such a case, it takes a lot of time from charging to transfer. When a photoconductor having poor charging property is used, the dark decay rate is high, so the potential contrast between the image area and the non-image area is reduced, and the potential contrast on the electrostatic recording material after transfer is also reduced. .

【0038】また、感度が優れていることは、感光体上
での電位コントラストが大きくとれ、静電記録体上での
電位コントラストも高くとれることにつながる。正帯電
で使用する場合、暗減衰を生じる主な原因は基板からの
電子注入であるが、この帯電極性で使用する感光体は正
孔移動機能がはるかに勝り、基板からの電子注入性は低
いため帯電性が確保される。本発明で使用する正孔移動
物質は正孔移動度の高さで特に優れている。また、有機
アクセプタ化合物を使用した場合の利点は、正孔輸送物
質と有機アクセプタ化合物の組成を変えることで、正負
両方の帯電極性に対応できることである。有機アクセプ
タ化合物の使用は、また、残留電位の低下と感光体の静
電的特性の長寿命化をもたらす。これらの改良の原因は
明確ではないが、その1つとして光照射により電荷発生
顔料で発生した正孔と電子のうち電子を引き抜くことで
電荷発生顔料の内部電界の低減の防止と電気抵抗の低下
を防止することが考えられる。
Further, the excellent sensitivity leads to a large potential contrast on the photoconductor and a high potential contrast on the electrostatic recording medium. When used with positive charge, the main cause of dark decay is electron injection from the substrate, but the photoconductor used with this charge polarity has a far superior hole transfer function, and electron injection from the substrate is low. Therefore, the charging property is secured. The hole transfer material used in the present invention is particularly excellent in high hole mobility. Further, an advantage of using the organic acceptor compound is that both positive and negative charge polarities can be dealt with by changing the composition of the hole transport material and the organic acceptor compound. The use of organic acceptor compounds also leads to a lower residual potential and a longer life of the electrostatic properties of the photoreceptor. The cause of these improvements is not clear, but one of them is to prevent the reduction of the internal electric field of the charge generation pigment and the reduction of the electric resistance by extracting the electrons out of the holes and electrons generated in the charge generation pigment by light irradiation. Can be considered.

【0039】本発明に用いられる電荷発生物質の組成は
0.1〜40wt%好ましくは0.3〜25重量%が適
当である。本発明に用いられる正孔輸送物質の組成は1
0〜80wt%好ましくは20〜50重量%が適当であ
る。
The composition of the charge generating substance used in the present invention is 0.1 to 40 wt%, preferably 0.3 to 25 wt%. The composition of the hole transport material used in the present invention is 1
0 to 80% by weight, preferably 20 to 50% by weight is suitable.

【0040】また、本発明で用いることができる電荷発
生物質としては、例えばX型の無金属フタロシアニン、
π型の無金属フタロシアニン、τ型の無金属フタロシア
ニン、ε型の銅フタロシアニン、α型チタニルフタロシ
アニン、β型チタニルフタロシアニン等のフタロシアニ
ン顔料やジスアゾ・トリスアゾ系顔料、アントラキノン
系顔料、多環キノン系顔料、インジゴ顔料、ジフェニル
メタン、トリメチルメタン系顔料、シアニン系顔料、キ
ノリン系顔料、ベンゾフェノン、ナフトキノン系顔料、
ペリレン顔料、フルオレノン系顔料、スクアリリウム系
顔料、アズレニウム系顔料、ペリノン系顔料、キナクリ
ドン系顔料、ナフタロシアニン系顔料、ポルフィリン系
顔料が使用できる。本発明で用いることができる有機ア
クセプタ性化合物としては、キノン化合物、ニトリル基
を有するπ電子化合物、ニトロ基を有するπ電子化合物
等が挙げられる。有機アクセプタ性化合物を使用した場
合、正孔輸送物質と有機アクセプタ性化合物の量比が1
/5〜50/1好ましくは1/5〜5/1である。正孔
輸送物質量がこれよりも少ない場合には静電特性の繰り
返しが低下する。本発明で用いることができる導電性基
体としては、アルミニウム、ニッケル、銅、ステンレス
等の金属板、金属ドラムまたは金属箔、アルミニウム、
酸化錫、ヨウ化銅の薄膜を塗布したプラスチックフィル
ムあるいはガラス等が挙げられる。
The charge generating substance that can be used in the present invention is, for example, an X type metal-free phthalocyanine,
π-type metal-free phthalocyanine, τ-type metal-free phthalocyanine, ε-type copper phthalocyanine, α-type titanyl phthalocyanine, β-type titanyl phthalocyanine and other phthalocyanine pigments and disazo trisazo pigments, anthraquinone pigments, polycyclic quinone pigments, Indigo pigment, diphenylmethane, trimethylmethane pigment, cyanine pigment, quinoline pigment, benzophenone, naphthoquinone pigment,
Perylene pigments, fluorenone pigments, squarylium pigments, azurenium pigments, perinone pigments, quinacridone pigments, naphthalocyanine pigments, and porphyrin pigments can be used. Examples of the organic acceptor compound that can be used in the present invention include quinone compounds, π-electron compounds having a nitrile group, and π-electron compounds having a nitro group. When an organic acceptor compound is used, the amount ratio of the hole transport material and the organic acceptor compound is 1
/ 5 to 50/1, preferably 1/5 to 5/1. When the amount of the hole transport material is less than this, the repetition of electrostatic characteristics is deteriorated. As the conductive substrate that can be used in the present invention, aluminum, nickel, copper, a metal plate such as stainless steel, a metal drum or metal foil, aluminum,
Examples thereof include a plastic film coated with a thin film of tin oxide or copper iodide, or glass.

【0041】本発明の感光体では帯電性を改良する目的
で感光層と導電性基体の間に下引き層を設けることがで
きる。これらの材料としては前記結着剤材料の他に、ポ
リアミド樹脂、ポリビニルアルコール、カゼイン、ポリ
ビニルピロリドン等を用いることができる。本発明の感
光体をつくるには、前記の材料を有機溶媒中に溶解また
は、ボールミル、超音波等で分散して調整した感光層形
成液を浸漬法やブレード塗布、スプレー塗布等で基体上
に塗布し感光層を形成すればよい。
In the photoreceptor of the present invention, an undercoat layer may be provided between the photosensitive layer and the conductive substrate for the purpose of improving the charging property. As these materials, in addition to the binder material, polyamide resin, polyvinyl alcohol, casein, polyvinylpyrrolidone or the like can be used. In order to produce the photoreceptor of the present invention, a photosensitive layer forming liquid prepared by dissolving or dispersing the above materials in an organic solvent by a ball mill, ultrasonic waves or the like is applied onto a substrate by a dipping method, blade coating, spray coating or the like. It may be applied to form a photosensitive layer.

【0042】[0042]

【実施例】以下本発明を実施例により説明するが、これ
により本発明の態様が限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the embodiments of the present invention are not limited thereby.

【0043】実施例1 下記構造式で表されるビスアゾ顔料1gをP(VDF/
TrFE)溶液を10g(共重合比=65/35:テト
ラヒドロフラン中に10wt%に溶解したもの)、テト
ラヒドロフラン9gとともにボールミリングした後、顔
料組成10wt%、PC−Z組成が50wt%、正孔輸
送材料(D2−12)が40wt%となるよう15wt
%のPC−Z溶液、アクセプタ化合物、正孔輸送材料を
加え感光体の塗布液を作製した。この液をアルミニウム
基体上に塗布し加熱乾燥して約12μmの単層型感光体
を作製した。この感光体を川口電気社製静電複写紙試験
装置(SP−428)で帯電電位Vs(帯電開始後20
秒後の表面電位値と光照射後表面電位が1/2に減衰す
るのに必要な露光量(E1/2)を測定した。表8に示
される結果が得られた。
Example 1 1 g of a bisazo pigment represented by the following structural formula was added to P (VDF /
TrFE) solution was ball-milled with 10 g (copolymerization ratio = 65/35: 10 wt% dissolved in tetrahydrofuran) and 9 g of tetrahydrofuran, and then 10 wt% pigment composition, 50 wt% PC-Z composition, hole transport material. 15D so that (D2-12) is 40wt%
% PC-Z solution, an acceptor compound, and a hole transport material were added to prepare a photoreceptor coating solution. This solution was applied on an aluminum substrate and dried by heating to prepare a single-layer type photoreceptor having a thickness of about 12 μm. This photoconductor was charged with a charging potential Vs (20 after the start of charging by an electrostatic copying paper tester (SP-428) manufactured by Kawaguchi Electric Co., Ltd.
The surface potential value after seconds and the exposure amount (E1 / 2) required for the surface potential after irradiation with light to be attenuated to 1/2 were measured. The results shown in Table 8 were obtained.

【化8】 [Chemical 8]

【0044】実施例2 実施例1の強誘導電性結着剤を下記フッ素樹脂に代えた
以外は実施例1と同様に感光層を作製し静電特性を測定
した。表8の結果が得られた。
Example 2 A photosensitive layer was prepared and electrostatic properties were measured in the same manner as in Example 1 except that the fluorocarbon resin shown below was used instead of the strong induction binder. The results shown in Table 8 were obtained.

【化9】 [Chemical 9]

【0045】実施例3 実施例1の強誘導電性結着剤を下記ポリアミド樹脂に代
えた以外は実施例1と同様に感光層を作製し転写特性を
測定した。表8の結果が得られた。
Example 3 A photosensitive layer was prepared and transfer characteristics were measured in the same manner as in Example 1 except that the polyamide resin shown below was used in place of the strong induction binder of Example 1. The results shown in Table 8 were obtained.

【化10】 [Chemical 10]

【0046】実施例4 実施例1の強誘導電性結着剤を下記ポリアミド樹脂に代
えた以外は実施例1と同様に感光層を作製し転写特性を
測定した。表8の結果が得られた。
Example 4 A photosensitive layer was prepared and transfer characteristics were measured in the same manner as in Example 1 except that the polyamide resin shown below was used in place of the strong induction binder of Example 1. The results shown in Table 8 were obtained.

【化11】 [Chemical 11]

【0047】実施例5 実施例1の強誘導電性結着剤を下記ポリアミド樹脂に代
えた以外は実施例1と同様に感光層を作製し転写特性を
測定した。表8の結果が得られた。
Example 5 A photosensitive layer was prepared and transfer characteristics were measured in the same manner as in Example 1 except that the polyamide resin shown below was used in place of the strong induction binder of Example 1. The results shown in Table 8 were obtained.

【化12】 [Chemical 12]

【0048】実施例6 実施例1の強誘導電性結着剤を下記ポリアミド樹脂に代
えた以外は実施例1と同様に感光層を作製し転写特性を
測定した。表8の結果が得られた。
Example 6 A photosensitive layer was prepared and the transfer characteristics were measured in the same manner as in Example 1 except that the polyamide resin shown below was used instead of the strong induction binder of Example 1. The results shown in Table 8 were obtained.

【化13】 [Chemical 13]

【0049】実施例7 実施例1の強誘導電性結着剤を下記チオ尿素系樹脂に代
えた以外は実施例1と同様に感光層を作製し転写特性を
測定した。表8の結果が得られた。
Example 7 A photosensitive layer was prepared and the transfer characteristics were measured in the same manner as in Example 1 except that the thiourea-based resin described below was used instead of the strongly inductive binder in Example 1. The results shown in Table 8 were obtained.

【化14】 [Chemical 14]

【表8】 [Table 8]

【0050】実施例8 実施例1で用いた感光体を暗中で+6.5KVでコロナ
帯電し、暗減衰後の表面電位が600Vになったところ
で30luxのタングステン光を1秒間照射した。光照
射後、静電記録紙を感光体の表面に近づけ、導電ローラ
により転写紙を感光体表面に圧接しながら引き離した。
この際、導電ローラには感光体の露光部電位と電位差が
+800Vとなるよう電圧を印加した。静電記録紙上の
表面電位を測定したところ−130Vが得られた。静電
記録紙の静電容量より、この電位は表面電荷密度8.7
×10-8C/cm2に相当し、現像に対して十分な表面
電荷密度に達していることがわかった。また、未露光部
に対して同様の条件で転写電位を測定したところ転写電
位は0Vであった。
Example 8 The photoreceptor used in Example 1 was corona-charged at +6.5 KV in the dark, and when the surface potential after dark decay reached 600 V, 30 lux of tungsten light was irradiated for 1 second. After the light irradiation, the electrostatic recording paper was brought close to the surface of the photoconductor, and the transfer paper was separated while being pressed against the surface of the photoconductor by the conductive roller.
At this time, a voltage was applied to the conductive roller so that the potential difference from the potential on the exposed portion of the photoconductor was + 800V. When the surface potential on the electrostatic recording paper was measured, -130V was obtained. Due to the electrostatic capacity of the electrostatic recording paper, this potential has a surface charge density of 8.7.
It was found that the surface charge density reached a level corresponding to × 10 -8 C / cm 2, which was sufficient for development. When the transfer potential was measured on the unexposed portion under the same conditions, the transfer potential was 0V.

【0051】実施例9〜14 実施例2〜7ので使用した感光体を各々用い、実施例8
と同様の方法により静電記録を行ない転写特性を測定し
た。表9の結果が得られた。
Examples 9 to 14 Using the photoconductors used in Examples 2 to 7 respectively, Example 8
By the same method as described in (1), electrostatic recording was performed and the transfer characteristics were measured. The results shown in Table 9 were obtained.

【表9】 [Table 9]

【0052】実施例15〜19 実施例1の正孔輸送物質を表10記載のものに代え、更
に下記アクセプタ化合物を添加し、顔料組成を4%、樹
脂組成50%、正孔移動物質組成30%、アクセブタ化
合物組成16%とし感光層を作製した。その後、実施例
1と同様に転写特性を測定したところ、未露光部では0
V、露光部では表10の結果が得られた。
Examples 15 to 19 The hole transporting material of Example 1 was replaced with the one shown in Table 10, and the following acceptor compound was further added, and the pigment composition was 4%, the resin composition was 50%, and the hole transfer material composition was 30. %, And the acceptor compound composition was 16% to prepare a photosensitive layer. Then, when the transfer characteristics were measured in the same manner as in Example 1, it was 0 in the unexposed area.
The results shown in Table 10 were obtained for the V and exposed areas.

【化15】 [Chemical 15]

【表10】 [Table 10]

【0053】実施例22〜23 実施例8の顔料を以下のものに代えた以外は実施例8と
同様に感光層を作製し転写特性を測定したところ表11
の結果が得られた。
Examples 22 to 23 Photosensitive layers were prepared in the same manner as in Example 8 except that the pigments of Example 8 were replaced by the following, and the transfer characteristics were measured.
The result was obtained.

【化16】 [Chemical 16]

【表11】 [Table 11]

【0054】実施例24 実施例8のアクセプタ化合物を下記の化合物に代え、更
に、顔料組成2%、樹脂組成50%、正孔移動物質組成
8%、アクセプタ化合物組成40%として感光層を作製
した。−6KVでコロナ帯電し帯電電位が−600Vな
ったところで実施例1と同様に露光した。その後、導電
ローラに電圧を印加して実施例1と同様に静電記録紙に
電荷を転写した。導電ローラには感光体の帯電部との差
が+800Vとなるよう電圧を印加した。未露光部で−
145V、露光部で0Vの結果が得られた。
Example 24 A photosensitive layer was prepared by substituting the following compounds for the acceptor compound of Example 8 and further using a pigment composition of 2%, a resin composition of 50%, a hole transfer material composition of 8% and an acceptor compound composition of 40%. . Corona charging was performed at -6 KV, and when the charging potential became -600 V, exposure was performed in the same manner as in Example 1. Then, a voltage was applied to the conductive roller to transfer the electric charge to the electrostatic recording paper in the same manner as in Example 1. A voltage was applied to the conductive roller so that the difference from the charged portion of the photoconductor was + 800V. In the unexposed area-
A result of 145V and 0V at the exposed portion was obtained.

【化17】 [Chemical 17]

【0055】比較例1 実施例1の結着剤を強誘電性を示さないポリカーボネー
ト(PC−Z)に代え、実施例1と同様の方法で静電特
性を評価し、表8のような結果が得られた。さらにこの
感光体を用いて、実施例8と同様の方法で転写特性を評
価したところ、未露光部で−0V、露光部で−110V
の転写電位が得られた。
Comparative Example 1 The binder of Example 1 was replaced with polycarbonate (PC-Z) which did not exhibit ferroelectricity, and the electrostatic properties were evaluated in the same manner as in Example 1. The results shown in Table 8 were obtained. was gotten. Further, using this photoreceptor, the transfer characteristics were evaluated by the same method as in Example 8. As a result, the unexposed portion was -0 V and the exposed portion was -110 V.
The transfer potential of was obtained.

【0056】比較例2 実施例1の正孔輸送物質を下記のものとした実施例1と
同様に帯電したところ、暗減衰が大きすぎ、未露光部で
−40V、露光部で−120Vの転写電位が得られた。
Comparative Example 2 When the hole transporting material of Example 1 was charged as in Example 1, charging was carried out in the same manner as in Example 1. However, the dark decay was too large, and the transfer was −40 V in the unexposed area and −120 V in the exposed area. A potential was obtained.

【化18】 [Chemical 18]

【0057】比較例3 実施例1の基板上に実施例1で使用したアゾ顔料と樹脂
(重量比で1/1)からなる電荷発生層を約0.5μm
設けた。その上に実施例1で使用した正孔移動物質1g
と樹脂1gをテトラヒドロフラン18gに溶解した液を
塗布し12μmの電荷輸送層を設けた。この感光体を実
施例17と同様に転写電位の測定を行ったところ未露光
部で−50V、露光部で0Vの結果となった。
Comparative Example 3 A charge generation layer comprising the azo pigment used in Example 1 and a resin (1/1 in weight ratio) was formed on the substrate of Example 1 in an amount of about 0.5 μm.
Provided. 1 g of the hole transfer material used in Example 1
And a solution of 1 g of resin dissolved in 18 g of tetrahydrofuran was applied to provide a 12 μm charge transport layer. When the transfer potential of this photosensitive member was measured in the same manner as in Example 17, the result was -50 V in the unexposed area and 0 V in the exposed area.

【0058】[0058]

【発明の効果】本発明の単層型電子写真感光体は、有機
正孔輸送物質と電荷発生材料が強誘電性を有する結着剤
中に分散され、あるいは更に加えて有機アクセプタ性化
合物が添加された構成からなるので、静電転写プロセス
に用いた場合、高い転写電位が得られ、良好な画像が得
られる。
INDUSTRIAL APPLICABILITY In the single-layer type electrophotographic photoreceptor of the present invention, the organic hole transporting substance and the charge generating material are dispersed in a binder having a ferroelectric property, or an organic acceptor compound is further added. Since it has the above constitution, when it is used in an electrostatic transfer process, a high transfer potential is obtained and a good image is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の単層型電子写真感光体の説明
図。(b)は本発明の他の単層型電子写真感光体の説明
図。
FIG. 1A is an explanatory view of a single-layer type electrophotographic photosensitive member of the present invention. (B) is an explanatory view of another single-layer type electrophotographic photosensitive member of the present invention.

【図2】逐次転写方法における転写潜像の転写過程の説
明図。
FIG. 2 is an explanatory diagram of a transfer process of a transfer latent image in a sequential transfer method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 浩 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Kondo 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体上に電荷発生物質、有機正孔
移動物質、有機アクセプタ性化合物の少なくとも各々1
種類以上が結着剤中に分散された単一膜より成る感光層
を有する電子写真用感光体において、当該結着剤が強誘
電性を示す高分子材料より成ることを特徴とする単層型
電子写真感光体。
1. A charge-generating substance, an organic hole-transporting substance, and an organic acceptor compound at least 1 each on a conductive substrate.
A single-layer type in which an electrophotographic photoreceptor having a photosensitive layer composed of a single film of which at least one kind is dispersed in a binder, the binder is made of a polymer material exhibiting ferroelectricity Electrophotographic photoreceptor.
【請求項2】 電子写真感光体上に静電潜像を形成した
後に、該感光体の表面側に静電記録体を接触させ、該感
光体と該静電記録体の間に電圧を印加して静電記録体上
に感光体に対応した静電潜像を転写し、しかる後に該静
電記録体上の静電潜像を可視化する潜像転写方式の電子
写真法に用いられる電子写真感光体において、該感光体
として請求項1の単層型電子写真感光体を用いたことを
特徴とする潜像転写用単層型電子写真用感光体。
2. An electrostatic latent image is formed on an electrophotographic photosensitive member, and then an electrostatic recording member is brought into contact with the surface side of the photosensitive member, and a voltage is applied between the photosensitive member and the electrostatic recording member. Then, an electrostatic latent image corresponding to the photoconductor is transferred onto the electrostatic recording body, and thereafter, an electrostatic latent image transfer electrophotography used to visualize the electrostatic latent image on the electrostatic recording body. A single-layer type electrophotographic photoreceptor for transferring a latent image, wherein the single-layer type electrophotographic photoreceptor of claim 1 is used as the photoreceptor.
【請求項3】 有機正孔輸送物質及び有機アクセプタ性
化合物の重量組成比が1/5〜50/1の間にあること
を特徴とする請求項1又は請求項2記載の電子写真感光
体。
3. The electrophotographic photosensitive member according to claim 1, wherein the weight composition ratio of the organic hole transport material and the organic acceptor compound is in the range of 1/5 to 50/1.
【請求項4】 結着剤がフッ素系樹脂である請求項1乃
至3何れか記載の電子写真感光体。
4. The electrophotographic photosensitive member according to claim 1, wherein the binder is a fluororesin.
【請求項5】 結着剤が下記の繰り返し単位(1)を有
するナイロン系樹脂である請求項1乃至3何れか記載の
電子写真感光体。 【化1】 (式中、m、nは1、3、5、7、9であり、xは重合
度を表す。)
5. The electrophotographic photosensitive member according to claim 1, wherein the binder is a nylon resin having the following repeating unit (1). [Chemical 1] (In the formula, m and n are 1, 3, 5, 7, and 9, and x represents the degree of polymerization.)
【請求項6】 結着剤が下記の繰り返し単位(2)を有
するウレタン系樹脂である請求項1乃至3何れか記載の
電子写真感光体。 【化2】 (式中、mは6、7、nは3、5であり、xは重合度を
表す。)
6. The electrophotographic photosensitive member according to claim 1, wherein the binder is a urethane resin having the following repeating unit (2). [Chemical 2] (In the formula, m is 6, 7 and n is 3, 5 and x represents the degree of polymerization.)
【請求項7】 結着剤が下記の繰り返し単位(3)を有
するチオ尿素系樹脂である請求項1乃至3何れか記載の
電子写真感光体。 【化3】 (式中、mは5、7、9であり、xは重合度を表す。)
7. The electrophotographic photosensitive member according to claim 1, wherein the binder is a thiourea-based resin having the following repeating unit (3). [Chemical 3] (In the formula, m is 5, 7, 9 and x represents the degree of polymerization.)
【請求項8】 正孔輸送物質が下記一般式(4)で表さ
れる化合物である請求項1乃至3何れか記載の潜像転写
用電子写真感光体。 (式中、Ar1、Ar2及びAr3は無置換の、またはア
ルキル基、アルコキシ基、チオアルコキシ基、アリール
オキシ基、ハロゲン原子、シアノ基、ニトロ基もしくは
アミノ基で置換されたアリール基、又は複素環基を表
す。)
8. The hole transport material is represented by the following general formula (4):
4. The latent image transfer according to claim 1, which is a compound
Electrophotographic photoconductor. (In the formula, Ar1, Ar2And Ar3Is an unsubstituted or
Alkyl group, alkoxy group, thioalkoxy group, aryl
Oxy group, halogen atom, cyano group, nitro group or
Represents an aryl group substituted with an amino group or a heterocyclic group
You )
【請求項9】 正孔輸送物質が下記一般式(5)で表さ
れる化合物である請求項1乃至3何れか記載の潜像転写
用電子写真感光体。 【化4】 (式中、R1及びR2は水素原子、アルキル基又はアリー
ル基を表し、またR1とR2の間で環を形成していてもよ
い。Ar1はアリーレン基または複素環基を表す。Ar2
及びAr3はアルキル基、アリール基、または複素環基
を表す。)
9. The electrophotographic photoreceptor for transferring a latent image according to claim 1, wherein the hole transporting substance is a compound represented by the following general formula (5). [Chemical 4] (In the formula, R 1 and R 2 represent a hydrogen atom, an alkyl group or an aryl group, and may form a ring between R 1 and R 2. Ar 1 represents an arylene group or a heterocyclic group. . Ar 2
And Ar 3 represents an alkyl group, an aryl group, or a heterocyclic group. )
【請求項10】 正孔輸送物質が下記一般式(6)で表
される化合物である請求項1乃至3何れか記載の潜像転
写用電子写真感光体。 (式中、Ar1、Ar2及びAr3は無置換の、またはア
ルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニ
トロ基もしくはアミノ基で置換されたアリール基、又は
複素環基を表す。)
10. The hole transport material is represented by the following general formula (6).
The latent image transfer according to any one of claims 1 to 3, which is a compound to be transferred.
Electrophotographic photoreceptor for copying. (In the formula, Ar1, Ar2And Ar3Is an unsubstituted or
Alkyl group, alkoxy group, halogen atom, cyano group,
An aryl group substituted with a toro group or an amino group, or
Represents a heterocyclic group. )
【請求項11】 正孔輸送物質が下記一般式(7)で表
される化合物である請求項1乃至3何れか記載の潜像転
写用電子写真感光体。 【化5】 (式中、Ar1、Ar2及びAr5及びAr6は無置換の、
またはアルキル基、アルコキシ基、ハロゲン原子、シア
ノ基、ニトロ基もしくはアミノ基で置換されたアリール
基を表し、Ar3及びAr4は無置換または上記置換基で
置換されたアリーレン基を表す。)
11. The electrophotographic photoreceptor for transferring a latent image according to claim 1, wherein the hole transporting substance is a compound represented by the following general formula (7). [Chemical 5] (In the formula, Ar 1 , Ar 2 and Ar 5 and Ar 6 are unsubstituted,
Alternatively, it represents an aryl group substituted with an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group or an amino group, and Ar 3 and Ar 4 represent an arylene group which is unsubstituted or substituted with the above substituents. )
【請求項12】 正孔輸送物質が下記一般式(8)で表
される化合物である請求項1乃至3何れか記載の潜像転
写用電子写真感光体。 【化6】 (式中、Ar1、Ar2、Ar3及びAr4は無置換の、ま
たはアルキル基、アルコキシ基、ハロゲン原子、シアノ
基、ニトロ基もしくはアミノ基で置換されたアリール基
を表し、Xはアルキレン基、硫黄、酸素、又は(CH=
CH)n(nは1以上の整数)を表す。)
12. The electrophotographic photoreceptor for transferring a latent image according to claim 1, wherein the hole transporting substance is a compound represented by the following general formula (8). [Chemical 6] (In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 represent an aryl group which is unsubstituted or substituted by an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group or an amino group, and X is an alkylene. Group, sulfur, oxygen, or (CH =
CH) n (n is an integer of 1 or more). )
【請求項13】 正孔輸送物質が下記一般式(9)で表
される化合物である請求項1乃至3何れか記載の潜像転
写用電子写真感光体。 (式中、Ar1は無置換の、またはアルキル基、アルコ
キシ基、ハロゲン原子、シアノ基、ニトロ基もしくはア
ミノ基で置換されたアリール基又は複素環基を表し、A
2及びAr3はアルキル基、フェニル基又はナフチル基
を表す。)
13. The hole transport material is represented by the following general formula (9).
The latent image transfer according to any one of claims 1 to 3, which is a compound to be transferred.
Electrophotographic photoreceptor for copying. (In the formula, Ar1Is an unsubstituted or alkyl group,
Xy group, halogen atom, cyano group, nitro group or
Represents an aryl group or a heterocyclic group substituted with a mino group,
r2And Ar3Is an alkyl group, phenyl group or naphthyl group
Represents )
【請求項14】 正孔輸送物質が下記一般式(10)で
表される化合物である請求項1乃至3何れか記載の潜像
転写用電子写真感光体。 【化7】 (式中、Ar1、Ar2、Ar3及びAr4は無置換の、ま
たはアルキル基、アルコキシ基、ハロゲン原子もしくは
アミノ基で置換されたアリール基、又は複素環基を表
す。また、nは0または1の整数を表す。)
14. The electrophotographic photosensitive member for latent image transfer according to claim 1, wherein the hole transporting substance is a compound represented by the following general formula (10). [Chemical 7] (In the formula, Ar 1 , Ar 2 , Ar 3 and Ar 4 each represent an unsubstituted or alkyl group, an alkoxy group, an aryl group substituted with a halogen atom or an amino group, or a heterocyclic group. Represents an integer of 0 or 1.)
JP7153694A 1993-12-11 1994-03-16 Monolayer electrophotographic photoreceptor Pending JPH07219247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7153694A JPH07219247A (en) 1993-12-11 1994-03-16 Monolayer electrophotographic photoreceptor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34177693 1993-12-11
JP5-341776 1993-12-11
JP7153694A JPH07219247A (en) 1993-12-11 1994-03-16 Monolayer electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH07219247A true JPH07219247A (en) 1995-08-18

Family

ID=26412636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7153694A Pending JPH07219247A (en) 1993-12-11 1994-03-16 Monolayer electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH07219247A (en)

Similar Documents

Publication Publication Date Title
JP3949365B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus using the same
JPH07219247A (en) Monolayer electrophotographic photoreceptor
JP2010181911A (en) Electrophotographic photoreceptor and electrophotographic device using same
JPH08320581A (en) Electrophotographic photoreceptor
JPH07287407A (en) Electrophotographic photoreceptor for transferring latent image
JP3489187B2 (en) Electrophotographic photoreceptor
JPH07281460A (en) Electrophotographic photoreceptor for transfer of latent image
JPH08179523A (en) Electrophotographic photoreceptor for transferring latent image
JPH08202055A (en) Electrophotographic photoreceptor for latent image transfer
JPH07287405A (en) Electrophotographic photoreceptor for transferring latent image
JP3465097B2 (en) Electrophotographic photoreceptor for latent image transfer
JPH0876390A (en) Single layer type electrophotographic photoreceptor
JPH07306537A (en) Electrophotographic photoreceptor for transferring latent image
JPH07295249A (en) Electrophotographic photoreceptor for transferring latent image
JP2002351106A (en) Electrophotographic photoreceptor and electrophotographic device using the same
JPH06337528A (en) Single layer type electrohptoreceptor
JPH08179525A (en) Electrophotographic photoreceptor for transferring latent image
JPH086272A (en) Electrophotographic photoreceptor for transfer of latent image
JPH1048857A (en) Electrophotographic photoreceptor
JPH07287406A (en) Electrophotographic photoreceptor for transferring latent image
JPH09329901A (en) Electrophotographic photoreceptor for latent image transfer
JPH0566589A (en) Electrophotographic sensitive body
JPH0915873A (en) Electrophotographic photoreceptor for latent image transfer
JPH06289638A (en) Single layer type electrophotographic sensitive body
JPH0862873A (en) Electrophotographic photoreceptor