JPH07218534A - Capacitance type acceleration sensor and its manufacture - Google Patents

Capacitance type acceleration sensor and its manufacture

Info

Publication number
JPH07218534A
JPH07218534A JP1141894A JP1141894A JPH07218534A JP H07218534 A JPH07218534 A JP H07218534A JP 1141894 A JP1141894 A JP 1141894A JP 1141894 A JP1141894 A JP 1141894A JP H07218534 A JPH07218534 A JP H07218534A
Authority
JP
Japan
Prior art keywords
weight
electrodes
acceleration sensor
electrode
fixed frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1141894A
Other languages
Japanese (ja)
Inventor
Yoshinari Ikeda
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1141894A priority Critical patent/JPH07218534A/en
Publication of JPH07218534A publication Critical patent/JPH07218534A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/12Strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/25Capacitance type, e.g. as level indicator

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To prevent drop of the sensing accuracy of an acceleration sensor caused by the deadweight of a weight by forming it from a quadriangular plate of electrically insulative material, and furnishing movable electrodes, stationary electrodes, etc., on a fixing frame of an insulative substance which are located on the sides apart from one another. CONSTITUTION:When a lateral acceleration is applied to a weight 5, a sideways movement takes place so that the distance between a movable electrode 51 and a stationary electrode 61 varies to cause a change in the electrostatic capacitance, and thus the acceleration is sensed. Even though the weight 5 moves down by its deadweight, the distances between the electrodes 51, 52 and 61, 62 do not change because of parallelism, and because the lengths in vertical direction of the electrodes 51, 52 and ones 61, 62 are good larger than the distance for which the weight 5 normally moves downward due to its deadweight, change in the mating areas of electrodes 51, 52 and ones 61, 62 is lesser. Accordingly there is no risk that the deadweight of the weight 5 deteriorates the sensing accuracy. If the vertical length of one of the electrodes is made smaller than that of the other, change in the mating area of these electrodes will further lessen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車の加速度
状態,揺れの状態などを検出し、その検出信号を処理し
て各種制御などに使用される超小型の容量形加速度セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-compact capacitive acceleration sensor which is used for various controls, for example, by detecting an acceleration condition and a shaking condition of an automobile and processing the detection signal.

【0002】[0002]

【従来の技術】シリコン基板の表面に、例えばポリシリ
コンからなるシリコン層と、例えばPSG(Phosp
ho Silicate Glass,燐珪酸ガラス)
からなる犠牲層とを多層に形成し、マイクロマシン技術
によって加工後犠牲層を弗酸などによって取り除き、超
小型の多層構造体を形成する技術(以下多層マイクロマ
シン技術と称する)が開発されている。このような技術
を用いて超小型の容量形加速度センサが開発されてい
る。
2. Description of the Related Art A silicon layer made of, for example, polysilicon and a PSG (Phosp) are formed on the surface of a silicon substrate.
ho Silicate Glass, phosphosilicate glass)
A technique (hereinafter, referred to as a multi-layer micro-machine technique) for forming an ultra-small multi-layer structure by forming a multi-layer sacrificial layer made of, and removing the sacrificial layer with hydrofluoric acid after processing by the micro-machine technique has been developed. An ultra-small capacitive acceleration sensor has been developed using such a technique.

【0003】図8は、多層マイクロマシン技術によって
作られた従来の容量形加速度センサの一例を示し、
(a)は斜視図、(b)は(a)のC−C断面図であ
り、半導体基板1と、それぞれポリシリコンからなり、
この半導体基板1の上面に絶縁層1Aを介して四角形の
各隅に設けられた支持体21A,21B,21Cおよび
21Dと、その一端がそれぞれ支持体21A,21B,
21Cおよび21Dに結合され、90°の回転移動で合
致するこの四角形の対角線方向の梁24A,24B,2
4Cおよび24Dと、これら梁24A,24B,24
C,24Dの他端に結合され、その上面および下面が可
動電極23Aおよび23Bを形成する重り23と、この
重り23の可動電極23Bの下面に所定の間隔を隔て
て、シリコン基板1の上面に絶縁層1Aを介して設けら
れた固定電極31と、シリコン基板1の上面に絶縁層1
Aを介して設けられた支持体42Aおよび42Bと、こ
れら支持体42Aおよび42Bにその周辺が結合され、
この重り23の可動電極23Aの一方の側、図8では左
側の上面に所定の間隔を隔てて設けられた固定電極41
とからなり、可動電極23A,23Bから梁24Bおよ
び支持体21Bを介して端子Mが、固定電極31から端
子S1 が、固定電極41から支持体42Aを介して端子
2 がそれぞれ引き出される。
FIG. 8 shows an example of a conventional capacitive acceleration sensor manufactured by a multi-layer micromachine technique.
(A) is a perspective view, (b) is a CC cross-sectional view of (a), which is composed of a semiconductor substrate 1 and polysilicon, respectively.
Supports 21A, 21B, 21C and 21D provided on the upper surface of the semiconductor substrate 1 at respective corners of a quadrangle via an insulating layer 1A, and one ends of the supports 21A, 21B, 21C,
This rectangular diagonal beam 24A, 24B, 2 which is connected to 21C and 21D and is fitted in a 90 ° rotational movement
4C and 24D and these beams 24A, 24B, 24
A weight 23 coupled to the other ends of C and 24D, the upper and lower surfaces of which form movable electrodes 23A and 23B, and a lower surface of the movable electrode 23B of the weight 23, which is spaced apart by a predetermined distance, from the upper surface of the silicon substrate 1. The fixed electrode 31 provided via the insulating layer 1A and the insulating layer 1 on the upper surface of the silicon substrate 1.
Supports 42A and 42B provided through A, and their peripheries are coupled to these supports 42A and 42B,
A fixed electrode 41 provided at a predetermined distance on one side of the movable electrode 23A of the weight 23, that is, on the upper surface on the left side in FIG.
From the movable electrodes 23A and 23B, the terminal M is drawn out via the beam 24B and the support 21B, the fixed electrode 31 is drawn out from the terminal S 1 , and the fixed electrode 41 is drawn out from the terminal S 2 via the support 42A.

【0004】ここでポリシリコンは、不純物がドープさ
れて固有抵抗は、例えば、1ないし10-3オームセンチ程
度に低下しており、導電性になっている。おな、ポリシ
リコンに変えて不純物をドープして導電性とした単結晶
シリコンを用いても勿論差支えないが、ポリシリコンは
単結晶シリコンより低コストとなる。この容量形加速度
センサの動作は次の通りである。重り23に垂直方向の
加速度が加わると、可動電極23A,23Bは垂直方向
に移動する。可動電極23A,23Bの垂直移動によっ
て、可動電極23Bと固定電極31との間は、例えば接
近してこの間の静電容量は増大し、可動電極23Aと固
定電極41との間は逆に離れてこの間の静電容量は減少
する。これら静電容量の値を端子M,S1 間および端子
M,S2 間から取り出し、差動増幅器などによって信号
処理をして加えられた加速度を検出する。
Here, the polysilicon is doped with impurities, and its specific resistance is lowered to, for example, about 1 to 10 −3 Ωcm, which makes it conductive. Of course, it is possible to use single crystal silicon made conductive by doping impurities instead of polysilicon, but the cost of polysilicon is lower than that of single crystal silicon. The operation of this capacitive acceleration sensor is as follows. When vertical acceleration is applied to the weight 23, the movable electrodes 23A and 23B move in the vertical direction. By the vertical movement of the movable electrodes 23A and 23B, for example, the movable electrode 23B and the fixed electrode 31 come close to each other, and the electrostatic capacitance therebetween increases, and the movable electrode 23A and the fixed electrode 41 are separated from each other. During this time, the capacitance decreases. The values of these capacitances are taken out from between the terminals M and S 1 and between the terminals M and S 2 , and signal processing is performed by a differential amplifier or the like to detect the applied acceleration.

【0005】[0005]

【発明が解決しようとする課題】前述の容量形加速度セ
ンサは、重りの上面および下面に設けられた各可動電極
にそれぞれ間隔を隔てて各固定電極を設けた構造となっ
ているので、重りの自重によって、重りの上面側の可動
電極と固定電極の間隔、あるいは下面側の可動電極と固
定電極の間隔が変化し、検出精度が低下する問題があ
る。また、シリコン基板の表面に、例えばポリシリコン
からなるシリコン層と、例えばPSGからなる犠牲層と
を多層に形成し、マイクロマシン技術によって加工後犠
牲層を弗酸などに取り除く、所謂多層マイクロマシン技
術によって作られるが、多層マイクロマシン技術ではシ
リコン基板上に複数のマスクの転写やエッチングが必要
で製造工数が嵩む問題がある。
The above-mentioned capacitive acceleration sensor has a structure in which the movable electrodes provided on the upper surface and the lower surface of the weight are provided with the fixed electrodes at intervals, respectively. Due to the weight of the weight, the distance between the movable electrode and the fixed electrode on the upper surface side of the weight or the distance between the movable electrode and the fixed electrode on the lower surface side changes, which causes a problem that the detection accuracy decreases. In addition, a silicon layer made of, for example, polysilicon and a sacrifice layer made of, for example, PSG are formed in multiple layers on the surface of a silicon substrate, and the sacrifice layer is removed by hydrofluoric acid or the like after processing by the micromachine technique. However, in the multi-layer micromachine technology, there is a problem that transfer and etching of a plurality of masks on a silicon substrate are required and the number of manufacturing steps is increased.

【0006】本発明の目的は、重りの自重による検出精
度の低下を防止した高精度の容量形加速度センサを提供
することにある。更に製造工数を低減した低コストの製
造方法を提供することにある。
An object of the present invention is to provide a highly accurate capacitive acceleration sensor which prevents the detection accuracy from being lowered due to the weight of the weight. Another object of the present invention is to provide a low-cost manufacturing method that reduces the number of manufacturing steps.

【0007】[0007]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明の容量形加速度センサは四角形の板からな
る絶縁性の重りと、この重りの各側面にそれぞれ間隔を
隔てて設けられた絶縁性の固定枠と、この重りの対向す
る一方の両側面とこれら両側面にそれぞれ対向する固定
枠の各内側面との間に設けられた各梁と、重りの対向す
る他方の両側面にそれぞれ設けられた各可動電極と、こ
れら各可動電極に対向して固定枠の内側面にそれぞれ設
けられた各固定電極とからなるようにする。そして、前
記各梁は重りの対向する一方の両側面の両端部に近い個
所と、これら個所に対向する固定枠の各内側面との間に
設けられた4個の梁からなるようにすると望ましい。ま
た、前記の容量形加速度センサにおいて、重り,固定枠
および各梁は固有抵抗の高い絶縁性のシリコンからな
り、各可動電極および各固定電極はこの固有抵抗の高い
絶縁性のシリコンに不純物をドープして、固有抵抗を低
下した導電性のシリコンにする、あるいは重り,固定枠
および各梁は絶縁性の樹脂からなるようにするとよい。
そして樹脂からなる場合、重り,固定枠および各梁を未
硬化の紫外線硬化樹脂に紫外線を照射して形成するよう
にすると好適である。
In order to achieve the above-mentioned object, the capacitive acceleration sensor of the present invention is provided with an insulating weight composed of a quadrangular plate and each side surface of the weight with a space therebetween. And an insulative fixed frame, each beam provided between the opposite one side surfaces of this weight and each inner side surface of the fixed frame facing each of these both side surfaces, and the other opposite side surfaces of the weight And each fixed electrode provided on the inner side surface of the fixed frame so as to face each of the movable electrodes. It is desirable that each of the beams be composed of four beams provided between a portion near both ends of one opposite side surface of the weight and each inner side surface of the fixed frame facing these portions. . Further, in the above capacitive acceleration sensor, the weight, the fixed frame, and each beam are made of insulating silicon having a high specific resistance, and each movable electrode and each fixed electrode are doped with impurities in the insulating silicon having a high specific resistance. Then, it is preferable to use conductive silicon having a reduced specific resistance, or the weight, the fixing frame and each beam may be made of an insulating resin.
When it is made of resin, it is preferable to form the weight, the fixing frame, and each beam by irradiating an uncured ultraviolet curable resin with ultraviolet rays.

【0008】[0008]

【作用】本発明の容量形加速度センサでは、重りが自重
によって移動する方向は可動電極および固定電極に平行
の方向であるので、可動電極と固定電極との間隔が変化
することはない。また、重りが自重によって移動する方
向の可動電極および固定電極の長さは、通常重りが自重
によって移動する長さより大きいので、可動電極と固定
電極の対向する面積の変化は少ない。従って、重りの自
重によって検出精度が低下することはない。なお、一方
の電極の重りが自重によって移動する方向の長さを、他
方の電極の同長さより短かくすることによって、これら
電極の対向する面積の変化がより少なくなるので好適で
ある。
In the capacitive acceleration sensor of the present invention, the weight moves by its own weight in the direction parallel to the movable electrode and the fixed electrode, so that the distance between the movable electrode and the fixed electrode does not change. Further, since the length of the movable electrode and the fixed electrode in the direction in which the weight moves due to its own weight is usually larger than the length of the weight moved due to its own weight, the change in the area where the movable electrode and the fixed electrode face each other is small. Therefore, the detection accuracy does not decrease due to the weight of the weight. Note that it is preferable to make the length of the weight of one electrode in the direction in which the weight moves by its own weight shorter than the length of the other electrode because the change in the area where these electrodes face each other is reduced.

【0009】また、前記各梁は重りの対向する一方の両
側面の両端部に近い個所と、これら個所に対向する固定
枠の各内側面との間に設けられた4個の梁からなるよう
にし、この場合、重りの支持力を2個の梁で支持する場
合と4個の梁で支持する場合で等しくとると、4個の梁
で支持する場合は梁の幅が1/2になって剛性が低くな
って、加速度が加わったときの重りの移動量が大きく検
出感度が向上する。また、4個の梁で支持することによ
って重りの移動時のねじれが防止され、検出動作が安定
化する。
Further, each of the beams is composed of four beams provided between a portion of the weight close to both ends of one opposite side surface of the weight and each inner side surface of the fixed frame opposed to these portions. In this case, if the supporting force of the weight is equal when supporting with two beams and when supporting with four beams, the width of the beam becomes 1/2 when supporting with four beams. As a result, the rigidity becomes low, the amount of movement of the weight when acceleration is applied is large, and the detection sensitivity is improved. In addition, by supporting with four beams, twisting during movement of the weight is prevented, and the detection operation is stabilized.

【0010】また、重り,固定枠および各梁は固有抵抗
の高い絶縁性のシリコンからなり、各可動電極および各
固定電極はこの固有抵抗の高い絶縁性のシリコンに不純
物をドープして、固有抵抗を低下した導電性のシリコン
からなるようにすると、通常の半導体製造プロセスによ
って製造することができ好便である。また、重り,固定
枠および各梁は絶縁性の樹脂からなるようにしてよく
(なお、可動電極および固定電極は後付けとする)、こ
の場合、重り,固定枠および各梁を未硬化の紫外線硬化
樹脂に紫外線を照射して形成するようにすると、半導体
製造プロセスにおけるマスクの転写エッチングの必要が
なく製造工数が低減する。
Further, the weight, the fixed frame and each beam are made of insulating silicon having a high specific resistance, and each movable electrode and each fixed electrode are doped with impurities in the insulating silicon having a high specific resistance to obtain a specific resistance. It is convenient to use silicon having reduced conductivity because it can be manufactured by a normal semiconductor manufacturing process. In addition, the weight, the fixed frame, and each beam may be made of an insulating resin (the movable electrode and the fixed electrode are to be attached later). In this case, the weight, the fixed frame, and each beam are uncured by UV curing. When the resin is formed by irradiating ultraviolet rays, it is not necessary to transfer and etch the mask in the semiconductor manufacturing process, and the number of manufacturing steps is reduced.

【0011】[0011]

【実施例】図1は本発明の容量形加速度センサの一実施
例を示す斜視図である。図1において、容量形加速度セ
ンサは四角形の板からなる絶縁性の重り5と、この重り
5の各側面にそれぞれ間隔を隔てて設けられた絶縁性の
固定枠6と、この重り5の対向する一方の、例えば奥行
方向の両側面の中央部と、これら両側面にそれぞれ対向
する固定枠6の各内側面との間に設けられた各梁7A,
7Bと、重り5の対向する他方の、例えば横方向の両側
面にそれぞれ設けられた各可動電極51,52と、これ
ら各可動電極51,52に対向して固定枠6の内側面に
それぞれ設けられた各固定電極61,62とからなり、
各可動電極51,52はそれぞれ端子M1 ,M2 に可動
的に引き出され、各固定電極61,62はそれぞれ端子
1 ,S2 に引き出される。
1 is a perspective view showing an embodiment of a capacitive acceleration sensor of the present invention. In FIG. 1, the capacitive acceleration sensor includes an insulating weight 5 made of a quadrangular plate, an insulating fixing frame 6 provided on each side surface of the weight 5 with a space, and the weight 5 faces each other. Each of the beams 7A provided between one side, for example, the central portion of both side surfaces in the depth direction and each inner side surface of the fixed frame 6 facing the both side surfaces,
7B, the movable electrodes 51 and 52 provided on the other side of the weight 5, for example, on both side surfaces in the lateral direction, and on the inner side surface of the fixed frame 6 facing the movable electrodes 51 and 52, respectively. Each of the fixed electrodes 61 and 62 is
The movable electrodes 51 and 52 are movably drawn to terminals M 1 and M 2 , respectively, and the fixed electrodes 61 and 62 are drawn to terminals S 1 and S 2 , respectively.

【0012】ここで、重り5,固定枠6および各梁7
A,7Bは、例えば純度が高く固有抵抗の高い絶縁性の
シリコンからなり、各可動電極51,52および各固定
電極61,62は、これら固有抵抗の高い絶縁性のシリ
コンに不純物をドープして固有抵抗を低下した導電性の
シリコンとなっている。あるいは、重り5,固定枠6お
よび各梁7A,7Bは、例えば樹脂からなり、各可動電
極51,52および各固定電極61,62は、後付けの
導電性の金属などの電極からなっている。
Here, the weight 5, the fixed frame 6 and the respective beams 7
A and 7B are made of, for example, insulating silicon having high purity and high specific resistance, and the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are formed by doping the insulating silicon having high specific resistance with impurities. It is made of conductive silicon with reduced specific resistance. Alternatively, the weight 5, the fixed frame 6 and the beams 7A and 7B are made of, for example, resin, and the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are made of electrodes such as a conductive metal that is attached later.

【0013】この容量形加速度センサの動作は次の通り
である。重り5に横方向の加速度が加わると、重り5は
横方向に移動し、可動電極51と固定電極61との間
は、例えば接近してこの間の静電容量は増大し、可動電
極52と固定電極62との間は逆に離れてこの間の静電
容量は減少する。これら静電容量の値を端子M1 ,S1
間および端子M2 ,S2 間から取り出し、差動増幅器な
どによって信号処理をして加えられた加速度を検出す
る。
The operation of this capacitive acceleration sensor is as follows. When a lateral acceleration is applied to the weight 5, the weight 5 moves in the lateral direction, and the movable electrode 51 and the fixed electrode 61 come close to each other, for example, and the electrostatic capacitance therebetween increases, so that the movable electrode 52 and the fixed electrode 52 are fixed. On the contrary, the electrode 62 is separated from the electrode 62, and the capacitance therebetween decreases. The values of these capacitances are used as the terminals M 1 and S 1
Taken out from between and between terminals M 2, S 2, to detect the acceleration applied to the signal processing such as by a differential amplifier.

【0014】この容量形加速度センサでは重り5が自重
によって下方向に移動しても、可動電極と固定電極との
間隔は変化することはない。また、可動電極51,52
および固定電極61,62の上下方向の長さは、通常重
り5が自重によって移動する下方向の距離より充分大き
いので、可動電極51,52と固定電極61,62の対
向する面積の変化は少ない。従って、重り5の自重によ
って検出精度が低下することはない。なお、一方の電極
の上下方向の長さを他方の電極の上下方向の長さより短
かくすると、これら電極の対向する面積の変化がより少
なくなるので好適である。
In this capacitive acceleration sensor, the distance between the movable electrode and the fixed electrode does not change even if the weight 5 moves downward due to its own weight. In addition, the movable electrodes 51, 52
Since the vertical lengths of the fixed electrodes 61 and 62 are usually sufficiently larger than the downward distance in which the weight 5 moves by its own weight, there is little change in the facing area between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. . Therefore, the detection accuracy does not decrease due to the weight of the weight 5. Note that it is preferable to make the vertical length of one electrode shorter than the vertical length of the other electrode, because the change in the area where these electrodes face each other becomes smaller.

【0015】図2は本発明の容量形加速度センサの異な
る実施例を示す斜視図である。図2に示す実施例が図1
に示す実施例と異なるところは、図1の重り5の対向す
る一方の、例えば奥行方向の両側面の中央部と、これら
各側面に対向する固定枠6の各内側面との間に設けられ
た各梁7A,7Bに変えて、この重り5の対向する一方
の両側面の両端部に近い個所と、これら個所に対向する
固定枠6の各内側面との間に各梁7C,7D,7E,7
Fを設け、これら各梁7C,7D,7E,7Fの幅を図
1の実施例の各梁7A,7Bの1/2とした点にある
(重り5の支持力を図1の実施例と同じにするため)。
FIG. 2 is a perspective view showing another embodiment of the capacitive acceleration sensor of the present invention. The embodiment shown in FIG. 2 is shown in FIG.
1 is different from the embodiment shown in FIG. 1 in that it is provided between the facing one of the weights 5 in FIG. 1, for example, the central portion of both side surfaces in the depth direction and the inner side surfaces of the fixed frame 6 facing these respective side surfaces. In place of the beams 7A, 7B, the beams 7C, 7D are provided between the portions of the weight 5 close to both ends of the opposite side surfaces and the inner surface of the fixed frame 6 facing these portions. 7E, 7
F is provided, and the width of each of the beams 7C, 7D, 7E, and 7F is set to be half that of each of the beams 7A and 7B of the embodiment of FIG. 1 (the supporting force of the weight 5 is the same as that of the embodiment of FIG. 1). To be the same).

【0016】このように重り5の各側面を2個の梁、合
計4個の梁7C,7D,7E,7Fで支持することによ
り、図1の実施例のように重り5の各側面を1個の梁、
合計2個の梁7A,7Bでする場合に比して、重り5の
水平横方向の移動量を大きくすることができる。図3お
よび図4は、それぞれ図1に示す実施例における重り5
の各側面をそれぞれ1個の梁、合計2個の梁7A,7B
で支持したとき、図2に示す実施例における重り5の各
側面をそれぞれ2個の梁、合計4個の梁7C,7D,7
E,7Fで支持したときの、重り5の水平横方向の移動
量を解析した結果を示すモデル図である。図3におい
て、図3(a)は加速度が加わっていない状態を示し、
この状態から横方向に加速度が加わると、図3(b)に
示すように重り5は横方向に、例えば距離L移動する。
同様、図4において図4(a)は加速度が加わっていな
い状態を示し、この状態から横方向に加速度が加わる
と、この場合は重り5は横方向に距離2L移動する。す
なわち、2個の梁7A,7Bで支持するときに比して、
4個の梁7C,7D,7E,7Fで支持するときは、梁
の幅が1/2になるので剛性が低く、重り5の移動量が
大きくなる。
By supporting each side surface of the weight 5 by the two beams, that is, the four beams 7C, 7D, 7E, and 7F in total, each side surface of the weight 5 is set to 1 as in the embodiment of FIG. Beams,
The amount of horizontal movement of the weight 5 can be increased as compared with the case of using two beams 7A and 7B in total. 3 and 4 respectively show the weight 5 in the embodiment shown in FIG.
Each side has one beam, and a total of two beams 7A, 7B
2 when each side surface of the weight 5 in the embodiment shown in FIG. 2 is supported by four beams 7C, 7D, 7 in total.
It is a model figure which shows the result of having analyzed the moving amount of the horizontal direction of the weight 5 when supporting by E and 7F. In FIG. 3, FIG. 3A shows a state in which no acceleration is applied,
When acceleration is applied laterally from this state, the weight 5 moves laterally, for example, a distance L, as shown in FIG. 3B.
Similarly, in FIG. 4, FIG. 4A shows a state in which no acceleration is applied, and when acceleration is applied laterally from this state, in this case, the weight 5 moves a distance 2L in the lateral direction. That is, compared with the case of supporting with two beams 7A and 7B,
When supported by the four beams 7C, 7D, 7E, 7F, the beam width is halved, so that the rigidity is low and the movement amount of the weight 5 is large.

【0017】また、4個の梁7C,7D,7E,7Fで
支持することによって、重り5の移動時のねじれが防止
され、検出動作が安定化する。図1および図2に示す本
発明の容量形加速度センサにおいて、重り5,固定枠6
および各梁7A,7Bあるいは7C,7D,7E,7F
が固有抵抗の高い、例えば106 オームセンチ程度の絶縁
性のシリコンからなり、各可動電極51,52および固
定電極61,62は、これらの固有抵抗の高いシリコン
に不純物をドープし固有抵抗を、例えば1ないし10-3
ームセンチ程度にを低下した導電性のシリコンからなる
場合は、通常の半導体製造プロセスで製造することがで
きる。また、重り5,固定枠6および各梁7A,7Bあ
るいは7C,7D,7E,7Fが樹脂からなる場合は、
図5および図6に示す樹脂として紫外線硬化樹脂を用い
た製造方法によって製造すると、製造工数が低減し好適
である。図5はこの製造方法における製造装置を示し、
図5において、レーザ発振器81より発せられた紫外線
レーザ光は、ミラー83,ビーム集光レンズ84を介し
て、図示しない紫外線硬化樹脂の入った樹脂槽85にあ
たる。テーブル89は樹脂槽85の下面に設けられた窓
板86とわずかな隙間を持った位置にあり、この隙間は
前記紫外線硬化樹脂で満たされている。はじめに、この
レーザ光は窓板86の下面をXYステージ87によって
X方向にスキャンする。この際、樹脂を硬化させたい個
所ではシャッター82を開き、硬化させたくない個所で
はシャッター82を閉じることで任意形状の断面を作る
ことが可能である。X方向への1ラインのスキャンが終
わったら、次にこのレーザ光をY方向へ移動する。この
X方向スキャン,Y方向移動を任意数繰り返した後、Z
ステージ88をZ方向に移動することでテーブル89と
硬化した樹脂を持ち上げる。持ち上げた結果、再度紫外
線硬化樹脂によって窓板86とテーブル89との隙間が
満たされる。
Further, by supporting the four beams 7C, 7D, 7E and 7F, twisting of the weight 5 during movement is prevented and the detection operation is stabilized. In the capacitive acceleration sensor of the present invention shown in FIGS. 1 and 2, the weight 5, the fixed frame 6
And each beam 7A, 7B or 7C, 7D, 7E, 7F
Is made of insulating silicon having a high specific resistance, for example, about 10 6 ohm-cm, and the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are doped with impurities having high specific resistance to obtain the specific resistance. For example, when it is made of conductive silicon having a thickness lowered to about 1 to 10 −3 Ωcm, it can be manufactured by a normal semiconductor manufacturing process. When the weight 5, the fixed frame 6 and the beams 7A, 7B or 7C, 7D, 7E, 7F are made of resin,
It is preferable to manufacture by a manufacturing method using an ultraviolet curable resin as the resin shown in FIGS. 5 and 6 because the number of manufacturing steps is reduced. FIG. 5 shows a manufacturing apparatus in this manufacturing method,
In FIG. 5, the ultraviolet laser light emitted from the laser oscillator 81 passes through a mirror 83 and a beam condensing lens 84 and hits a resin tank 85 containing an ultraviolet curable resin (not shown). The table 89 is located at a position having a slight gap with the window plate 86 provided on the lower surface of the resin tank 85, and this gap is filled with the ultraviolet curable resin. First, the laser beam scans the lower surface of the window plate 86 in the X direction by the XY stage 87. At this time, it is possible to open the shutter 82 at a portion where the resin is desired to be cured and to close the shutter 82 at a portion where the resin is not desired to be cured to form a cross section having an arbitrary shape. After scanning one line in the X direction, the laser light is then moved in the Y direction. After repeating this X-direction scan and Y-direction movement an arbitrary number of times, Z
The table 89 and the cured resin are lifted by moving the stage 88 in the Z direction. As a result of the lifting, the gap between the window plate 86 and the table 89 is filled with the ultraviolet curable resin again.

【0018】図6は紫外線レーザ光のスキャン状態を示
し、重り5,固定枠6,各梁7C,7D,7E,7Dを
形成する個所では、シャッターを開いて紫外線レーザ光
を照射し、順次Y方向に移動させる。図7はこのように
して作られた重り5,固定枠6,各梁7C,7D,7
E,7Fを示し、点線で示されるZ方向の層ごとに順次
樹脂を硬化し所定の厚みが形成される。この製造方法で
は、X方向のレーザスキャン,Y方向移動,およびZ方
向移動を繰り返すことだけで製造が可能で、半導体製造
プロセスにおけるマスクの転写やエッチングの必要がな
く、製造工数が低減する。
FIG. 6 shows the scanning state of the ultraviolet laser light. At the place where the weight 5, the fixed frame 6, and the beams 7C, 7D, 7E, and 7D are formed, the shutter is opened to irradiate the ultraviolet laser light and Y Move in the direction. FIG. 7 shows the weight 5, the fixed frame 6, and the beams 7C, 7D, and 7 thus made.
E and 7F are shown, and the resin is sequentially cured for each layer in the Z direction indicated by the dotted line to form a predetermined thickness. In this manufacturing method, the manufacturing can be performed only by repeating the laser scanning in the X direction, the movement in the Y direction, and the movement in the Z direction, and it is not necessary to transfer or etch the mask in the semiconductor manufacturing process, and the number of manufacturing steps is reduced.

【0019】[0019]

【発明の効果】本発明の容量形加速度センサは、重りの
自重による検出精度の低下が防止されるので検出精度が
向上する。また、重り,固定枠および各梁は固有抵抗の
高い絶縁性のシリコンからなり、各可動電極および各固
定電極をこの固有抵抗の高い絶縁性のシリコンに不純物
をドープして、固有抵抗を低下した導電性のシリコンか
らなるようにしたので、通常の半導体製造プロセスで製
造が可能である。また、重り,固定枠および各梁を絶縁
性の樹脂としてよく、この場合、これら重り,固定枠お
よび各梁を未硬化の紫外線硬化樹脂に紫外線を照射して
形成するようにしたので、半導体製造プロセスにおける
マスクの転写やエッチングの必要がなく、製造工数が低
減しコストが低下する。
According to the capacitive acceleration sensor of the present invention, the detection accuracy is improved because the decrease of the detection accuracy due to the weight of the weight is prevented. Further, the weight, the fixed frame, and each beam are made of insulating silicon having a high specific resistance, and each movable electrode and each fixed electrode are doped with impurities in the insulating silicon having a high specific resistance to reduce the specific resistance. Since it is made of conductive silicon, it can be manufactured by a normal semiconductor manufacturing process. In addition, the weight, the fixed frame, and each beam may be made of an insulating resin. In this case, the weight, the fixed frame, and each beam are formed by irradiating an uncured ultraviolet curable resin with ultraviolet rays. There is no need to transfer or etch a mask in the process, which reduces the number of manufacturing steps and costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の容量形加速度センサの一実施例を示す
斜視図
FIG. 1 is a perspective view showing an embodiment of a capacitive acceleration sensor of the present invention.

【図2】本発明の容量形加速度センサの異なる実施例を
示す斜視図
FIG. 2 is a perspective view showing another embodiment of the capacitive acceleration sensor of the present invention.

【図3】図1に示す実施例における重りの水平横方向の
移動量の解析結果を示し、(a)は加速度の印加前のモ
デル図、(b)は加速度の印加後のモデル図
3A and 3B show analysis results of a horizontal movement amount of a weight in the embodiment shown in FIG. 1, where FIG. 3A is a model diagram before application of acceleration, and FIG. 3B is a model diagram after application of acceleration.

【図4】図2に示す実施例における重りの水平横方向の
移動量の解析結果を示し、(a)は加速度の印加前のモ
デル図、(b)は加速度の印加後のモデル図
4A and 4B show analysis results of a horizontal movement amount of a weight in the embodiment shown in FIG. 2, where FIG. 4A is a model diagram before application of acceleration, and FIG. 4B is a model diagram after application of acceleration.

【図5】図1あるいは図2に示す実施例において、重
り,固定枠および各梁を未硬化の紫外線硬化樹脂に紫外
線を照射して形成する製造方法で用いる製造装置の斜視
FIG. 5 is a perspective view of a manufacturing apparatus used in the manufacturing method of forming the weight, the fixing frame, and each beam by irradiating an uncured ultraviolet curable resin with ultraviolet rays in the embodiment shown in FIG. 1 or FIG.

【図6】図5に示す製造装置における紫外線レーザ光の
スキャン状態を示すモデル図
6 is a model diagram showing a scanning state of ultraviolet laser light in the manufacturing apparatus shown in FIG.

【図7】図5に示す製造装置によって重り,固定枠およ
び各梁が形成される状態を示すモデル図
FIG. 7 is a model diagram showing a state in which a weight, a fixed frame, and each beam are formed by the manufacturing apparatus shown in FIG.

【図8】従来の容量形加速度センサの一例を示し、
(a)は斜視図、(b)は(a)のC−C断面図
FIG. 8 shows an example of a conventional capacitive acceleration sensor,
(A) is a perspective view, (b) is a C-C sectional view of (a)

【符号の説明】[Explanation of symbols]

5 重り 51 可動電極 52 可動電極 6 固定枠 61 固定電極 62 固定電極 7A 梁 7B 梁 7C 梁 7D 梁 7E 梁 7F 梁 5 Weight 51 Movable electrode 52 Movable electrode 6 Fixed frame 61 Fixed electrode 62 Fixed electrode 7A Beam 7B Beam 7C Beam 7D Beam 7E Beam 7F Beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】四角形の板からなる絶縁性の重りと、この
重りの各側面にそれぞれ間隔を隔てて設けられた絶縁性
の固定枠と、この重りの対向する一方の両側面とこれら
両側面にそれぞれ対向する固定枠の各内側面との間に設
けられた各梁と、重りの対向する他方の両側面にそれぞ
れ設けられた各可動電極と、これら各可動電極に対向し
て固定枠の内側面にそれぞれ設けられた各固定電極とか
らなることを特徴とする容量形加速度センサ。
1. An insulative weight made of a quadrangular plate, an insulative fixing frame provided on each side surface of the weight at a distance from each other, one opposite side surface of the weight and both side surfaces thereof. To each inner surface of the fixed frame facing each other, each movable electrode provided to each of the other opposite side surfaces of the weight, and the fixed frame facing each of these movable electrodes. A capacitive acceleration sensor, comprising: each fixed electrode provided on an inner surface thereof.
【請求項2】請求項1記載のものにおいて、各梁は重り
の対向する一方の両側面の両端部に近い個所と、これら
個所に対向する固定枠の各内側面との間に設けられた4
個の梁からなることを特徴とする容量形加速度センサ。
2. The beam according to claim 1, wherein each beam is provided between a portion of one side surface of the weight close to both ends of the opposite side surface and each inner side surface of the fixed frame which faces these portions. Four
A capacitive acceleration sensor characterized by comprising individual beams.
【請求項3】請求項1あるいは2記載のものにおいて、
重り,固定枠および各梁は固有抵抗の高い絶縁性のシリ
コンからなり、各可動電極および各固定電極はこの固有
抵抗の高い絶縁性のシリコンに不純物をドープして、固
有抵抗を低下した導電性のシリコンからなることを特徴
とする容量形加速度センサ。
3. The device according to claim 1 or 2,
The weight, the fixed frame, and each beam are made of insulating silicon having a high specific resistance, and each movable electrode and each fixed electrode are formed by doping the insulating silicon having a high specific resistance with impurities to reduce the specific resistance. A capacitive acceleration sensor, which is made of silicon.
【請求項4】請求項1あるいは2記載のものにおいて、
重り,固定枠および各梁は絶縁性の樹脂からなることを
特徴とする容量形加速度センサ。
4. The method according to claim 1 or 2,
A capacitive acceleration sensor characterized in that the weight, fixed frame and each beam are made of insulating resin.
【請求項5】請求項4記載のものにおいて、重り,固定
枠および各梁を未硬化の紫外線硬化樹脂に紫外線を照射
して形成することを特徴とする容量形加速度センサの製
造方法。
5. The method of manufacturing a capacitive acceleration sensor according to claim 4, wherein the weight, the fixing frame and the respective beams are formed by irradiating an uncured ultraviolet curable resin with ultraviolet rays.
JP1141894A 1994-02-03 1994-02-03 Capacitance type acceleration sensor and its manufacture Pending JPH07218534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141894A JPH07218534A (en) 1994-02-03 1994-02-03 Capacitance type acceleration sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141894A JPH07218534A (en) 1994-02-03 1994-02-03 Capacitance type acceleration sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH07218534A true JPH07218534A (en) 1995-08-18

Family

ID=11777513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141894A Pending JPH07218534A (en) 1994-02-03 1994-02-03 Capacitance type acceleration sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH07218534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023234A (en) * 2009-09-22 2011-04-20 俞度立 Micromachined accelerometer with monolithic electrodes and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023234A (en) * 2009-09-22 2011-04-20 俞度立 Micromachined accelerometer with monolithic electrodes and method of making the same

Similar Documents

Publication Publication Date Title
US5447068A (en) Digital capacitive accelerometer
US7617729B2 (en) Accelerometer
US20170030876A1 (en) Combinational Array Gas Sensor
JP4063057B2 (en) Capacitive acceleration sensor
JPH0654327B2 (en) Unidirectional accelerometer and method of making same
KR950027368A (en) Infrared array sensor using planar micro processing technology and manufacturing method
US20080150554A1 (en) Capacitance sensing structure
KR100517496B1 (en) Cantilever having step-up structure and method for manufacturing the same
KR101028190B1 (en) Sensor element, device and method for inspecting a printed conductor structure, production method for sensor element
US7214559B2 (en) Method for fabricating vertical offset structure
JPH07218534A (en) Capacitance type acceleration sensor and its manufacture
CN111847375B (en) Infrared detector structure and manufacturing method thereof
JP3156453B2 (en) Semiconductor capacitive acceleration sensor
KR100555616B1 (en) Thin-film structure and method for manufacturing the same, and acceleration sensor and method for manufacturing the same
CN115078767A (en) Sensitive structure of MEMS accelerometer sensor with stress release
JP3813138B2 (en) Capacitance type acceleration sensor
JPH11214706A (en) Semiconductor sensor and its manufacture
CN218841706U (en) Self-aligned polycrystalline silicon and monocrystalline silicon hybrid MEMS vertical comb electrode
JPH06167400A (en) Mechanical quantity sensor
CN1195190A (en) Microstructure and methods for fabricating such structure
TWI220421B (en) Differential capacitor micro-accelerometer structure manufactured by SOI chip
JPH07211923A (en) Semiconductor acceleration sensor
CN115685532A (en) Micromirror with vibrating diaphragm deflection angle threshold detection structure and processing technology thereof
JP2006317182A (en) Acceleration sensor
JPH04302175A (en) Manufacture of semiconductor acceleration sensor