JP3156453B2 - Semiconductor capacitive acceleration sensor - Google Patents

Semiconductor capacitive acceleration sensor

Info

Publication number
JP3156453B2
JP3156453B2 JP18582893A JP18582893A JP3156453B2 JP 3156453 B2 JP3156453 B2 JP 3156453B2 JP 18582893 A JP18582893 A JP 18582893A JP 18582893 A JP18582893 A JP 18582893A JP 3156453 B2 JP3156453 B2 JP 3156453B2
Authority
JP
Japan
Prior art keywords
movable electrode
acceleration sensor
electrode
semiconductor
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18582893A
Other languages
Japanese (ja)
Other versions
JPH0743380A (en
Inventor
光男 小林
勝道 上▲やなぎ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18582893A priority Critical patent/JP3156453B2/en
Priority to GB9414661A priority patent/GB2281126B/en
Priority to US08/281,100 priority patent/US5665915A/en
Priority to DE4426590A priority patent/DE4426590C2/en
Publication of JPH0743380A publication Critical patent/JPH0743380A/en
Application granted granted Critical
Publication of JP3156453B2 publication Critical patent/JP3156453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車の加速度
状態,揺れの状態などを検出し、その検出信号を処理し
て各種制御などに使用される超小型の半導体容量形加速
度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-small semiconductor capacitive acceleration sensor which detects, for example, an acceleration state and a shaking state of an automobile, processes the detection signals, and is used for various controls.

【0002】[0002]

【従来の技術】シリコン基板の表面に、例えばポリシリ
コンからなるシリコン層と、例えばPSG(Phosp
ho Silicate Glass、燐珪酸ガラス)
からなる犠牲層とを多層に形成し、マイクロマシン技術
によって加工後犠牲層を弗酸などによって取り除き、超
小型の多層構造体を形成する技術(以下多層マイクロマ
シン技術と称する)が開発されている。このような技術
を用いて超小型の半導体容量形加速度センサが開発され
ている。
2. Description of the Related Art On a surface of a silicon substrate, a silicon layer made of, for example, polysilicon and a PSG (Phosp) are formed.
ho Silicate Glass, Phosphosilicate glass)
A technique for forming an ultra-compact multilayer structure by forming a sacrificial layer composed of a plurality of layers and removing the sacrificial layer after processing by micromachine technology using hydrofluoric acid or the like (hereinafter, referred to as a multilayer micromachine technique) has been developed. Ultra-compact semiconductor capacitive acceleration sensors have been developed using such techniques.

【0003】図5は多層マイクロマシン技術によって作
られた従来の半導体容量形加速度センサの一例を示す斜
視図であり、半導体基板1と、それぞれポリシリコンか
らなり、この半導体基板1の上面に酸化シリコンなどか
らなる絶縁層1Aを介して設けられた支持体21と、そ
の一端が支持体21に直角に結合され並行に配置された
水平方向の同一長さの梁22Aおよび22Bと、これら
梁22Aおよび22Bの他端に結合された水平方向の可
動電極23と、この可動電極23の下面に所定の間隙を
隔ててシリコン基板1の上面に絶縁層1Aを介して設け
られた固定電極31と、シリコン基板1の上面に絶縁層
1Aを介して設けられた支持体42Aおよび42Bと、
これら支持体42Aおよび42Bにその周辺が結合され
可動電極23の上面に所定の間隙を隔てて設けられた固
定電極41とからなり、可動電極23から梁22A,2
2Bおよび支持第21を介して端子Mが、固定電極31
から端子S1 が、固定電極41から支持体42Bを介し
て端子S2 がそれぞれ引き出される。
FIG. 5 is a perspective view showing an example of a conventional semiconductor capacitive acceleration sensor made by a multi-layer micromachine technology. The semiconductor substrate 1 is made of polysilicon, and the upper surface of the semiconductor substrate 1 is made of silicon oxide or the like. A support 21 provided via an insulating layer 1A made of a material, beams 22A and 22B having the same length in the horizontal direction, one end of which is connected to the support 21 at a right angle and arranged in parallel, and the beams 22A and 22B A movable electrode 23 connected to the other end of the movable electrode 23, a fixed electrode 31 provided on the upper surface of the silicon substrate 1 via a dielectric layer 1A with a predetermined gap on the lower surface of the movable electrode 23, 1. Supports 42A and 42B provided on the upper surface of 1 via an insulating layer 1A;
A fixed electrode 41 is provided around the supports 42A and 42B, the periphery of which is fixed to the upper surface of the movable electrode 23 with a predetermined gap.
The terminal M is connected to the fixed electrode 31
From the terminal S 1 is, the terminal S 2 is drawn from each of the fixed electrode 41 via the support member 42B.

【0004】ここでポリシリコンは、不純物がドープさ
れて固有抵抗は、例えば1オームセンチ程度に低下して
おり、導電性になっている。なお、ポリシリコンに換え
て不純物をドープして導電性とした単結晶シリコンを用
いても勿論差支えないが、ポリシリコンは単結晶シリコ
ンより低コストとなる(このことは以下も同様であ
る)。
Here, the polysilicon is doped with impurities, and the specific resistance is reduced to, for example, about 1 ohm-cm, and the polysilicon is conductive. Of course, it is possible to use single-crystal silicon which is made conductive by doping impurities instead of polysilicon, but polysilicon is lower in cost than single-crystal silicon (the same applies to the following).

【0005】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、可動電極23は垂直方向の力を受け、梁22A,
22Bは支持体21に結合された一方の端を支点として
撓み、可動電極23をP矢印方向に回動する。可動電極
23の回動によって、この可動電極23と固定電極31
との間は、例えば接近してこの間の静電容量は増大し、
この可動電極23と固定電極41との間は逆に離れてこ
の間の静電容量は減少する。これら静電容量の値を端子
M,S1 間および端子M,S2 間から取り出し、差動増
幅器などによって信号処理をして加えられた加速度を検
出する。
The operation of this semiconductor capacitive acceleration sensor is as follows. When a vertical acceleration is applied to the movable electrode 23, the movable electrode 23 receives a vertical force, and the beam 22A,
Reference numeral 22B flexes with one end coupled to the support 21 as a fulcrum, and rotates the movable electrode 23 in the direction of the arrow P. The rotation of the movable electrode 23 causes the movable electrode 23 and the fixed electrode 31 to rotate.
Between, for example, close, the capacitance between them increases,
The distance between the movable electrode 23 and the fixed electrode 41 is reversed, and the capacitance therebetween decreases. These capacitance values are taken out between the terminals M and S 1 and between the terminals M and S 2 and subjected to signal processing by a differential amplifier or the like to detect the applied acceleration.

【0006】図6は、同様多層マイクロマシン技術によ
って作られた従来の半導体容量形加速度センサの異なる
例を示す斜視図であり、半導体基板1と、それぞれポリ
シリコンからなり、この半導体基板1の上面に絶縁層1
Aを介して設けられた支持体21と、その一端が支持体
21に結合された水平方向の梁24Aと、その一端がこ
の支持体21に結合され、前記梁24Aと同一長さで反
対方向に設けられた梁24Bと、その重心点から一横方
向、例えば右方向にずれたところに設けられた四角形の
窓の縦方向の一内辺および他内辺に、これら梁24Aお
よび24Bの他端がそれぞれ結合された水平方向の可動
電極23と、この可動電極23の梁24A,24Bより
一方の側、図2では左側の下面に所定の間隙を隔ててシ
リコン基板1の上面に絶縁層1Aを介して設けられた固
定電極31と、この反対側、すなわち右側の下面に所定
の間隙を隔ててシリコン基板1の上面に絶縁層1Aを介
して設けられた固定電極41とからなり、可動電極23
から梁24A(24B)および支持体21を介して端子
Mが、固定電極31から端子S1 が、固定電極41から
端子S2 がそれぞれ引き出される。
FIG. 6 is a perspective view showing a different example of a conventional semiconductor capacitive acceleration sensor similarly made by a multi-layer micromachine technology. The semiconductor substrate 1 is made of polysilicon, and the semiconductor substrate 1 is made of polysilicon. Insulation layer 1
A, a support 21 provided via A, a horizontal beam 24A having one end connected to the support 21, and one end connected to the support 21 and having the same length as the beam 24A in the opposite direction. And a beam 24B provided on the other side of the rectangular window provided at a position shifted in the horizontal direction, for example, rightward from the center of gravity, and other beams 24A and 24B. The movable electrode 23 in the horizontal direction, the ends of which are respectively connected, and the insulating layer 1A on the upper surface of the silicon substrate 1 with a predetermined gap provided on one side of the beams 24A and 24B of the movable electrode 23, that is, on the lower surface on the left side in FIG. And a fixed electrode 41 provided on the upper surface of the silicon substrate 1 via the insulating layer 1A on the opposite side, that is, on the lower surface of the right side with a predetermined gap therebetween, and a movable electrode 23
The terminal M, the terminal S 1 from the fixed electrode 31, and the terminal S 2 from the fixed electrode 41 are pulled out through the beam 24 A (24 B) and the support 21.

【0007】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、可動電極23の右側および左側の部分にそれぞれ
垂直方向の力を受けるが、左側の方が右側より重量が大
きいので、梁24A,24Bは支持体21に結合された
一方の端を支点として捩じれ可動電極23をQ矢印方向
に回動する。可動電極23の回動によって、この可動電
極23と固定電極31との間は、例えば接近してこの間
の静電容量は増大し、この可動電極23と固定電極41
との間は逆に離れてこの間の静電容量は減少する。これ
ら静電容量の値を端子M,S1 間および端子M,S2
から取り出し、差動増幅器などによって信号処理をして
加えられた加速度を検出する。
The operation of this semiconductor capacitive acceleration sensor is as follows. When a vertical acceleration is applied to the movable electrode 23, the right and left portions of the movable electrode 23 receive vertical forces, respectively. However, since the left side is heavier than the right side, the beams 24A and 24B are supported by the support 21. The torsion movable electrode 23 is rotated in the direction of the arrow Q with one end coupled to the torsion as a fulcrum. Due to the rotation of the movable electrode 23, the capacitance between the movable electrode 23 and the fixed electrode 31 increases, for example, and the capacitance between the movable electrode 23 and the fixed electrode 31 increases.
And the capacitance decreases during this period. These capacitance values are taken out between the terminals M and S 1 and between the terminals M and S 2 and subjected to signal processing by a differential amplifier or the like to detect the applied acceleration.

【0008】図7は、同様多層マイクロマシン技術によ
って作られた従来の半導体容量形加速度センサの更に異
なる例を示す斜視図であり、半導体基板1と、それぞれ
ポリシリコンからなり、この半導体基板1の上面に絶縁
層1Aを介して設けられた支持体21Aおよび21B
と、その一端がそれぞれ支持体21Aおよび21Bに結
合され対抗した水平方向の梁24Aおよび24Bと、こ
れら梁24Aおよび24Bの他端間に結合された水平方
向の可動電極23と、この可動電極23の梁24Aおよ
び24Bより一方の側、図7では奥側の下面に所定の間
隙を隔ててシリコン基板1の上面に絶縁層1Aを介して
設けられた固定電極31と、この反対側、すなわち手前
側の下面に所定の間隙を隔ててシリコン基板1の上面に
絶縁層1Aを介して設けられた固定電極41とからな
り、可動電極23から梁24Aおよび支持体21Aを介
して端子Mが、固定電極31から端子S1 が、固定電極
41から端子S2 がそれぞれ引き出される。なお、25
は可動電極23の奥側に結合された重りである。
FIG. 7 is a perspective view showing still another example of a conventional semiconductor capacitive acceleration sensor similarly manufactured by a multi-layer micromachine technology. The semiconductor substrate 1 is made of polysilicon, and the upper surface of the semiconductor substrate 1 is made of polysilicon. 21A and 21B provided on the substrate via an insulating layer 1A
A pair of horizontal beams 24A and 24B, one end of which is connected to supports 21A and 21B, respectively, a horizontal movable electrode 23 connected between the other ends of the beams 24A and 24B, 7, a fixed electrode 31 provided on the upper surface of the silicon substrate 1 via the insulating layer 1A with a predetermined gap therebetween on the lower surface on the back side in FIG. A fixed electrode 41 is provided on the upper surface of the silicon substrate 1 via the insulating layer 1A with a predetermined gap on the lower surface on the side, and the terminal M is fixed from the movable electrode 23 via the beam 24A and the support 21A. A terminal S 1 is drawn from the electrode 31 and a terminal S 2 is drawn from the fixed electrode 41. Note that 25
Is a weight coupled to the back side of the movable electrode 23.

【0009】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、可動電極23の奥側および手前側の部分にそれぞ
れ垂直方向の力を受けるが、奥側の方が手前側より重量
が大きいので、梁24A,24Bは支持体21A,21
Bに結合された一端を支点として捩じれ可動電極23を
R矢印方向に回動する。可動電極23の回動によって、
この可動電極23と固定電極31との間は、例えば接近
してこの間の静電容量は増大し、この可動電極23と固
定電極41との間は逆に離れてこの間の静電容量は減少
する。これら静電容量の値を端子M,S1 間および端子
M,S2 間から取り出し、差動増幅器などによって信号
処理をして加えられた加速度を検出する。
The operation of this semiconductor capacitive acceleration sensor is as follows. When a vertical acceleration is applied to the movable electrode 23, a vertical force is applied to the rear and front portions of the movable electrode 23, respectively. However, since the rear side is heavier than the front side, the beams 24A and 24B Are the supports 21A, 21
The torsion movable electrode 23 is rotated in the direction of the arrow R with the one end connected to B as a fulcrum. By the rotation of the movable electrode 23,
The distance between the movable electrode 23 and the fixed electrode 31 is, for example, short, and the capacitance therebetween is increased, and the distance between the movable electrode 23 and the fixed electrode 41 is reversed, and the capacitance therebetween is reduced. . These capacitance values are taken out between the terminals M and S 1 and between the terminals M and S 2 and subjected to signal processing by a differential amplifier or the like to detect the applied acceleration.

【0010】図8は、同様多層マイクロマシン技術によ
って作られた従来の半導体容量形加速度センサの更に異
なる例を示し、(a)は斜視図であり、(b)は(a)
のC−C断面図であり、半導体基板1と、それぞれポリ
シリコンからなり、この半導体基板1の上面に絶縁層1
Aを介して四角形の各隅に設けられた支持体21A,2
1B,21Cおよび21Dと、その一端がそれぞれ支持
体21A,21B,21Cおよび21Dに結合され90
°の回転移動で合致するこの四角形の対角線方向の梁2
4A,24B,24Cおよび24Dと、これら梁24
A,24B,24C,24Dの他端に結合された可動電
極23と、この可動電極23の下面に所定の間隔を隔て
てシリコン基板1の上面に絶縁層1Aを介して設けられ
た固定電極31と、シリコン基板1の上面に絶縁層1A
を介して設けられた支持体42Aおよび42Bと、これ
ら支持体42Aおよび42Bにその周辺が結合され、可
動電極23の一方の側、図8では左側の上面に所定の間
隙を隔てて設けられた固定電極41とからなり、可動電
極23から梁24Bおよび支持体21Bを介して端子M
が、固定電極31から端子S1 が、固定電極41から支
持体42Aを介して端子S2 がそれぞれ引き出される。
FIGS. 8A and 8B show still another example of a conventional semiconductor capacitive acceleration sensor similarly manufactured by the multi-layer micromachine technology, wherein FIG. 8A is a perspective view and FIG. 8B is a perspective view.
FIG. 3 is a cross-sectional view taken along line CC of FIG. 1, showing a semiconductor substrate 1 and polysilicon, and an insulating layer 1
Supports 21A, 21 provided at each corner of the square via A
1B, 21C and 21D, one end of which is connected to the supports 21A, 21B, 21C and 21D respectively.
This diagonal beam 2 of this quadrangle that meets with a rotation of 2 °
4A, 24B, 24C and 24D and these beams 24
A, 24B, 24C, and 24D, a movable electrode 23 coupled to the other end, and a fixed electrode 31 provided on the lower surface of the movable electrode 23 on the upper surface of the silicon substrate 1 at a predetermined interval via an insulating layer 1A. And an insulating layer 1A on the upper surface of the silicon substrate 1.
And the periphery thereof is coupled to the supports 42A and 42B, and is provided with a predetermined gap on one side of the movable electrode 23, that is, on the upper surface on the left side in FIG. The movable electrode 23 includes a fixed electrode 41 and a terminal M via a beam 24B and a support 21B.
However, the terminal S 1 is drawn out from the fixed electrode 31 and the terminal S 2 is drawn out from the fixed electrode 41 via the support 42A.

【0011】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、可動電極23は垂直方向の力を受けて垂直方向に
移動する可動電極23の垂直移動によって、この可動電
極23と固定電極31との間は、例えば接近してこの間
の静電容量は増大し、この可動電極23と固定電極41
との間は逆に離れてこの間の静電容量は減少する。これ
ら静電容量の値を端子M,S1 間および端子M,S2
から取り出し、差動増幅器などによって信号処理をして
加えられた加速度を検出する。
The operation of the semiconductor capacitive acceleration sensor is as follows. When a vertical acceleration is applied to the movable electrode 23, the movable electrode 23 receives a vertical force and moves in the vertical direction. The distance between the movable electrode 23 and the fixed electrode 41 increases.
And the capacitance decreases during this period. These capacitance values are taken out between the terminals M and S 1 and between the terminals M and S 2 and subjected to signal processing by a differential amplifier or the like to detect the applied acceleration.

【0012】[0012]

【発明が解決しようとする課題】図5ないし図7に示す
半導体容量形加速度センサでは、それぞれ加速度が加わ
ったとき、可動電極は固定電極に対して回動し、この可
動電極の回動によって生じる電極間隔の変化を静電容量
の変化として検出するものであるが、可動電極の回動量
と電極間隔の変化量は比例しないので検出出力が非線形
特性となる問題がある。一方、図8に示す半導体容量形
加速度センサでは加速度が加わったとき、可動電極は固
定電極に対して垂直に移動し、この可動電極の垂直移動
によって生じる電極間隔の変化を静電容量の変化として
検出するもので、可動電極の垂直移動量と電極間隔の変
化量は比例するので検出出力は線形特性となるが、可動
電極が4個の短かい梁で支持されているため可動電極の
垂直移動量が小さく検出感度が低い問題がある(このた
めに梁の長さをそのまま長くすると装置が大型化してし
まう)。また、図8に示す加速度センサでは相反に変化
する静電容量を発生する一方の固定電極(図8で31で
示す)と他方の固定電極(図8で41で示す)の面積が
異なるため、これらの静電容量の値(絶対値)が異なり
信号処理を行う、例えば差動増幅器の回路が複雑になり
コスト上昇の要因となる。
In the semiconductor capacitive acceleration sensors shown in FIGS. 5 to 7, when an acceleration is applied, the movable electrode rotates with respect to the fixed electrode, and is generated by the rotation of the movable electrode. The change in the electrode interval is detected as a change in the capacitance. However, since the amount of rotation of the movable electrode is not proportional to the amount of change in the electrode interval, there is a problem that the detection output has a non-linear characteristic. On the other hand, in the semiconductor capacitive acceleration sensor shown in FIG. 8, when acceleration is applied, the movable electrode moves perpendicularly to the fixed electrode, and the change in the electrode interval caused by the vertical movement of the movable electrode is regarded as the change in capacitance. The detection output has a linear characteristic because the amount of vertical movement of the movable electrode and the amount of change in the electrode interval are proportional. However, since the movable electrode is supported by four short beams, the vertical movement of the movable electrode is There is a problem that the amount is small and the detection sensitivity is low (for this reason, if the length of the beam is directly increased, the apparatus becomes large). Further, in the acceleration sensor shown in FIG. 8, since the area of one fixed electrode (indicated by 31 in FIG. 8) that generates the capacitance that changes reciprocally is different from the area of the other fixed electrode (indicated by 41 in FIG. 8), The values (absolute values) of these capacitances are different, and signal processing is performed. For example, the circuit of a differential amplifier becomes complicated and causes an increase in cost.

【0013】本発明の目的は小型で検出感度が高く、か
つ検出出力が線形特性の半導体容量形加速度センサを提
供することにある。更に、加速度を検出する静電容量が
相反して変化するものにおいて、この相反して変化する
静電容量を発生する一方および他方の固定電極の面積を
ほぼ等しく構成する。
An object of the present invention is to provide a semiconductor capacitive acceleration sensor which is small, has high detection sensitivity, and has a linear detection output. Further, in the case where the capacitances for detecting the acceleration are oppositely changed, the areas of the one and the other fixed electrodes which generate the oppositely changed capacitances are configured to be substantially equal.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、半導体基板と、それぞれ導電性
の半導体からなりこの半導体基板の上面に絶縁層を介し
て正多角形の各隅に設けられた複数個の支持体と、これ
ら各支持体にその一端が結合されそれぞれ回転移動で合
致するこの正多角形の辺方向の梁と、これら梁に所定の
間隔を隔てて設けられた正多角形の可動電極と、この可
動電極と前記各梁の他端とをそれぞれ結合する連結体
と、この可動電極の下面に所定の間隔を隔てて前記半導
体基板の上面に絶縁層を介して設けられた固定電極とか
らなる半導体容量形加速度センサであって、支持体と、
梁と、可動電極と、連結体と、固定電極とが、それぞれ
多層マイクロマシン技術によりポリシリコンで形成され
て成るものとする。もしくは、半導体基板と、それぞれ
導電性の半導体からなりこの半導体基板の上面に絶縁層
を介して正多角形の各隅に設けられた複数個の支持体
と、これら各支持体にその一端が結合されそれぞれ回転
移動で合致するこの正多角形の辺方向の梁と、これら梁
に所定の間隔を隔てて設けられた正多角形の可動電極
と、この可動電極と前記各梁の他端とをそれぞれ結合す
る連結体と、この可動電極の下面に所定の間隔を隔てて
前記半導体基板の上面に絶縁層を介して設けられた第1
の固定電極と、半導体基板の上面に絶縁層を介して設け
られた複数個の支持体と、これら支持体にその周辺が結
合され前記可動電極の上面に所定の間隔を隔てて設けら
れた第2の固定電極とからなる半導体容量形加速度セン
サであって、支持体と、梁と、可動電極と、連結体と、
第1の固定電極と、第2の固定電極とが、それぞれ多層
マイクロマシン技術によりポリシリコンで形成されて成
るものとする。いずれの半導体容量形加速度センサにお
いても、可動電極に金属膜を付着すれば、より好適であ
る。
According to the present invention, in order to achieve the above object, a semiconductor substrate and a regular polygon are formed on the upper surface of the semiconductor substrate via an insulating layer. A plurality of supports provided at each corner, one end of each of the supports is connected to each of the supports, and the beams in the side direction of the regular polygon which are respectively matched by rotational movement are provided at predetermined intervals to these beams. A movable electrode having a regular polygonal shape, a connecting body that couples the movable electrode and the other end of each of the beams, and an insulating layer formed on an upper surface of the semiconductor substrate at a predetermined interval on a lower surface of the movable electrode. A semiconductor capacitive acceleration sensor comprising a fixed electrode provided through a support,
It is assumed that the beam, the movable electrode, the connecting body, and the fixed electrode are each formed of polysilicon by a multi-layer micromachining technique. Alternatively, a semiconductor substrate, a plurality of supports each made of a conductive semiconductor and provided at each corner of a regular polygon on the upper surface of the semiconductor substrate via an insulating layer, and one end of each of the supports is coupled to each of the supports. Each of the beams in the direction of the sides of the regular polygon, which are matched by rotational movement, a movable electrode of a regular polygon provided at predetermined intervals to these beams, and the movable electrode and the other end of each beam. A first connecting member which is provided on the upper surface of the semiconductor substrate via an insulating layer at a predetermined interval on the lower surface of the movable electrode;
A fixed electrode, a plurality of supports provided on the upper surface of the semiconductor substrate with an insulating layer interposed therebetween, and a plurality of support members whose periphery is coupled to the support members and provided on the upper surface of the movable electrode at predetermined intervals. A semiconductor capacitive acceleration sensor comprising two fixed electrodes, a support, a beam, a movable electrode, a connecting body,
It is assumed that the first fixed electrode and the second fixed electrode are each formed of polysilicon by a multi-layer micromachining technique. In any of the semiconductor capacitive acceleration sensors, it is more preferable to attach a metal film to the movable electrode.

【0015】[0015]

【作用】本発明の半導体容量形加速度センサは、可動電
極が正多角形からなり、この正多角形の各辺に所定の間
隙を隔てて並行に配置された複数個の梁によってこの可
動電極を周囲から均等に支持するようにしたものであ
り、垂直に加速度が加わったとき、可動電極は固定電極
に対し垂直に移動する。そして、これら梁の他端をこれ
ら梁の一端が結合された支持体から遠い側の可動電極の
正多角形の端部に連結体を介し結合することにより、梁
の長さをこの正多角形の辺の長さに応じて長くすること
ができる。従って、小型で検出感度が高く、かつ検出出
力が線形特性の半導体容量形加速度センサとなる。
In the semiconductor capacitive acceleration sensor of the present invention, the movable electrode is formed of a regular polygon, and the movable electrode is formed by a plurality of beams arranged in parallel on each side of the regular polygon with a predetermined gap therebetween. The movable electrode moves vertically with respect to the fixed electrode when acceleration is applied vertically. Then, the other end of each of the beams is connected to the end of the regular polygon of the movable electrode farther from the support to which one end of each of the beams is connected via a connector, so that the length of the beam is adjusted to the regular polygon. Can be lengthened according to the length of the side of. Therefore, the semiconductor capacitive acceleration sensor is small, has high detection sensitivity, and has a linear detection output.

【0016】また、加速度を検出する静電容量が相反し
て変化するものにおいて、可動電極の下面に所定の間隙
を隔てて設けた一方の固定電極と、同様に可動電極の上
面全体に所定の間隙を隔てて他方の固定電極を設けるよ
うに構成したので、これら一方および他方の固定電極の
面積はほぼ等しくなる。また、これら半導体容量形加速
度センサで可動電極に重りを設けたので、加速度に対す
る可動電極の移動量が大きくなり検出感度がより向上す
る。
In the case where the capacitance for detecting acceleration changes contradictingly, a predetermined electrode is provided on the lower surface of the movable electrode with a predetermined gap therebetween, and similarly, a predetermined electrode is provided on the entire upper surface of the movable electrode. Since the other fixed electrode is provided with the gap therebetween, the areas of the one and the other fixed electrodes are substantially equal. In addition, since a weight is provided to the movable electrode in these semiconductor capacitive acceleration sensors, the amount of movement of the movable electrode with respect to acceleration is increased, and the detection sensitivity is further improved.

【0017】[0017]

【実施例】図1は本発明の半導体容量形加速度センサの
一例を示し、(a)は平面図、(b)は(a)のA−A
断面図、(c)は(a)のB−B断面図であり、半導体
基板1と、それぞれポリシリコンからなり、この半導体
基板1の上面に絶縁層1Aを介して四角形の各隅に設け
られた支持体21A,21B,21Cおよび21Dと、
これら支持体21A,21B,21Cおよび21Dにそ
の一端が結合され、それぞれ90°の回転移動で合致す
るこの四角形の辺方向の梁26A,26B,26Cおよ
び26Dと、これら梁26A,26B,26Cおよび2
6Dと所定の間隙eを隔てて設けられた可動電極23
と、この可動電極23と梁26A,26B,26Cおよ
び26Dの他端とを連結する連結体27A,27B,2
7Cおよび27Dと、この可動電極23の下面に所定の
間隙を隔ててシリコン基板1の上面に絶縁層1Aを介し
て設けられた固定電極31とからなり、可動電極23か
ら連結体27A,梁26Aおよび支持体21Aを介して
端子Mが、固定電極31から端子S1 がそれぞれ引き出
される。
1A and 1B show an example of a semiconductor capacitive acceleration sensor according to the present invention, wherein FIG. 1A is a plan view, and FIG.
FIG. 3C is a cross-sectional view taken along line BB of FIG. 3A, which is made of polysilicon, and is provided at each corner of a square on the upper surface of the semiconductor substrate 1 via an insulating layer 1 </ b> A. Supports 21A, 21B, 21C and 21D,
One end of each of the supports 21A, 21B, 21C, and 21D is connected to the rectangular side beams 26A, 26B, 26C, and 26D, which meet at a rotation of 90 °, and the beams 26A, 26B, 26C, and 26D. 2
Movable electrode 23 provided at a predetermined gap e from 6D
And connecting members 27A, 27B, 2 connecting the movable electrode 23 and the other ends of the beams 26A, 26B, 26C, and 26D.
7C and 27D and a fixed electrode 31 provided on the upper surface of the silicon substrate 1 with a predetermined gap therebetween on the lower surface of the movable electrode 23 via an insulating layer 1A. The terminal M is pulled out from the fixed electrode 31 via the support 21A, and the terminal S 1 is drawn out from the fixed electrode 31.

【0018】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、可動電極23は垂直方向の力を受けて垂直方向に
移動する。可動電極23の垂直移動によってこの可動電
極23との間は、例えば接近してこの間の静電容量は増
大し、この静電容量の値を端子M,S1 間から取り出
し、増幅器などによって信号処理をして加えられた加速
度を検出する。
The operation of this semiconductor capacitive acceleration sensor is as follows. When a vertical acceleration is applied to the movable electrode 23, the movable electrode 23 receives a vertical force and moves in the vertical direction. Between the movable electrode 23 by a vertical movement of the movable electrode 23, for example close to this period the capacitance increases, retrieves the value of the capacitance terminal M, from between S 1, signal processing such as by an amplifier To detect the applied acceleration.

【0019】この半導体容量形加速度センサは、可動電
極23が四角形からなり、この四角形の各辺に所定の間
隙eを隔てて並列に配置された梁26A,26B,26
Cおよひ26Dによって可動電極23を周囲から均等に
支持するようにしたものであり、垂直に加速度が加わっ
たとき、可動電極23は固定電極31に対し垂直に移動
する。そしてこれらの梁の他端を、これら梁の一端が結
合された支持体から遠い側の可動電極23の正多角形の
端部に連結体を介し結合することにより(図1に示す状
態)、梁の長さをこの正多角形の辺の長さに応じて長く
することができる。従って、小型で検出感度が高く、か
つ検出出力が線形特性の半導体容量形加速度センサとな
る。
In this semiconductor capacitive acceleration sensor, the movable electrode 23 is formed in a rectangular shape, and beams 26A, 26B, 26 are arranged in parallel on each side of the rectangular shape with a predetermined gap e.
The movable electrode 23 is evenly supported from the periphery by C and 26D. When the acceleration is applied vertically, the movable electrode 23 moves vertically with respect to the fixed electrode 31. By connecting the other ends of these beams to the regular polygonal ends of the movable electrode 23 farther from the support to which the one ends of the beams are connected (a state shown in FIG. 1), The length of the beam can be increased according to the length of the side of the regular polygon. Therefore, the semiconductor capacitive acceleration sensor is small, has high detection sensitivity, and has a linear detection output.

【0020】図2は本発明の半導体容量形加速度センサ
の異なる例を示し、(a)は平面図、(b)は(a)の
A−A断面図、(c)は(a)のB−B断面図である。
図2は、図1において更に、シリコン基板1の上面に絶
縁層1Aを介して設けられた支持体42A,42B,4
2Cおよび42Dと、これら支持体42A,42B,4
2Cおよび42Dにその周囲が結合され、可動電極23
の上面に所定の間隙を隔てて設けられた固定電極41と
を設け、この固定電極41から支持体42Cを介して端
子S2 を引き出したものである。
FIGS. 2A and 2B show different examples of the semiconductor capacitive acceleration sensor according to the present invention. FIG. 2A is a plan view, FIG. 2B is a sectional view taken along line AA of FIG. It is -B sectional drawing.
FIG. 2 shows support members 42A, 42B, and 4 provided on the upper surface of the silicon substrate 1 via an insulating layer 1A in FIG.
2C and 42D and these supports 42A, 42B, 4
2C and 42D, the periphery of which is coupled to the movable electrode 23
Upper surface provided with a fixed electrode 41 which is provided at a predetermined gap, in which pulled out terminal S 2 via the support member 42C from the fixed electrode 41.

【0021】この半導体容量形加速度センサの動作は次
の通りである。可動電極23に垂直方向の加速度が加わ
ると、この可動電極23と固定電極31との間は、例え
ば接近してこの間の静電容量は増大し、この可動電極2
3と固定電極41との間は逆に離れてこの間の静電容量
は減少する。これら静電容量の値を端子M,S1 間およ
び端子M,S2 間から取り出し、差動増幅器などによっ
て信号処理をして加えられた加速度を検出する。
The operation of this semiconductor capacitive acceleration sensor is as follows. When acceleration in the vertical direction is applied to the movable electrode 23, the capacitance between the movable electrode 23 and the fixed electrode 31 increases, for example, and the capacitance between the movable electrode 23 and the fixed electrode 31 increases.
3 and the fixed electrode 41 are separated in the opposite direction, and the capacitance between them decreases. These capacitance values are taken out between the terminals M and S 1 and between the terminals M and S 2 and subjected to signal processing by a differential amplifier or the like to detect the applied acceleration.

【0022】この半導体容量形加速度センサでは、可動
電極23と固定電極31との間および可動電極23と固
定電極41との間の相反して変化する静電容量を検出す
るのでより検出感度が向上する。また、固定電極41を
可動電極の上面全体に設けるようにしたので、これら固
定電極31および41の面積をほぼ等しく構成でき、こ
れら固定電極31,41と可動電極23との間の各静電
容量の値(絶対値)はほぼ等しくなり、信号処理を行
う、例えば差動増幅器の回路が簡単化され低コストとな
る。
In this semiconductor capacitance type acceleration sensor, the detection sensitivity is improved because the capacitances which change between the movable electrode 23 and the fixed electrode 31 and between the movable electrode 23 and the fixed electrode 41 are oppositely changed. I do. Further, since the fixed electrode 41 is provided on the entire upper surface of the movable electrode, the areas of the fixed electrodes 31 and 41 can be made substantially equal, and each capacitance between the fixed electrodes 31 and 41 and the movable electrode 23 can be obtained. (Absolute value) are substantially equal, and the signal processing, for example, the circuit of the differential amplifier is simplified and the cost is reduced.

【0023】図3および図4はそれぞれ本発明の更に異
なる実施例を示し、(a)はそれぞれ平面図、(b)は
それぞれ(a)のA−A断面図、(c)はそれぞれ
(a)のB−B断面図である。これら実施例は、それぞ
れ図1あるいは図2において可動電極23に金属膜29
を付着したものである。この金属膜29によって可動電
極23の重量が増加するので、加速度の検出感度がより
向上する。なお、金属は比重が大きいので、可動電極の
部分がこの金属膜29によって大型化することは殆んど
ないが、勿論この金属膜29の厚さ分可動電極23と固
定電極41との間の間隙を補正する。
3 and 4 show further different embodiments of the present invention. FIG. 3 (a) is a plan view, FIG. 3 (b) is an AA sectional view of FIG. 3 (a), and FIG. FIG. In these embodiments, the metal film 29 is formed on the movable electrode 23 in FIG. 1 or FIG.
Is attached. Since the weight of the movable electrode 23 is increased by the metal film 29, the acceleration detection sensitivity is further improved. Since the metal has a large specific gravity, the movable electrode portion is hardly enlarged by the metal film 29, but, of course, the distance between the movable electrode 23 and the fixed electrode 41 is increased by the thickness of the metal film 29. Correct the gap.

【0024】[0024]

【発明の効果】本発明の半導体容量形加速度センサは、
小型で検出感度が高く、かつ検出出力が線形特性である
ので、自動車用をはじめ各種用途に好適である。更に加
速度を検出する静電容量が相反して変化するものにおい
て、この相反して変化する静電容量の値(絶対値)が等
しいので、信号処理を行う、例えば差動増幅器の回路が
簡単化されコストが低下する。
According to the present invention, a semiconductor capacitive acceleration sensor is provided.
Since it is small in size, has high detection sensitivity, and has a linear detection output, it is suitable for various uses including automobiles. Further, in the case where the capacitances for detecting acceleration change oppositely, the values (absolute values) of the oppositely changing capacitances are equal, so that the signal processing, for example, the circuit of the differential amplifier is simplified. Cost is reduced.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【0026】[0026]

【図1】本発明の半導体容量形加速度センサの一実施例
を示し、(a)は平面図、(b)は(a)のA−A断面
図、(c)は(a)のB−B断面図
1A and 1B show an embodiment of a semiconductor capacitive acceleration sensor according to the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line AA of FIG. B sectional view

【0027】[0027]

【図2】本発明の半導体容量形加速度センサの異なる実
施例を示し、(a)は平面図、(b)は(a)のA−A
断面図、(c)は(a)のB−B断面図
2A and 2B show different embodiments of the semiconductor capacitive acceleration sensor according to the present invention, wherein FIG. 2A is a plan view and FIG. 2B is AA of FIG.
Sectional view, (c) is a BB section view of (a).

【0028】[0028]

【図3】本発明の半導体容量形加速度センサの更に異な
る実施例を示し、(a)は平面図、(b)は(a)のA
−A断面図、(c)は(a)のB−B断面図
3A and 3B show still another embodiment of the semiconductor capacitive acceleration sensor according to the present invention, wherein FIG. 3A is a plan view, and FIG.
-A sectional view, (c) is a BB sectional view of (a).

【0029】[0029]

【図4】本発明の半導体容量形加速度センサの更に異な
る実施例を示し、(a)は平面図、(b)は(a)のA
−A断面図、(c)は(a)のB−B断面図
FIGS. 4A and 4B show still another embodiment of the semiconductor capacitive acceleration sensor of the present invention, wherein FIG. 4A is a plan view and FIG.
-A sectional view, (c) is a BB sectional view of (a).

【0030】[0030]

【図5】従来の半導体容量形加速度センサの一例を示す
斜視図
FIG. 5 is a perspective view showing an example of a conventional semiconductor capacitive acceleration sensor.

【0031】[0031]

【図6】従来の半導体容量形加速度センサの異なる例を
示す斜視図
FIG. 6 is a perspective view showing a different example of a conventional semiconductor capacitive acceleration sensor.

【0032】[0032]

【図7】従来の半導体容量形加速度センサの更に異なる
例を示す斜視図
FIG. 7 is a perspective view showing still another example of the conventional semiconductor capacitive acceleration sensor.

【0033】[0033]

【図8】従来の半導体容量形加速度センサの更に異なる
例を示し、(a)は斜視図、(b)は(a)のC−C断
面図
8A and 8B show still another example of a conventional semiconductor capacitive acceleration sensor, in which FIG. 8A is a perspective view and FIG. 8B is a cross-sectional view taken along line CC of FIG.

【0034】[0034]

【符号の説明】[Explanation of symbols]

1 半導体基板 1A 絶縁層 21A 支持体 21B 支持体 21C 支持体 21D 支持体 23 可動電極 26A 梁 26B 梁 26C 梁 26D 梁 27A 連結体 27B 連結体 27C 連結体 27D 連結体 29 金属膜 31 固定電極 41 固定電極 42A 支持体 42B 支持体 42C 支持体 42D 支持体 Reference Signs List 1 semiconductor substrate 1A insulating layer 21A support 21B support 21C support 21D support 23 movable electrode 26A beam 26B beam 26C beam 26D beam 27A connector 27B connector 27C connector 27D connector 29 metal film 31 fixed electrode 41 42A support 42B support 42C support 42D support

フロントページの続き (56)参考文献 特開 平3−94168(JP,A) 特開 平5−119060(JP,A) 特開 昭58−129318(JP,A) 特開 平5−10968(JP,A) 特開 平4−299267(JP,A) 特開 平4−116772(JP,A) 特開 平4−244968(JP,A) 特開 平4−240569(JP,A) 特開 平4−225166(JP,A) 特開 平4−269659(JP,A) 実開 平5−50364(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01P 15/125 H01L 29/84 Continuation of the front page (56) References JP-A-3-94168 (JP, A) JP-A-5-119060 (JP, A) JP-A-58-129318 (JP, A) JP-A-5-10968 (JP) JP-A-4-299267 (JP, A) JP-A-4-116772 (JP, A) JP-A-4-244968 (JP, A) JP-A-4-240569 (JP, A) 4-225166 (JP, A) JP-A-4-269659 (JP, A) JP-A-5-50364 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01P 15/125 H01L 29/84

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、それぞれ導電性の半導体か
らなりこの半導体基板の上面に絶縁層を介して正多角形
の各隅に設けられた複数個の支持体と、これら各支持体
にその一端が結合されそれぞれ回転移動で合致するこの
正多角形の辺方向の梁と、これら梁に所定の間隔を隔て
て設けられた正多角形の可動電極と、この可動電極と前
記各梁の他端とをそれぞれ結合する連結体と、この可動
電極の下面に所定の間隔を隔てて前記半導体基板の上面
に絶縁層を介して設けられた固定電極とからなる半導体
容量形加速度センサであって、 支持体と、梁と、可動電極と、連結体と、固定電極と
が、それぞれ多層マイクロマシン技術によりポリシリコ
ンで形成されて成ることを特徴とする半導体容量形加速
度センサ。
1. A semiconductor substrate, a plurality of supports each made of a conductive semiconductor and provided at each corner of a regular polygon on an upper surface of the semiconductor substrate via an insulating layer; One end of the regular polygonal side beams that are coupled to each other and that are rotated and moved, a regular polygonal movable electrode provided at predetermined intervals to these beams, A semiconductor capacitive acceleration sensor comprising: a coupling body that couples the ends of the movable electrode; and a fixed electrode provided on an upper surface of the semiconductor substrate at a predetermined interval on the lower surface of the movable electrode via an insulating layer. A semiconductor capacitive acceleration sensor, wherein a support, a beam, a movable electrode, a connector, and a fixed electrode are each formed of polysilicon by a multi-layer micromachining technique.
【請求項2】半導体基板と、それぞれ導電性の半導体か
らなりこの半導体基板の上面に絶縁層を介して正多角形
の各隅に設けられた複数個の支持体と、これら各支持体
にその一端が結合されそれぞれ回転移動で合致するこの
正多角形の辺方向の梁と、これら梁に所定の間隔を隔て
て設けられた正多角形の可動電極と、この可動電極と前
記各梁の他端とをそれぞれ結合する連結体と、この可動
電極の下面に所定の間隔を隔てて前記半導体基板の上面
に絶縁層を介して設けられた第1の固定電極と、半導体
基板の上面に絶縁層を介して設けられた複数個の支持体
と、これら支持体にその周辺が結合され前記可動電極の
上面に所定の間隔を隔てて設けられた第2の固定電極と
からなる半導体容量形加速度センサであって、支持体
と、梁と、可動電極と、連結体と、第1の固定電極と、
第2の固定電極とが、それぞれ多層マイクロマシン技術
によりポリシリコンで形成されて成ることを特徴とする
半導体容量形加速度センサ。
2. A semiconductor substrate, a plurality of supports each made of a conductive semiconductor and provided at each corner of a regular polygon on an upper surface of the semiconductor substrate with an insulating layer interposed therebetween; One end of the regular polygonal side beams that are coupled to each other and that are rotated and moved, a regular polygonal movable electrode provided at predetermined intervals to these beams, A first fixed electrode provided on the upper surface of the semiconductor substrate via an insulating layer at a predetermined interval on the lower surface of the movable electrode; and an insulating layer on the upper surface of the semiconductor substrate. Semiconductor acceleration sensor comprising: a plurality of supports provided through a support; and a second fixed electrode provided at a predetermined interval on an upper surface of the movable electrode, the periphery of which is coupled to the supports. A support, a beam, and a movable electrode A connecting member, and the first fixed electrode,
A semiconductor capacitance type acceleration sensor, wherein each of the second fixed electrode and the second fixed electrode is formed of polysilicon by a multi-layer micromachining technique.
【請求項3】請求項1あるいは2において、可動電極に
金属膜を付着したことを特徴とする半導体容量形加速度
センサ。
3. The semiconductor capacitive acceleration sensor according to claim 1, wherein a metal film is attached to the movable electrode.
JP18582893A 1992-03-25 1993-07-28 Semiconductor capacitive acceleration sensor Expired - Lifetime JP3156453B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18582893A JP3156453B2 (en) 1993-07-28 1993-07-28 Semiconductor capacitive acceleration sensor
GB9414661A GB2281126B (en) 1993-07-28 1994-07-20 Semiconductor capacitive acceleration sensor
US08/281,100 US5665915A (en) 1992-03-25 1994-07-27 Semiconductor capacitive acceleration sensor
DE4426590A DE4426590C2 (en) 1993-07-28 1994-07-27 Capacitive semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18582893A JP3156453B2 (en) 1993-07-28 1993-07-28 Semiconductor capacitive acceleration sensor

Publications (2)

Publication Number Publication Date
JPH0743380A JPH0743380A (en) 1995-02-14
JP3156453B2 true JP3156453B2 (en) 2001-04-16

Family

ID=16177589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18582893A Expired - Lifetime JP3156453B2 (en) 1992-03-25 1993-07-28 Semiconductor capacitive acceleration sensor

Country Status (3)

Country Link
JP (1) JP3156453B2 (en)
DE (1) DE4426590C2 (en)
GB (1) GB2281126B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271124B (en) * 2008-05-16 2010-09-29 中国科学院上海微系统与信息技术研究所 L-beam piezoresistance type micro-accelerometer and production method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122359A (en) * 1994-10-21 1996-05-17 Fuji Electric Co Ltd Semiconductor acceleration sensor and its manufacture and testing method
DE19530736B4 (en) * 1995-02-10 2007-02-08 Robert Bosch Gmbh Acceleration sensor and method for manufacturing an acceleration sensor
FR2734057B1 (en) * 1995-05-11 1997-06-20 Suisse Electronique Microtech MINIATURE CAPACITIVE ACCELEROMETRIC SENSOR
DE19632060B4 (en) * 1996-08-09 2012-05-03 Robert Bosch Gmbh Method for producing a rotation rate sensor
DE19709520B4 (en) * 1997-03-10 2007-05-31 GEMAC-Gesellschaft für Mikroelektronikanwendung Chemnitz mbH Capacitive accelerometer element
DE19961299B4 (en) * 1999-12-18 2009-04-30 Robert Bosch Gmbh Sensor for detecting knocking in an internal combustion engine
CN113495640A (en) * 2020-04-01 2021-10-12 万达光电科技股份有限公司 Touch sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553436A (en) * 1982-11-09 1985-11-19 Texas Instruments Incorporated Silicon accelerometer
DE3429250C1 (en) * 1984-08-08 1986-03-27 Texas Instruments Deutschland Gmbh, 8050 Freising Sensor responsive to the action of a force
US4732647A (en) * 1984-10-24 1988-03-22 Aine Harry E Batch method of making miniature capacitive force transducers assembled in wafer form
US4893509A (en) * 1988-12-27 1990-01-16 General Motors Corporation Method and product for fabricating a resonant-bridge microaccelerometer
DD282530A5 (en) * 1989-04-24 1990-09-12 Karl Marx Stadt Tech Hochschul CAPACITIVE MICROMECHANICAL ACCELERATION SENSOR
DE3922476A1 (en) * 1989-07-06 1991-01-17 Siemens Ag CAPACITIVE MICROMECHANICAL ACCELERATION SENSOR
DE4022464C2 (en) * 1990-07-14 2000-12-28 Bosch Gmbh Robert Acceleration sensor
EP0547742B1 (en) * 1991-12-19 1995-12-13 Motorola, Inc. Triaxial accelerometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271124B (en) * 2008-05-16 2010-09-29 中国科学院上海微系统与信息技术研究所 L-beam piezoresistance type micro-accelerometer and production method thereof

Also Published As

Publication number Publication date
DE4426590C2 (en) 1999-12-09
GB2281126B (en) 1996-09-18
GB9414661D0 (en) 1994-09-07
GB2281126A (en) 1995-02-22
DE4426590A1 (en) 1995-02-02
JPH0743380A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US5665915A (en) Semiconductor capacitive acceleration sensor
JP3327595B2 (en) 3-axis accelerometer
US5817942A (en) Capacitive in-plane accelerometer
CN100437118C (en) Single proof mass, 3 axis MEMS transducer
US6785117B2 (en) Capacitive device
US7617729B2 (en) Accelerometer
US7302847B2 (en) Physical quantity sensor having movable portion
US20110203373A1 (en) Acceleration sensor
JPH06302832A (en) Acceleration sensor
JPH10239347A (en) Motion sensor
JP4085854B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
EP2329280B1 (en) A capacitive sensor device and a method of sensing accelerations
CN1278922C (en) Fork type micromechanical gyro and its manufacturing method
CN110780088B (en) Multi-bridge tunnel magnetic resistance double-shaft accelerometer
JP3156453B2 (en) Semiconductor capacitive acceleration sensor
KR20030068437A (en) Acceleration sensor
US6763719B2 (en) Acceleration sensor
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
WO2011161917A1 (en) Acceleration sensor
JP3282570B2 (en) Semiconductor acceleration sensor
CN100422697C (en) Acceleration transducer
JP3293533B2 (en) Strain detection element
CN1376925A (en) Voltage-resistor type acceleration sensor made up by diffusing on side wall of deep channel and filling electric insulating film
JPH06167400A (en) Mechanical quantity sensor
JP3147789B2 (en) Acceleration detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

EXPY Cancellation because of completion of term