JPH07217969A - Refrigerant circulation type air conditioning system - Google Patents

Refrigerant circulation type air conditioning system

Info

Publication number
JPH07217969A
JPH07217969A JP6023781A JP2378194A JPH07217969A JP H07217969 A JPH07217969 A JP H07217969A JP 6023781 A JP6023781 A JP 6023781A JP 2378194 A JP2378194 A JP 2378194A JP H07217969 A JPH07217969 A JP H07217969A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
fan coil
pump
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6023781A
Other languages
Japanese (ja)
Other versions
JP3342158B2 (en
Inventor
Yasutoshi Yoshida
康敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP02378194A priority Critical patent/JP3342158B2/en
Publication of JPH07217969A publication Critical patent/JPH07217969A/en
Application granted granted Critical
Publication of JP3342158B2 publication Critical patent/JP3342158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent the phenomenon of cavitation of a pump due to insufficiency of a refrigerant liquid by a method wherein motor operated valves controlling supply of a refrigerant to a heat exchanger are opened and the refrigerant liquid kept in heat exchangers is supplied onto the suction side of the pump, when an inlet temperature of a refrigerant gas carrying pipe becomes the temperature of liquefaction of the refrigerant or below at the time of heating. CONSTITUTION:When a system is switched over to a heating operation, a motor operated valve 6 is closed and a refrigerant passing through heat exchangers of fan coil units 2 and liquefied flows onto the suction side of a pump 5. When the pump 5 is driven then, motor operated valves 21 are opened automatically, a refrigerant gas produced by heating and evaporation in a heat exchanger 1 flows through a refrigerant gas carrying pipe 3 and passes through the heat exchangers of the fan coil units 2 and, on the occasion, the refrigerant liquefied by heat exchange is returned to the heat exchanger 1 via a refrigerant liquid carrying pipe 4. The motor operated valves 21 are controlled to open when an inlet temperature to the units 2 of the refrigerant gas detected by a temperature detector 7 becomes the temperature of liquefaction of the refrigerant or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、搬送管を共用して冷暖
房を行う冷媒循環式空調システムにおいて、暖房時、冷
媒液を戻すためのポンプがキャビテーション現象を起こ
すことを防止することができる冷媒循環式空調システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulation type air conditioning system in which a carrier pipe is commonly used for cooling and heating, and a pump capable of returning a refrigerant liquid during heating can prevent a cavitation phenomenon from occurring. The present invention relates to a circulation type air conditioning system.

【0002】[0002]

【従来技術】従来から、図3の如く、建物の上部位置に
熱交換器を設置し、同熱交換器と建物内の各部屋に設置
のファンコイルユニットとの間を冷媒ガス搬送管及び冷
媒液搬送管で連結して冷媒が循環する閉回路を構成し、
冷房時には熱交換器内の冷媒液をファンコイルユニット
に重力の作用と気化した冷媒ガスの圧力により自然循環
させることにより各部屋を冷房し、暖房時には液化した
冷媒液を熱交換器に戻すためのポンプを下部位置に設け
た冷媒循環式空調システムがあるが、このシステムにあ
っては、暖房運転時、熱交換器で加熱され、気化した冷
媒ガスは冷媒ガス搬送管を通って各部屋のファンコイル
ユニットの熱交換器に供給され、室内空気との熱交換に
より冷やされて液化し、この冷媒液は自重により建物の
下部位置にあるポンプの吸い込み側に流れ込み、このポ
ンプの駆動により前記熱交換器に戻され、ここで再び気
化されて各部屋のファンコイルユニットの熱交換器に供
給される循環系が形成されている。
2. Description of the Related Art Conventionally, as shown in FIG. 3, a heat exchanger is installed at an upper position of a building, and a refrigerant gas carrier pipe and a refrigerant are installed between the heat exchanger and a fan coil unit installed in each room in the building. A closed circuit in which the refrigerant circulates by connecting with a liquid transfer pipe,
When cooling, each room is cooled by natural circulation of the refrigerant liquid in the heat exchanger to the fan coil unit by the action of gravity and the pressure of the vaporized refrigerant gas, and when heating, the liquefied refrigerant liquid is returned to the heat exchanger. There is a refrigerant circulation type air conditioning system with a pump installed in the lower position, but in this system, the refrigerant gas heated by the heat exchanger during the heating operation and vaporized refrigerant gas passes through the refrigerant gas transfer pipe and is a fan in each room. It is supplied to the heat exchanger of the coil unit, cooled by heat exchange with indoor air and liquefied, and this refrigerant liquid flows into the suction side of the pump at the lower position of the building by its own weight, and the heat exchange is performed by driving this pump. A circulation system is formed, which is returned to the reactor, is vaporized there again, and is supplied to the heat exchanger of the fan coil unit in each room.

【0003】[0003]

【従来技術の問題点】全ファンコイルユニットが運転し
ている所謂全負荷運転時には、全ファンコイルユニット
の熱交換器内には冷媒ガスが充満し、該熱交換器を通過
して液化した冷媒液はポンプに送られることになるが、
この冷媒液の量は多く、ポンプの吸い込み側の液管に充
分な冷媒液が溜まることになり、液水頭が確保できるこ
とになるから、冷媒液を円滑に熱源たる熱交換器に戻す
ことができるが、ファンコイルユニットが暖房運転を停
止したときには、各ファンコイルユニットの熱交換器へ
の冷媒の供給を制御する電動弁の弁体が自動的に閉鎖さ
れるため、冷媒液は熱交換器内に滞留することになる。
全ファンコイルユニットが運転停止した場合あるいは一
部のファンコイルユニットが運転している所謂部分負荷
運転時にはポンプの吸い込み側に流れ込む冷媒液の量は
少なくなり、ポンプの吸い込み側の液管の液水頭が不充
分となって所謂キャビテーション現象を起こし、冷媒液
を円滑に熱交換器に戻すことができなくなる不都合が生
じる。
[Problems of the prior art] During so-called full load operation in which all fan coil units are operating, the heat exchanger of all fan coil units is filled with a refrigerant gas, and the refrigerant liquefied through the heat exchanger. The liquid will be sent to the pump,
The amount of this refrigerant liquid is large, and a sufficient amount of the refrigerant liquid will be accumulated in the liquid pipe on the suction side of the pump, and the liquid head can be secured, so that the refrigerant liquid can be smoothly returned to the heat exchanger as the heat source. However, when the fan coil unit stops heating operation, the valve body of the motor-operated valve that controls the supply of the refrigerant to the heat exchanger of each fan coil unit is automatically closed, so that the refrigerant liquid is stored in the heat exchanger. Will stay in.
The amount of refrigerant liquid flowing into the suction side of the pump decreases when the operation of all fan coil units is stopped or during so-called partial load operation in which some fan coil units are operating, and the liquid head of the liquid pipe on the suction side of the pump decreases. Becomes insufficient, causing a so-called cavitation phenomenon, which causes a problem that the refrigerant liquid cannot be smoothly returned to the heat exchanger.

【0004】上記不都合を解消するために、従来はポン
プの吸い込み側に受液器を設け、この受液器に留保され
る冷媒液によってポンプの吸い込み側液管の液水頭を確
保し、これによってポンプのキャビテーション現象を防
止していたが、システムの回路構成中に受液器とこの受
液器に留保される余分な冷媒を必要として設備費が高額
となるだけでなく、多量の冷媒は漏れた場合の危険性が
大きくなるという問題点があった。
In order to solve the above-mentioned inconvenience, conventionally, a liquid receiver is provided on the suction side of the pump, and the liquid head of the liquid pipe on the suction side of the pump is secured by the refrigerant liquid retained in the liquid receiver. Although the cavitation phenomenon of the pump was prevented, not only the equipment cost becomes high because the receiver and the extra refrigerant retained in the receiver are required during the circuit configuration of the system, but also a large amount of refrigerant leaks. However, there is a problem that the risk becomes large in case of failure.

【0005】[0005]

【発明の目的】本発明は、上記問題点を解決するため
に、暖房時、冷媒ガス搬送管のファンコイルユニットへ
の入口温度を測定し、この測定された温度が冷媒の液化
温度以下となったときに各ファンコイルユニットの熱交
換器への冷媒の供給を制御する電動弁に通電して弁体を
開放し、ファンコイルユニットの熱交換器に留保される
冷媒液をポンプの吸い込み側に供給してポンプのキャビ
テーション現象を防止できるようにした冷媒循環式空調
システムを提供することを目的とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention measures the inlet temperature of a refrigerant gas carrier pipe to a fan coil unit during heating, and the measured temperature is below the liquefying temperature of the refrigerant. When the fan coil unit heats up, the motor valve that controls the supply of refrigerant to the heat exchanger is energized to open the valve body, and the refrigerant liquid retained in the fan coil unit heat exchanger is transferred to the suction side of the pump. It is an object of the present invention to provide a refrigerant circulation type air conditioning system which can be supplied to prevent the cavitation phenomenon of a pump.

【0006】[0006]

【発明の開示】本発明に係る冷媒循環式空調システム
は、建物の上部位置に熱交換器を設置し、同熱交換器と
建物内の各部屋に設置のファンコイルユニットとの間を
冷媒ガス搬送管及び冷媒液搬送管で連結して冷媒が循環
する閉回路を構成し、冷房時には熱交換器内の冷媒液を
ファンコイルユニットに重力の作用と気化した冷媒ガス
の圧力により自然循環させることにより各部屋を冷房
し、暖房時には液化した冷媒液を熱交換器に戻すための
ポンプを下部位置に設けた冷媒循環式空調システムにお
いて、暖房時、前記冷媒ガス搬送管のファンコイルユニ
ットへの入口温度を測定し、この測定された温度が冷媒
の液化温度以下となったときに各ファンコイルユニット
の熱交換器への冷媒の供給を制御する電動弁に通電して
弁体を開放し、ファンコイルユニットの熱交換器に留保
される冷媒液を前記ポンプ側に供給するようにしたこと
を特徴とするものである。
DISCLOSURE OF THE INVENTION In a refrigerant circulation type air conditioning system according to the present invention, a heat exchanger is installed at an upper position of a building, and a refrigerant gas is provided between the heat exchanger and a fan coil unit installed in each room in the building. To form a closed circuit in which the refrigerant circulates by connecting the carrier pipe and the refrigerant liquid carrier pipe, and during cooling, naturally circulate the refrigerant liquid in the heat exchanger through the fan coil unit by the action of gravity and the pressure of the vaporized refrigerant gas. In a refrigerant circulation type air-conditioning system in which each room is cooled by, and a pump for returning the liquefied refrigerant liquid to the heat exchanger at the time of heating is provided in the lower position, at the time of heating, the inlet to the fan coil unit of the refrigerant gas transfer pipe The temperature is measured, and when the measured temperature becomes equal to or lower than the liquefaction temperature of the refrigerant, the motor-operated valve that controls the supply of the refrigerant to the heat exchanger of each fan coil unit is energized to open the valve body and blow the fan. The refrigerant liquid which is retained in the heat exchanger yl unit is characterized in that it has to be supplied to the pump side.

【0007】[0007]

【発明の作用】冷媒ガス搬送管のファンコイルユニット
への入口温度を測定し、この測定された温度が冷媒の液
化温度以下となったときに全ファンコイルユニットの熱
交換器への冷媒の供給を制御する電動弁に通電して弁体
を開放し、ファンコイルユニットの熱交換器に留保され
る冷媒液を前記ポンプの吸い込み側に供給して冷媒液不
足によるポンプのキャビテーション現象を解消する。
The inlet temperature of the refrigerant gas carrier pipe to the fan coil unit is measured, and when the measured temperature becomes equal to or lower than the liquefaction temperature of the refrigerant, the refrigerant is supplied to the heat exchangers of all the fan coil units. The valve element is opened by energizing the motor-operated valve for controlling the above, and the refrigerant liquid retained in the heat exchanger of the fan coil unit is supplied to the suction side of the pump to eliminate the cavitation phenomenon of the pump due to insufficient refrigerant liquid.

【0008】[0008]

【実施例】本発明システムの実施例を図面について具体
的に説明する。図1は、本発明システムの概略構成図
で、1は、建物の屋上にある機械室内に設置された熱交
換器で、冷房時には冷水が、暖房時には温水がそれぞれ
供給され、内部の熱交換コイル(図示せず)を通過する
冷媒が冷却または加熱される。2…2は、各部屋に設置
されたファンコイルユニット、21は、各ファンコイル
ユニットの運転停止時自動的に閉鎖して熱交換器(図示
せず)への冷媒の供給を遮断する電動弁で、通電中は弁
体が開放し、通電遮断時は自動的に弁体が閉鎖するオー
トリターン式の電動弁が好ましい。3は、冷房時にはフ
ァンコイルユニット2の熱交換器を通過して気化した冷
媒ガスを熱交換器1に戻し、暖房時には熱交換器1で加
熱されて気化した冷媒ガスを各ファンコイルユニット2
の熱交換器に供給する冷媒ガス搬送管、4は、冷房時に
は熱交換器1で冷却されて液化した冷媒液を各ファンコ
イルユニット2に供給し、暖房時には各ファンコイルユ
ニット2の熱交換器を通過して液化した冷媒液を熱交換
器1に戻すための冷媒液搬送管、5は、暖房時各ファン
コイルユニット2の熱交換器を通過して液化した冷媒液
を熱交換器1に戻すためのポンプ、6は、冷房時と暖房
時に交互に開閉して冷媒の流れを制御する電動弁であ
る。7は、冷媒ガス搬送管3のファンコイルユニット2
への入口温度を測定し、この測定された温度が冷媒の液
化温度以下となったときに電気信号を発する各ファンコ
イルユニット2に装備された制御装置で、冷媒ガス搬送
管3のファンコイルユニット2への入口管の温度をサー
ミスタ等の温度検知器71で測定し、冷媒の温度がある
設定温度以下となったときに前記各電動弁21に電流を
通じるようにしてある。また、制御装置7は、図2に示
すようにファンコイルユニット2への入口管の温度のみ
ならず出口管の温度、熱交換器の冷媒の出口、入口の空
気温度を測定する温度検知器72、73、74を備えて
おり、冷暖房時の種々の制御を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the system of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the system of the present invention, in which 1 is a heat exchanger installed in a machine room on the roof of a building, to which cold water is supplied during cooling and hot water is supplied during heating, and an internal heat exchange coil The refrigerant passing through (not shown) is cooled or heated. 2 ... 2 is a fan coil unit installed in each room, 21 is an electrically operated valve that is automatically closed when the operation of each fan coil unit is stopped to shut off the supply of the refrigerant to the heat exchanger (not shown) Therefore, it is preferable to use an auto-return type electric valve in which the valve body opens during energization and automatically closes when the energization is cut off. 3 returns the vaporized refrigerant gas to the heat exchanger 1 after passing through the heat exchanger of the fan coil unit 2 during cooling, and the refrigerant gas heated and vaporized by the heat exchanger 1 during heating to each fan coil unit 2
Refrigerant gas carrier pipes 4 for supplying to the heat exchanger of the fan supply the refrigerant liquid cooled and liquefied by the heat exchanger 1 to each fan coil unit 2 during cooling, and the heat exchanger of each fan coil unit 2 during heating. Refrigerant liquid carrier pipes 5 for returning the liquefied refrigerant liquid to the heat exchanger 1 after passing through the heat exchanger 1 pass through the heat exchangers of the fan coil units 2 during heating to the heat exchanger 1. The pump 6 for returning is an electrically operated valve that opens and closes alternately during cooling and heating to control the flow of the refrigerant. 7 is a fan coil unit 2 of the refrigerant gas carrier pipe 3.
The fan coil unit of the refrigerant gas carrier pipe 3 is a control device installed in each fan coil unit 2 that measures an inlet temperature to the fan gas and outputs an electric signal when the measured temperature becomes equal to or lower than the liquefaction temperature of the refrigerant. The temperature of the inlet pipe to 2 is measured by a temperature detector 71 such as a thermistor, and when the temperature of the refrigerant is below a certain set temperature, an electric current is passed through each motor-operated valve 21. Further, as shown in FIG. 2, the controller 7 measures the temperature of the inlet pipe to the fan coil unit 2 as well as the temperature of the outlet pipe, the outlet of the refrigerant of the heat exchanger, and the temperature detector 72 for measuring the air temperature of the inlet. , 73, 74 for performing various controls during cooling and heating.

【0009】暖房する場合、システムを暖房運転に切替
えると、自動的に電動弁6が閉鎖し、ファンコイルユニ
ット2…2の熱交換器を通過して液化した冷媒液がポン
プ5の吸い込み側に流れるようになる。ポンプ5を駆動
してファンコイルユニット2…2を運転すると、ファン
コイルユニット運転中は電動弁21は自動的に開放され
るので、熱交換器1で加熱されて気化した冷媒ガスは、
冷媒ガス搬送管3を点線矢印方向に通って運転している
ファンコイルユニット2の熱交換器を通過し、その際熱
交換により液化した冷媒液はポンプ5により冷媒液搬送
管4に送られ、搬送管4を矢印方向に通って熱交換器1
に戻され、ここで再び気化されて冷媒ガス搬送管3を通
ってファンコイルユニットに供給され、この冷媒の循環
により運転中の部屋が暖房される。
In the case of heating, when the system is switched to heating operation, the motor-operated valve 6 is automatically closed, and the refrigerant liquid liquefied by passing through the heat exchanger of the fan coil units 2 ... 2 is directed to the suction side of the pump 5. It comes to flow. When the pump 5 is driven to operate the fan coil units 2 ... 2, the motor-operated valve 21 is automatically opened during the operation of the fan coil unit, so that the refrigerant gas heated by the heat exchanger 1 and vaporized is
Passing through the heat exchanger of the fan coil unit 2 operating through the refrigerant gas carrier pipe 3 in the direction of the dotted arrow, the refrigerant liquid liquefied by heat exchange is sent to the refrigerant liquid carrier pipe 4 by the pump 5, The heat exchanger 1 passing through the carrier pipe 4 in the direction of the arrow
And is again vaporized there and supplied to the fan coil unit through the refrigerant gas carrying pipe 3, and the room in operation is heated by the circulation of this refrigerant.

【0010】ファンコイルユニット2…2の運転を停止
すると、電動弁21…21が閉鎖され、冷媒の循環が停
止し、冷媒ガス搬送管3内に滞留している冷媒ガスが徐
々に環境温度迄冷やされ、液化してファンコイルユニッ
トの熱交換器内が冷媒液で満液になる。
When the operation of the fan coil units 2 ... 2 is stopped, the motor-operated valves 21 ... 21 are closed, the circulation of the refrigerant is stopped, and the refrigerant gas staying in the refrigerant gas carrier pipe 3 gradually reaches the ambient temperature. It is cooled and liquefied, and the inside of the heat exchanger of the fan coil unit is filled with the refrigerant liquid.

【0011】熱交換器内が冷媒液で満液になるまでは冷
媒ガスが多少流れるため、ファンコイルユニットの入口
管は冷媒の液化温度以下にならないが、満液になると急
激に入口管の温度は低下し、各温度検知器71が冷媒の
液化温度より少し低い温度以下になったことを検知する
と、制御装置7に信号を送り、各制御装置7が電動弁2
1に一定時間通電して弁体を開放させるため、熱交換器
に留保されていた冷媒液は、冷媒液搬送管4に流れ込
み、ポンプ5の吸い込み管側に充分な冷媒液が溜められ
ることになってポンプがキャビテーション現象を起こす
ことがない。各制御装置7は一定時間経過後電動弁21
への通電を断つため、電動弁21の弁体が閉鎖して正常
運転に戻る。
Since the refrigerant gas flows to some extent until the inside of the heat exchanger is filled with the refrigerant liquid, the inlet pipe of the fan coil unit does not fall below the liquefaction temperature of the refrigerant, but when it becomes full, the temperature of the inlet pipe rapidly increases. When each of the temperature detectors 71 detects that the temperature is slightly lower than the liquefaction temperature of the refrigerant, it sends a signal to the control device 7, and each control device 7 causes the motor-operated valve 2 to operate.
Since the valve element is opened by energizing 1 for a certain period of time, the refrigerant liquid retained in the heat exchanger flows into the refrigerant liquid carrier pipe 4, and sufficient refrigerant liquid is accumulated on the suction pipe side of the pump 5. The pump does not cause cavitation phenomenon. Each control device 7 is operated by the motor-operated valve 21 after a certain time has elapsed.
The valve body of the motor-operated valve 21 is closed and the normal operation is resumed.

【0012】[0012]

【発明の効果】本発明に係る冷媒循環式空調システムに
よれば、暖房時冷媒ガス搬送管のファンコイルユニット
への入口温度を測定し、この測定された温度が冷媒の液
化温度以下となったときに全ファンコイルユニットの熱
交換器への冷媒の供給を制御する電動弁に通電して弁体
を開放し、ファンコイルユニットの熱交換器に留保され
る冷媒液を前記ポンプの吸い込み側に供給して冷媒液不
足によるポンプのキャビテーション現象を解消するよう
にしたものであるから、従来システムのようにポンプの
吸い込み側の冷媒液不足を補うための受液器及びこの受
液器に留保させる余分な冷媒を必要とせず、最少限の冷
媒量で済むため、従来システムに較べ設備費を極めて安
価とすることができ、冷媒が漏れた場合の危険性も最小
限に止めることができるものである。
According to the refrigerant circulation type air-conditioning system of the present invention, the inlet temperature to the fan coil unit of the refrigerant gas carrier pipe during heating is measured, and the measured temperature becomes equal to or lower than the liquefying temperature of the refrigerant. At times, the motor-operated valve that controls the supply of refrigerant to the heat exchangers of all fan coil units is energized to open the valve body, and the refrigerant liquid retained in the heat exchangers of the fan coil units is transferred to the suction side of the pump. Since it is designed to eliminate the pump cavitation phenomenon due to lack of refrigerant liquid, it is retained in the receiver and this receiver for compensating for the lack of refrigerant liquid on the suction side of the pump as in the conventional system. No extra refrigerant is needed and the minimum amount of refrigerant is sufficient, so the facility cost can be made extremely low compared to the conventional system, and the risk of refrigerant leakage can be minimized. It is kill things.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明システムの概略説明図である。FIG. 1 is a schematic explanatory diagram of a system of the present invention.

【図2】ファンコイルユニットと制御装置の関係を表す
概略図である。
FIG. 2 is a schematic diagram showing a relationship between a fan coil unit and a control device.

【図3】従来システムの概略説明図である。FIG. 3 is a schematic explanatory diagram of a conventional system.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 ファンコイルユニット 21 電動弁 3 冷媒ガス搬送管 4 冷媒液搬送管 5 ポンプ 6 電動弁 7 制御装置 1 Heat Exchanger 2 Fan Coil Unit 21 Motorized Valve 3 Refrigerant Gas Conveying Pipe 4 Refrigerant Liquid Conveying Pipe 5 Pump 6 Motorized Valve 7 Control Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 建物の上部位置に熱交換器を設置し、同
熱交換器と建物内の各部屋に設置のファンコイルユニッ
トとの間を冷媒ガス搬送管及び冷媒液搬送管で連結して
冷媒が循環する閉回路を構成し、冷房時には熱交換器内
の冷媒液をファンコイルユニットに重力の作用と気化し
た冷媒ガスの圧力により自然循環させることにより各部
屋を冷房し、暖房時には液化した冷媒液を熱交換器に戻
すためのポンプを下部位置に設けた冷媒循環式空調シス
テムにおいて、暖房時、前記冷媒ガス搬送管のファンコ
イルユニットへの入口温度を測定し、この測定された温
度が冷媒の液化温度以下となったときに各ファンコイル
ユニットの熱交換器への冷媒の供給を制御する電動弁に
通電して弁体を開放し、ファンコイルユニットの熱交換
器に留保される冷媒液を前記ポンプ側に供給するように
したことを特徴とする冷媒循環式空調システム。
1. A heat exchanger is installed at an upper position of a building, and the heat exchanger and a fan coil unit installed in each room in the building are connected by a refrigerant gas carrier pipe and a refrigerant liquid carrier pipe. It forms a closed circuit in which the refrigerant circulates, and during cooling, the refrigerant liquid in the heat exchanger is naturally circulated in the fan coil unit by the action of gravity and the pressure of the vaporized refrigerant gas to cool each room and to liquefy it during heating. In the refrigerant circulation type air conditioning system in which a pump for returning the refrigerant liquid to the heat exchanger is provided at the lower position, during heating, the inlet temperature to the fan coil unit of the refrigerant gas carrier pipe is measured, and the measured temperature is Refrigerant retained in the heat exchanger of the fan coil unit by energizing the motor-operated valve that controls the supply of the refrigerant to the heat exchanger of each fan coil unit when the temperature falls below the liquefaction temperature of the refrigerant to open the valve body. A refrigerant circulation type air conditioning system characterized in that liquid is supplied to the pump side.
JP02378194A 1994-01-25 1994-01-25 Refrigerant circulation type air conditioning system Expired - Fee Related JP3342158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02378194A JP3342158B2 (en) 1994-01-25 1994-01-25 Refrigerant circulation type air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02378194A JP3342158B2 (en) 1994-01-25 1994-01-25 Refrigerant circulation type air conditioning system

Publications (2)

Publication Number Publication Date
JPH07217969A true JPH07217969A (en) 1995-08-18
JP3342158B2 JP3342158B2 (en) 2002-11-05

Family

ID=12119878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02378194A Expired - Fee Related JP3342158B2 (en) 1994-01-25 1994-01-25 Refrigerant circulation type air conditioning system

Country Status (1)

Country Link
JP (1) JP3342158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271819A (en) * 2019-12-30 2020-06-12 宁波奥克斯电气股份有限公司 Method for controlling reliability of multi-split system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271819A (en) * 2019-12-30 2020-06-12 宁波奥克斯电气股份有限公司 Method for controlling reliability of multi-split system
CN111271819B (en) * 2019-12-30 2021-08-17 宁波奥克斯电气股份有限公司 Method for controlling reliability of multi-split system

Also Published As

Publication number Publication date
JP3342158B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JPH10141831A (en) Circulation apparatus for constant temperature refrigerant fluid
JP3869798B2 (en) Heat pump water heater / heater
JPH07217969A (en) Refrigerant circulation type air conditioning system
JP6969223B2 (en) Heat pump heat source machine
JPH07151359A (en) Refrigerant circulation type air conditioning system
JPH0539963A (en) Cooling and heating device
JP2921632B2 (en) Cold water supply method and equipment for cooling air conditioning of nuclear power plants
JP3299415B2 (en) Refrigerant circulation type air conditioning system
JP4421783B2 (en) Water type air conditioning system
JP3299413B2 (en) Refrigerant circulation type air conditioning system
JPS624847Y2 (en)
JPH09243193A (en) Heat accumulative type air conditioner
JP2000039229A (en) Air conditioner
JP4194286B2 (en) Air conditioner
JPH07305866A (en) Refrigerant natural circulation type cooling and heating system
JP3594426B2 (en) Air conditioner
JP3846755B2 (en) Refrigerant circulation type air conditioning system
JPH0618122A (en) Hot water feeding, cooling and heating system
JPS6251370B2 (en)
JP3128518B2 (en) Temperature controller for combined hot water heating system
JPH09137976A (en) Freeze preventing system for ice storage type cold water equipment
JPH07145964A (en) Refrigerant circulating type air conditioner system
JPH07127894A (en) Operation controlling method for air conditioner
JPS6028895Y2 (en) Air conditioning/heating water heater
JP3663029B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees