JPH07217447A - Combustion method for closed cycle gas turbine and its device - Google Patents

Combustion method for closed cycle gas turbine and its device

Info

Publication number
JPH07217447A
JPH07217447A JP6012034A JP1203494A JPH07217447A JP H07217447 A JPH07217447 A JP H07217447A JP 6012034 A JP6012034 A JP 6012034A JP 1203494 A JP1203494 A JP 1203494A JP H07217447 A JPH07217447 A JP H07217447A
Authority
JP
Japan
Prior art keywords
working fluid
fuel
combustion
gas
oxidizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6012034A
Other languages
Japanese (ja)
Other versions
JP3454372B2 (en
Inventor
Katsuo Yonezawa
克夫 米澤
Shohachi Yasu
昭八 安
Junichi Sato
順一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP01203494A priority Critical patent/JP3454372B2/en
Publication of JPH07217447A publication Critical patent/JPH07217447A/en
Application granted granted Critical
Publication of JP3454372B2 publication Critical patent/JP3454372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To appropriately control a reaction of fuel with an oxidizing agent in steam or inert gas. CONSTITUTION:A closed cycle is constructed in such ways as supplying working fluid, fuel, and oxidizing agent to a combustor 1 to burn them, rotating turbines 2, 3, and eliminating a part. of turbine exhaust gas so as to circulate the rest of the turbine exhaust gas as working fluid, while at least one of the fuel and the oxidizing agent is premixed with a part of the working fluid so as to be burnt in a combustor 1 with the rest of the working fluid. In this way, control of combustion speed and control of an engine can be carried out according to an engine load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料と作動流体、酸化剤
と作動流体を予め混合した後、燃焼するクローズドサイ
クルガスタービンの燃焼方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion method and apparatus for a closed cycle gas turbine in which a fuel and a working fluid, an oxidant and a working fluid are premixed and then burned.

【0002】[0002]

【従来の技術】炭化水素の燃料と空気を混合して燃焼
し、燃焼ガスでタービンを回転すると共に同軸に設けら
れた圧縮機で空気を圧縮して燃焼室に供給するオープサ
イクルガスタービンが一般に用いられている。炭化水素
系燃料を用いたオープンサイクルガスタービンの場合排
気ガスによる公害発生の恐れがあるので、最近燃料に水
素ガスを用い、排気ガスとして無公害の水蒸気を排出す
るガスタービンの研究が進められている。
2. Description of the Related Art In general, an open cycle gas turbine in which a hydrocarbon fuel and air are mixed and burned, a turbine is rotated by combustion gas, and air is compressed by a compressor provided coaxially and is supplied to a combustion chamber is generally used. It is used. In the case of open cycle gas turbines that use hydrocarbon fuel, pollution may occur due to exhaust gas.Therefore, research on gas turbines that use hydrogen gas as fuel and emit non-polluting water vapor as exhaust gas has been advanced. There is.

【0003】図4はこのような水素ガスを燃料とし、酸
化剤を酸素ガスとし、作動流体を水蒸気としたクローズ
ドサイクルガスタービンの構成図である。燃焼器1には
水素ガスと酸素ガスが2対1の体積比で供給されると共
に作動流体として水蒸気が供給される。水素ガスH2
酸素ガスO2 は燃焼すると水蒸気H2 Oとなり、作動流
体と同じとなる。水素ガスは液体水素タンク11の液体
水素を蒸発器12で蒸発し、圧縮機13で加圧して燃料
流量制御弁14より供給され、酸素ガスは空気分離液化
装置17で空気より分離して液化した酸素を蒸発器18
で蒸発し、圧縮機19で加圧して酸化剤流量制御弁20
より供給される。燃焼によって発生する高温の水蒸気に
よって作動水蒸気を所定の温度に加熱し、この水蒸気に
より高圧タービン2および低圧タービン3を駆動し、発
電機4を回転して発電する。
FIG. 4 is a block diagram of a closed cycle gas turbine in which hydrogen gas is used as fuel, oxidant is oxygen gas, and working fluid is steam. Hydrogen gas and oxygen gas are supplied to the combustor 1 at a volume ratio of 2: 1 and steam is supplied as a working fluid. When the hydrogen gas H 2 and the oxygen gas O 2 are burnt, they become steam H 2 O, which is the same as the working fluid. The hydrogen gas vaporizes the liquid hydrogen in the liquid hydrogen tank 11 by the evaporator 12, pressurizes it by the compressor 13 and is supplied from the fuel flow rate control valve 14, and the oxygen gas is liquefied by separating it from the air by the air separation liquefying device 17. Oxygen evaporator 18
And is pressurized by the compressor 19 and is oxidized by the oxidant flow control valve 20.
Supplied by. The working steam is heated to a predetermined temperature by the high-temperature steam generated by the combustion, and the steam drives the high-pressure turbine 2 and the low-pressure turbine 3 to rotate the generator 4 to generate electricity.

【0004】低圧タービン3を出た水蒸気は復水器5で
凝縮して水となり復水排水ポンプ6で排水され、その一
部は放出制御弁7から放出され、残りは加圧ポンプ8に
より加圧され、低圧タービン3の排気水蒸気により加熱
される再生熱交換器9で水蒸気となり作動水蒸気として
作動流体ライン10により燃焼器1へ戻る。放出制御弁
7より放出される水の量はタービンに供給する水蒸気の
量と供給される水素ガス、酸素ガスの流量によって決ま
り、タービンに供給される水蒸量を一定とするならば供
給された水素ガスと酸素ガスにより水蒸気となった量と
なる。
The steam leaving the low-pressure turbine 3 is condensed in the condenser 5 to become water, which is drained by the condensate drainage pump 6, a part of which is discharged from the discharge control valve 7 and the rest of which is added by the pressure pump 8. It is compressed and becomes steam in the regenerative heat exchanger 9 which is heated by the exhaust steam of the low-pressure turbine 3 and returns to the combustor 1 as working steam through the working fluid line 10. The amount of water discharged from the discharge control valve 7 depends on the amount of steam supplied to the turbine and the flow rates of hydrogen gas and oxygen gas supplied, and is supplied if the amount of water vapor supplied to the turbine is constant. This is the amount of water vapor formed by hydrogen gas and oxygen gas.

【0005】[0005]

【発明が解決しようとする課題】燃焼器内で水素ガスと
酸素ガスが燃焼して水蒸気になるためには、体積比で水
素ガス2と酸素ガス1が反応しなくてはならない。水素
ガスと酸素ガスは重量比で2対32と大きく異なるため
両者が均一に混合しない場合が多く、このような状態と
なると、反応しない水素ガスや酸素ガスが発生し燃焼効
率が低下する。また水素と酸素は反応が進行しやすいた
め、高温となり、燃焼器の耐久性が劣化する。また、酸
素と水素の反応を制御することが困難となり、エンジン
の負荷に対応したエンジン制御が困難となる。
In order for hydrogen gas and oxygen gas to burn into steam in the combustor, the hydrogen gas 2 and the oxygen gas 1 must react in a volume ratio. Since the weight ratio of hydrogen gas and oxygen gas is greatly different from 2 to 32, the two are often not uniformly mixed, and in such a state, unreacted hydrogen gas and oxygen gas are generated and combustion efficiency is lowered. Further, the reaction between hydrogen and oxygen is likely to proceed, so that the temperature becomes high and the durability of the combustor deteriorates. Further, it becomes difficult to control the reaction between oxygen and hydrogen, and it becomes difficult to control the engine corresponding to the load of the engine.

【0006】本発明は上述の問題点に鑑みてなされたも
ので、作動流体と燃料、作動流体と酸化剤を予め混合し
た後燃焼器に供給して燃焼させることにより密度の大き
く異なる燃料と酸化剤の反応が適切に行われるように
し、またエンジンの負荷に対応したエンジン制御を容易
にするクローズドサイクルガスタービンの燃焼方法およ
び装置を提供することを目的とする。
The present invention has been made in view of the above-described problems, and a working fluid and a fuel, and a working fluid and an oxidizer are mixed in advance and then supplied to a combustor and burned to burn the fuel and the oxidizer having greatly different densities. It is an object of the present invention to provide a combustion method and apparatus for a closed cycle gas turbine that allows the reaction of the agent to be appropriately performed and facilitates engine control corresponding to the load of the engine.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、燃焼器に作動流体、燃料、酸化剤を供給して燃焼さ
せ、燃焼ガスによりタービンを回転し、排出したガスか
ら一部を除去し残りを作動流体として循環するクローズ
ドサイクルガスタービンの燃焼方法において、燃料と酸
化剤のいずれか一方を作動流体と混合し、他方と残りの
作動流体と共に燃焼器で燃焼するようにしたものであ
る。
In order to achieve the above object, a working fluid, a fuel and an oxidizer are supplied to a combustor to burn the combustor, a turbine is rotated by the combustion gas, and a part of the exhaust gas is removed. In a combustion method of a closed cycle gas turbine in which the rest is circulated as a working fluid, one of a fuel and an oxidant is mixed with a working fluid, and the mixture is burned in a combustor together with the other and the remaining working fluid.

【0008】また、燃焼器に作動流体、燃料、酸化剤を
供給して燃焼させ、燃焼ガスによりタービンを回転し、
排出したガスから一部を除去し残りを作動流体として循
環するクローズドサイクルガスタービンの燃焼方法にお
いて、作動流体の一部と燃料とを混合すると共に作動流
体の一部と酸化剤とを混合し、作動流体の残りと共に燃
焼器で燃焼するようにしたものである。
Further, a working fluid, a fuel and an oxidizer are supplied to a combustor for combustion, and a turbine is rotated by the combustion gas,
In a combustion method of a closed cycle gas turbine in which a part is removed from the exhausted gas and the rest is circulated as a working fluid, a part of the working fluid and a fuel are mixed and a part of the working fluid and an oxidizer are mixed, It is designed to burn in the combustor along with the rest of the working fluid.

【0009】また、作動流体と燃料を混合した燃料混合
体、作動流体と酸化剤を混合した酸化剤混合体の少なく
とも一方の流量を、燃料と酸化剤とを燃焼反応に必要な
比率に保った状態で調整するようにしたものである。
Further, the flow rate of at least one of the fuel mixture in which the working fluid and the fuel are mixed and the oxidant mixture in which the working fluid and the oxidant are mixed is maintained at a ratio required for the combustion reaction of the fuel and the oxidant. It is adjusted according to the condition.

【0010】また、作動流体と燃料の混合比、作動流体
と酸化剤の混合比の少なくとも一方を燃料と酸化剤とを
燃焼反応に必要な比率に保持した状態で、調整するよう
にしたものである。
Further, at least one of the mixing ratio of the working fluid and the fuel and the mixing ratio of the working fluid and the oxidant is adjusted in a state where the ratio of the fuel and the oxidant is required for the combustion reaction. is there.

【0011】また、前記作動流体は水蒸気であり、前記
燃料は水素ガス、前記酸化剤は酸素ガスとしたものであ
る。
The working fluid is water vapor, the fuel is hydrogen gas, and the oxidant is oxygen gas.

【0012】また、前記作動流体が不活性ガスであり、
前記燃料は可燃性気体、前記酸化剤は酸化性気体燃焼器
に作動流体としたものである。
Further, the working fluid is an inert gas,
The fuel is a combustible gas, and the oxidant is a working fluid in an oxidizing gas combustor.

【0013】また、燃焼器に作動流体、燃料、酸化剤を
供給して燃焼させ発生した燃焼ガスによりタービンを回
転し、排出したガスから一部を除去し残りを作動流体と
して作動流体ラインにより前記燃焼室に供給するクロー
ズドサイクルガスタービンの燃焼装置において、燃料供
給装置から燃料流量制御弁を介して供給される燃料と作
動流体ラインから第1流量制御弁を介して供給される作
動流体とを混合する燃料混合器と、酸化剤供給装置から
酸化剤流量制御弁を介して供給される酸化剤と作動流体
ラインから第2流量制御弁を介して供給される作動流体
とを混合する酸化剤混合器と、前記燃料混合器からの混
合燃料と、前記酸化剤混合器からの混合酸化剤と前記作
動流体ラインからの作動流体とを供給され燃焼を行う燃
焼器とを備えたものである。
Further, the turbine is rotated by the combustion gas generated by supplying and burning the working fluid, fuel and oxidizer to the combustor, and the exhaust gas is partially removed and the rest is used as the working fluid through the working fluid line. In a combustion device of a closed cycle gas turbine, which is supplied to a combustion chamber, a fuel supplied from a fuel supply device via a fuel flow control valve and a working fluid supplied from a working fluid line via a first flow control valve are mixed. And a oxidizer mixer for mixing the oxidizer supplied from the oxidizer supply device via the oxidizer flow control valve and the working fluid supplied from the working fluid line via the second flow control valve. And a combustor for supplying the mixed fuel from the fuel mixer, the mixed oxidant from the oxidizer mixer and the working fluid from the working fluid line to perform combustion. It is.

【0014】[0014]

【作用】燃料と作動流体を予め混合し、酸化剤と作動流
体を予め混合した状態で燃焼器へ供給することにより燃
料と酸化剤は動作流体中にほぼ均一に混合されているの
で、燃料と酸化剤との燃焼が適切に行われている。燃料
と酸化剤の燃焼により発生したガスと燃焼により加熱さ
れた作動流体とがタービンを回転させる。
The fuel and the oxidant are mixed in advance in the working fluid by premixing the fuel and the working fluid and supplying the oxidizer and the working fluid in a premixed state to the combustor. Proper combustion with oxidants. The gas generated by the combustion of the fuel and the oxidant and the working fluid heated by the combustion rotate the turbine.

【0015】燃料混合体、酸化剤混合体の流量を調整す
ることにより、供給される燃料および酸化剤の流量は両
者の比率が燃焼反応をするのに必要な値に保持された状
態で調整されているので、適切な燃焼が行われると共
に、燃料濃度の調整が行われて燃焼速度を制御すること
ができる。
By adjusting the flow rates of the fuel mixture and the oxidant mixture, the flow rates of the fuel and the oxidant supplied are adjusted while the ratio between the two is kept at a value necessary for the combustion reaction. Therefore, appropriate combustion is performed, and the fuel concentration is adjusted to control the combustion speed.

【0016】作動流体と燃料の混合比、作動流体と酸化
剤との混合比が燃料と酸化剤とを燃焼反応をするのに必
要な比率に保った状態で調整されるので適切な燃焼が行
われると共に、燃料濃度の調整が行われ、燃焼速度を制
御することができる。
Since the mixing ratio of the working fluid and the fuel and the mixing ratio of the working fluid and the oxidizer are adjusted to the ratios necessary for the combustion reaction of the fuel and the oxidizer, the proper combustion is performed. At the same time, the fuel concentration is adjusted and the combustion speed can be controlled.

【0017】作動流体を水蒸気とし、燃料を水素ガス、
酸化剤を酸素ガスとし、水素ガスと酸素ガスの燃焼によ
り水蒸気を発生し、作動流体の水蒸気と一体となりター
ビンを回転し、排出ガスの一部が除去され残りが作動流
体として循環する。
The working fluid is water vapor, the fuel is hydrogen gas,
Oxygen gas is used as an oxidizer, steam is generated by combustion of hydrogen gas and oxygen gas, the turbine is rotated together with steam of working fluid, a part of exhaust gas is removed, and the rest is circulated as working fluid.

【0018】作動流体を不活性ガスとし、燃料を可燃性
ガス、酸化剤を酸化性ガスとし、燃焼により高温燃焼ガ
スを発生し、この燃焼ガスと不活性ガスによりタービン
を回転し、排出ガスから燃焼ガスが除去されて不活性ガ
スが循環する。
The working fluid is an inert gas, the fuel is a combustible gas, the oxidant is an oxidizing gas, and a high temperature combustion gas is generated by combustion. The combustion gas and the inert gas rotate a turbine, and the exhaust gas is discharged. The combustion gas is removed and the inert gas circulates.

【0019】燃焼器へ燃料混合器より燃料と作動流体と
を混合した燃料混合体と、酸化剤混合器より酸化剤と作
動流体とを混合した酸化剤混合体とが供給され燃焼す
る。燃料流量制御弁と酸化剤流量制御弁は燃料と酸化剤
が燃焼に必要な比で増減するように制御し、第1流量制
御弁は燃料流量制御弁からの燃料に対する作動流体の流
量比を制御し、第2流量制御弁は酸化剤流量制御弁から
の酸化剤に対する作動流体の流量比を制御する。これに
より燃料および酸化剤の流量制御、燃料、酸化剤に対す
る作動流体の混合比の制御ができ、適切な燃焼を行うと
共に燃焼速度を制御することができる。
A fuel mixture, which is a mixture of fuel and working fluid, is supplied from the fuel mixer to the combustor, and an oxidant mixture, which is a mixture of oxidant and working fluid, is supplied from the oxidizer mixer and burns. The fuel flow rate control valve and the oxidant flow rate control valve control so that the fuel and the oxidant increase or decrease at a ratio required for combustion, and the first flow rate control valve controls the flow rate ratio of the working fluid to the fuel from the fuel flow rate control valve. Then, the second flow rate control valve controls the flow rate ratio of the working fluid to the oxidant from the oxidant flow rate control valve. This makes it possible to control the flow rates of the fuel and the oxidant, control the mixing ratio of the working fluid to the fuel and the oxidant, and perform appropriate combustion and control the combustion speed.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明の第1実施例の構成を示す図
である。第1実施例は図4に示した従来の燃焼方式に対
して燃料と作動流体、酸化剤と作動流体とをそれぞれ混
合して均一にした後、燃焼室へ供給するようにしたもの
である。作動流体は水蒸気H 2 O、燃料は水素ガス
2 、酸化剤は酸素ガスO2 である。なお、図4と同一
符号は同一のものを表す。図4に対し図1で追加された
部品、装置について説明する。液体水素タンク11には
液化水素が貯えられ、蒸発器12は液化水素を蒸発して
水素ガスを発生する。水素ガスは圧縮機13で加圧され
燃料流量制御弁14により、流量を調整されて燃料混合
器16に供給される。燃料混合器16はこの水素ガスと
作動流体ライン10より第1流量制御弁15を介して供
給される水蒸気とを混合し、燃焼器1へ供給する。空気
分離液化装置17は空気より酸素を分離して液化し、貯
える。蒸発器18は液化酸素を蒸発させて酸素ガスを発
生する。酸素ガスは圧縮機19で加圧されて酸化剤流量
制御弁20で流量調整され酸化剤混合器22に供給され
る。酸化剤混合器22はこの酸素ガスと作動流体ライン
10より第2流量制御弁21を介して供給される水蒸気
とを混合し、燃焼器1へ供給する。
Embodiments of the present invention will now be described with reference to the drawings.
Explain. FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.
Is. The first embodiment corresponds to the conventional combustion method shown in FIG.
The fuel and working fluid, and the oxidizer and working fluid respectively.
After being mixed and made uniform, it is supplied to the combustion chamber
Is. Working fluid is steam H 2O, fuel is hydrogen gas
H2, Oxidizer is oxygen gas O2Is. Note that it is the same as in FIG.
The symbols represent the same things. Added in Figure 1 to Figure 4
Parts and devices will be described. In the liquid hydrogen tank 11
Liquefied hydrogen is stored, and the evaporator 12 evaporates the liquefied hydrogen.
Generates hydrogen gas. Hydrogen gas is compressed by the compressor 13
The fuel flow rate is controlled by the fuel flow rate control valve 14 to mix the fuel.
Is supplied to the container 16. The fuel mixer 16 uses this hydrogen gas
Provided from the working fluid line 10 via the first flow control valve 15.
The supplied steam is mixed and supplied to the combustor 1. air
The separation / liquefaction device 17 separates oxygen from air to liquefy and store it.
Get The evaporator 18 evaporates liquefied oxygen to generate oxygen gas.
To live. Oxygen gas is pressurized by the compressor 19 and the oxidizer flow rate is increased.
The flow rate is adjusted by the control valve 20 and supplied to the oxidizer mixer 22.
It The oxidizer mixer 22 uses this oxygen gas and working fluid line.
Water vapor supplied from 10 through the second flow control valve 21
And are mixed and supplied to the combustor 1.

【0021】次に燃料混合器16における水蒸気と水素
ガスの混合、酸化剤混合器22における水蒸気と酸素ガ
スの混合について説明する。圧縮機13,19の吐出圧
がほぼ同じ場合、燃料流量制御弁14と酸化剤流量制御
弁20は水素ガスと酸素ガスの流量比が2対1となるよ
うに調整する。第1流量制御弁15は水素ガスに対して
第1混合比となるよう水蒸気を流し、第2流量制御弁2
1は酸素ガスに対して第2混合比となるよう水蒸気を流
すように調整する。第1および第2混合比を同じ比とす
るには、第1流量制御弁15は第2流量制御弁21に対
して2倍の水蒸気を流せばよい。第1および第2混合比
を一定とし、混合ガスの量を増加するように各制御弁1
4,15,20,21を調整することにより、燃焼器1
内の燃焼速度を制御することができる。また、第1およ
び第2流量制御弁15,21を調整することにより水蒸
気に対する水素ガス、酸素ガスの混合比を変えることが
でき、同様に燃焼器1内の燃焼速度を制御することがで
きる。これによりエンジンの負荷に対応したエンジン制
御が可能となる。
Next, mixing of steam and hydrogen gas in the fuel mixer 16 and mixing of steam and oxygen gas in the oxidizer mixer 22 will be described. When the discharge pressures of the compressors 13 and 19 are substantially the same, the fuel flow rate control valve 14 and the oxidant flow rate control valve 20 are adjusted so that the flow rate ratio of hydrogen gas and oxygen gas is 2: 1. The first flow rate control valve 15 allows water vapor to flow so as to have a first mixing ratio with respect to hydrogen gas, and the second flow rate control valve 2
No. 1 is adjusted so that water vapor is caused to flow so as to have a second mixing ratio with respect to oxygen gas. In order to make the first and second mixing ratios the same, the first flow rate control valve 15 has only to flow twice as much steam as the second flow rate control valve 21. Each control valve 1 is controlled so that the first and second mixing ratios are constant and the amount of mixed gas is increased.
By adjusting 4, 15, 20, 21, the combustor 1
The burning rate within can be controlled. Further, by adjusting the first and second flow rate control valves 15 and 21, the mixing ratio of hydrogen gas and oxygen gas to water vapor can be changed, and the combustion speed in the combustor 1 can be similarly controlled. This enables engine control corresponding to the engine load.

【0022】次に第2実施例を説明する。本実施例は第
1実施例がタービンからの排出ガスを全て復水したのに
対し、排出ガスの内、作動流体となる排出ガスは水蒸気
の状態で循環し、圧縮機で圧縮した後、燃焼器に供給す
るようにしている。図2は第2実施例の構成を示し、第
1図と同一符号は同一のものを表す。作動流体は水蒸
気、燃料は水素ガス、酸化剤は酸素ガスである。燃焼器
31では燃料混合器16、酸化剤混合器22で混合され
た混合ガスを加熱された水蒸気と作動流体(水蒸気)内
で燃焼させ、タービン32を回転し、タービン32と同
軸の圧縮機33と、発電機34を回転する。タービン3
2からの排出ガスの1部を制御弁35より取り出し、復
水器36で復水した後、復水排出ポンプ37で排出す
る。排出する量は作動流体の量によって決まり、定常運
転に入った後は供給される水素ガスと酸素ガスによって
生じる水蒸気量に相当する量である。これにより作動流
体として作動流体ライン38を循環する水蒸気の量は一
定となる。
Next, a second embodiment will be described. In the present embodiment, all the exhaust gas from the turbine was condensed in the first embodiment, whereas the exhaust gas, which becomes the working fluid, circulates in the state of steam in the exhaust gas, and after being compressed by the compressor, it is burned. I am trying to supply it to the vessel. FIG. 2 shows the configuration of the second embodiment, and the same symbols as in FIG. 1 represent the same components. The working fluid is steam, the fuel is hydrogen gas, and the oxidant is oxygen gas. In the combustor 31, the mixed gas mixed in the fuel mixer 16 and the oxidizer mixer 22 is burned in the heated steam and working fluid (steam), the turbine 32 is rotated, and the compressor 33 coaxial with the turbine 32 is used. Then, the generator 34 is rotated. Turbine 3
A part of the exhaust gas from No. 2 is taken out from the control valve 35, condensed by the condenser 36, and then discharged by the condensed water discharge pump 37. The amount to be discharged is determined by the amount of working fluid, and is the amount corresponding to the amount of water vapor generated by the hydrogen gas and oxygen gas supplied after starting the steady operation. As a result, the amount of water vapor circulating in the working fluid line 38 as the working fluid becomes constant.

【0023】水蒸気は圧縮機33により圧縮され作動流
体として燃焼器31に供給される。また圧縮機33によ
り圧縮された水蒸気の一部はタービン32からの排出ガ
スにより再生熱交換器39で加熱され、燃焼器31で燃
料混合器16、酸化剤混合器22からの混合ガスと共に
噴射され熱回収を行う。燃料混合器16における水蒸気
気と水素ガスの混合、酸化剤混合器22における水蒸気
と酸素ガスの混合および燃焼器31での燃焼および燃焼
制御およびエンジンの負荷に対応したエンジン制は第1
実施例と同じである。
The water vapor is compressed by the compressor 33 and supplied to the combustor 31 as a working fluid. Further, a part of the water vapor compressed by the compressor 33 is heated in the regenerative heat exchanger 39 by the exhaust gas from the turbine 32, and is injected in the combustor 31 together with the mixed gas from the fuel mixer 16 and the oxidizer mixer 22. Recover heat. The engine control corresponding to the mixing of steam and hydrogen gas in the fuel mixer 16, the mixing of steam and oxygen gas in the oxidizer mixer 22, the combustion and combustion control in the combustor 31, and the engine load is the first.
Same as the embodiment.

【0024】次に第3実施例を説明する。本実施例は作
動流体として不活性ガス、例えばヘリウムHe,アルゴン
Ar を使用し、燃料は水素ガス、酸化剤は酸素ガスを使
用する。図3は本実施例の構成図である。図1と同一符
号は同一の部材、装置を示す。
Next, a third embodiment will be described. In this embodiment, an inert gas such as helium He and argon Ar is used as a working fluid, hydrogen gas is used as a fuel, and oxygen gas is used as an oxidant. FIG. 3 is a configuration diagram of this embodiment. The same reference numerals as those in FIG. 1 indicate the same members and devices.

【0025】燃焼器41では燃料混合器16、酸化剤混
合器22で混合された混合ガスを作動流体(He または
Ar )と混合して燃焼させ、タービン42を回転し、タ
ービン42と同軸の圧縮機43と発電機44を回転す
る。タービン42からの排気ガスの内、水蒸気は凝縮器
45で凝縮して除水装置46で除去し、残りの不活性ガ
スを作動流体として作動流体ライン47を循環する。燃
料混合器16における不活性ガス(He ,Ar 等)と水
素ガスの混合、酸化剤混合器22における不活性ガスと
酸素ガスの混合及び燃焼器41における燃焼および燃焼
制御およびエンジンの負荷に対応したエンジン制御は第
1実施例と同じである。
In the combustor 41, the mixed gas mixed in the fuel mixer 16 and the oxidizer mixer 22 is mixed with a working fluid (He or Ar) and burned, and the turbine 42 is rotated and compressed coaxially with the turbine 42. The machine 43 and the generator 44 are rotated. Of the exhaust gas from the turbine 42, water vapor is condensed by the condenser 45 and removed by the water removing device 46, and the remaining inert gas is circulated in the working fluid line 47 as a working fluid. Corresponding to the mixing of inert gas (He, Ar, etc.) and hydrogen gas in the fuel mixer 16, the mixing of inert gas and oxygen gas in the oxidizer mixer 22, combustion and combustion control in the combustor 41, and engine load. The engine control is the same as in the first embodiment.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
は作動流体と燃料、作動流体と酸化剤をそれぞれ混合器
で予め混合した後作動流体と共に燃焼器へ供給して燃焼
をさせるので、燃料と酸化剤との混合不良を減少させ燃
焼効率を向上させる。また、作動流体と燃料との混合
比、作動流体と酸化剤との混合比を調整することによ
り、燃焼速度の制御およびエンジンの負荷に対応したエ
ンジン制御を行うことができる。
As is apparent from the above description, according to the present invention, the working fluid and the fuel, the working fluid and the oxidant are premixed in the mixer and then supplied to the combustor together with the working fluid for combustion. It improves the combustion efficiency by reducing the poor mixing of fuel and oxidizer. Further, by adjusting the mixing ratio of the working fluid and the fuel and the mixing ratio of the working fluid and the oxidant, it is possible to perform the control of the combustion speed and the engine control corresponding to the load of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第2実施例の構成を示す図である。FIG. 2 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図3】本発明の第3実施例の構成を示す図である。FIG. 3 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図4】従来例の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1,31,41 燃焼器 2 高圧タービン 3 低圧タービン 4,34,44 発電機 5,36 復水器 6,37 復水排水ポンプ 7,35 制御弁 8 加圧ポンプ 9,39 再生熱交換器 10,38,47 作動流体ライン 11 液体水素タンク(燃料供給装置) 12,18 蒸発器 13,19 圧縮機 14 燃料流量制御弁 15 第1流量制御弁 16 燃料混合器 17 空気分離液化装置(酸化剤供給装置) 20 酸化剤流量制御弁 21 第2流量制御弁 22 酸化剤混合器 32,42 タービン 33 圧縮機 45 凝縮器 46 除水装置 1,31,41 Combustor 2 High-pressure turbine 3 Low-pressure turbine 4,34,44 Generator 5,36 Condenser 6,37 Condensate drainage pump 7,35 Control valve 8 Pressurizing pump 9,39 Regenerative heat exchanger 10 , 38, 47 working fluid line 11 liquid hydrogen tank (fuel supply device) 12, 18 evaporator 13, 19 compressor 14 fuel flow control valve 15 first flow control valve 16 fuel mixer 17 air separation liquefaction device (oxidant supply 20) Oxidizer flow control valve 21 2nd flow control valve 22 Oxidizer mixer 32,42 Turbine 33 Compressor 45 Condenser 46 Water removal device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器に作動流体、燃料、酸化剤を供給
して燃焼させ、燃焼ガスによりタービンを回転し、排出
したガスから一部を除去し残りを作動流体として循環す
るクローズドサイクルガスタービンの燃焼方法におい
て、燃料と酸化剤のいずれか一方を作動流体と混合し、
他方と残りの作動流体と共に燃焼器で燃焼するようにし
たことを特徴とするクローズドサイクルガスタービンの
燃焼方法。
1. A closed cycle gas turbine in which a working fluid, a fuel and an oxidizer are supplied to a combustor for combustion, the turbine is rotated by the combustion gas, a part of exhaust gas is removed and the rest is circulated as a working fluid. In the combustion method of, one of the fuel and the oxidant is mixed with the working fluid,
A combustion method for a closed cycle gas turbine, characterized in that the combustion is performed in the combustor together with the other working fluid and the remaining working fluid.
【請求項2】 燃焼器に作動流体、燃料、酸化剤を供給
して燃焼させ、燃焼ガスによりタービンを回転し、排出
したガスから一部を除去し残りを作動流体として循環す
るクローズドサイクルガスタービンの燃焼方法におい
て、作動流体の一部と燃料とを混合すると共に作動流体
の一部と酸化剤とを混合し、作動流体の残りと共に燃焼
器で燃焼するようにしたことを特徴とするクローズドサ
イクルガスタービンの燃焼方法。
2. A closed cycle gas turbine in which a working fluid, a fuel and an oxidizer are supplied to a combustor for combustion, the turbine is rotated by the combustion gas, a part of the discharged gas is removed and the rest is circulated as a working fluid. In the above combustion method, a part of the working fluid is mixed with a fuel, a part of the working fluid is mixed with an oxidant, and the remaining part of the working fluid is combusted in a combustor. Gas turbine combustion method.
【請求項3】 作動流体と燃料を混合した燃料混合体、
作動流体と酸化剤を混合した酸化剤混合体の少なくとも
一方の流量を、燃料と酸化剤とを燃焼反応に必要な比率
に保った状態で調整するようにしたことを特徴とする請
求項1または2記載のクローズドサイクルガスタービン
の燃焼方法。
3. A fuel mixture in which a working fluid and a fuel are mixed,
The flow rate of at least one of the oxidant mixture obtained by mixing the working fluid and the oxidant is adjusted in a state where the fuel and the oxidant are maintained at a ratio necessary for the combustion reaction. 2. The closed-cycle gas turbine combustion method according to 2.
【請求項4】 作動流体と燃料の混合比、作動流体と酸
化剤の混合比の少なくとも一方を燃料と酸化剤とを燃焼
反応に必要な比率に保持した状態で、調整するようにし
たことを特徴とする請求項1または2記載のクローズド
サイクルガスタービンの燃焼方法。
4. The adjustment is performed while maintaining at least one of the mixing ratio of the working fluid and the fuel and the mixing ratio of the working fluid and the oxidizer at a ratio required for the combustion reaction of the fuel and the oxidizer. The combustion method for a closed cycle gas turbine according to claim 1 or 2, which is characterized in that.
【請求項5】 前記作動流体は水蒸気であり、前記燃料
は水素ガス、前記酸化剤は酸素ガスであることを特徴と
する請求項1ないし4のいずれかに記載のクローズドサ
イクルガスタービンの燃焼方法。
5. The combustion method for a closed cycle gas turbine according to claim 1, wherein the working fluid is water vapor, the fuel is hydrogen gas, and the oxidant is oxygen gas. .
【請求項6】 前記作動流体が不活性ガスであり、前記
燃料は可燃性気体、前記酸化剤は酸化性気体であること
を特徴とする請求項1ない4のいずれかに記載のクロー
ズドサイクルガスタービンの燃焼方法。
6. The closed cycle gas according to claim 1, wherein the working fluid is an inert gas, the fuel is a combustible gas, and the oxidant is an oxidizing gas. How to burn a turbine.
【請求項7】 燃焼器に作動流体、燃料、酸化剤を供給
して燃焼させ発生した燃焼ガスによりタービンを回転
し、排出したガスから一部を除去し残りを作動流体とし
て作動流体ラインにより前記燃焼室に供給するクローズ
ドサイクルガスタービンの燃焼装置において、燃料供給
装置から燃料流量制御弁を介して供給される燃料と作動
流体ラインから第1流量制御弁を介して供給される作動
流体とを混合する燃料混合器と、酸化剤供給装置から酸
化剤流量制御弁を介して供給される酸化剤と作動流体ラ
インから第2流量制御弁を介して供給される作動流体と
を混合する酸化剤混合器と、前記燃料混合器からの混合
燃料と、前記酸化剤混合器からの混合酸化剤と前記作動
流体ラインからの作動流体とを供給され燃焼を行う燃焼
器とを備えたことを特徴とするクローズドサイクルガス
タービンの燃焼装置。
7. A turbine is rotated by a combustion gas generated by supplying a working fluid, fuel, and an oxidizer to a combustor and burning the combustor, and a part of the discharged gas is removed and the rest is used as a working fluid by the working fluid line. In a combustion device of a closed cycle gas turbine, which is supplied to a combustion chamber, a fuel supplied from a fuel supply device via a fuel flow control valve and a working fluid supplied from a working fluid line via a first flow control valve are mixed. And a oxidizer mixer for mixing the oxidizer supplied from the oxidizer supply device via the oxidizer flow control valve and the working fluid supplied from the working fluid line via the second flow control valve. And a combustor for supplying combustion with the mixed fuel from the fuel mixer, the mixed oxidant from the oxidizer mixer and the working fluid from the working fluid line. Combustion equipment for closed cycle gas turbines.
JP01203494A 1994-02-04 1994-02-04 Combustion method and apparatus for closed cycle gas turbine Expired - Fee Related JP3454372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01203494A JP3454372B2 (en) 1994-02-04 1994-02-04 Combustion method and apparatus for closed cycle gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01203494A JP3454372B2 (en) 1994-02-04 1994-02-04 Combustion method and apparatus for closed cycle gas turbine

Publications (2)

Publication Number Publication Date
JPH07217447A true JPH07217447A (en) 1995-08-15
JP3454372B2 JP3454372B2 (en) 2003-10-06

Family

ID=11794331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01203494A Expired - Fee Related JP3454372B2 (en) 1994-02-04 1994-02-04 Combustion method and apparatus for closed cycle gas turbine

Country Status (1)

Country Link
JP (1) JP3454372B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144558A (en) * 1995-11-24 1997-06-03 Toshiba Corp Hydrogen combustion gas turbine plant its starting method thereof
US6260348B1 (en) 1998-04-07 2001-07-17 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant with fuel reformer
JP2010530490A (en) * 2007-06-19 2010-09-09 アルストム テクノロジー リミテッド Exhaust gas recirculation gas turbine equipment
WO2018105166A1 (en) * 2016-12-09 2018-06-14 1H3H株式会社 System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
WO2018143310A1 (en) * 2017-02-03 2018-08-09 川崎重工業株式会社 Hydrogen/oxygen equivalent combustion turbine system
JP2020024068A (en) * 2018-08-08 2020-02-13 株式会社ヒラカワ Steam generation method and steam generation device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250332B2 (en) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー Gas turbine equipment
MA40950A (en) 2014-11-12 2017-09-19 8 Rivers Capital Llc SUITABLE CONTROL SYSTEMS AND PROCEDURES FOR USE WITH POWER GENERATION SYSTEMS AND PROCESSES
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
PL3308004T3 (en) 2015-06-15 2022-01-31 8 Rivers Capital, Llc System and method for startup of a power production plant
KR20180117652A (en) 2016-02-26 2018-10-29 8 리버스 캐피탈, 엘엘씨 Systems and methods for controlling a power plant
EP4048873A1 (en) 2019-10-22 2022-08-31 8 Rivers Capital, LLC Control schemes for thermal management of power production systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332110A (en) * 1986-07-24 1988-02-10 Mitsubishi Heavy Ind Ltd Hydrogen and oxygen fired steam turbine plant
JPH04279729A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Carbon dioxide (co2) collecting gas turbine plant
JPH05296010A (en) * 1992-04-15 1993-11-09 Mitsubishi Heavy Ind Ltd Hydrogen oxygen combustion steam turbine engine
JPH07158411A (en) * 1993-12-06 1995-06-20 Hitachi Ltd Power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332110A (en) * 1986-07-24 1988-02-10 Mitsubishi Heavy Ind Ltd Hydrogen and oxygen fired steam turbine plant
JPH04279729A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Carbon dioxide (co2) collecting gas turbine plant
JPH05296010A (en) * 1992-04-15 1993-11-09 Mitsubishi Heavy Ind Ltd Hydrogen oxygen combustion steam turbine engine
JPH07158411A (en) * 1993-12-06 1995-06-20 Hitachi Ltd Power plant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144558A (en) * 1995-11-24 1997-06-03 Toshiba Corp Hydrogen combustion gas turbine plant its starting method thereof
US6260348B1 (en) 1998-04-07 2001-07-17 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant with fuel reformer
US6430916B2 (en) 1998-04-07 2002-08-13 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
US6536205B2 (en) 1998-04-07 2003-03-25 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
JP2010530490A (en) * 2007-06-19 2010-09-09 アルストム テクノロジー リミテッド Exhaust gas recirculation gas turbine equipment
WO2018105166A1 (en) * 2016-12-09 2018-06-14 1H3H株式会社 System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
WO2018143310A1 (en) * 2017-02-03 2018-08-09 川崎重工業株式会社 Hydrogen/oxygen equivalent combustion turbine system
JP2018123811A (en) * 2017-02-03 2018-08-09 川崎重工業株式会社 Hydrogen oxygen equivalent combustion turbine system
GB2573910A (en) * 2017-02-03 2019-11-20 Kawasaki Heavy Ind Ltd Hydrogen/oxygen equivalent combustion turbine system
GB2573910B (en) * 2017-02-03 2021-12-01 Kawasaki Heavy Ind Ltd Hydrogen/oxygen stoichiometric combustion turbine system
JP2020024068A (en) * 2018-08-08 2020-02-13 株式会社ヒラカワ Steam generation method and steam generation device

Also Published As

Publication number Publication date
JP3454372B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454372B2 (en) Combustion method and apparatus for closed cycle gas turbine
US7596939B2 (en) Gas turbine apparatus
US20090223226A1 (en) Gas turbine combustor and gaseous fuel supply method for gas turbine combustor
JP4272718B2 (en) Method for cooling a mechanical unit subjected to a high thermal load of a gas turbo group
JPH10176504A (en) Maintaining method for frequency when power plant device is operated
JP2002201959A (en) Gas turbine and method for operating the gas turbine
JP2017531117A (en) Method and system for starting a gas turbine system drive train with exhaust recirculation
WO2006046722A1 (en) Gas turbine apparatus
JP2003232226A (en) Gas turbine power generation equipment
KR20140131323A (en) Multistage method for producing hydrogen-containing gaseous fuel and thermal gas-generator setup of its implementation (g.g. arakelyan method)
JP2006100223A (en) Combined power generation system and operation method for combined power generation system
JPH09144560A (en) Hydrogen combustion gas turbine plant and its operating method
JP2003035109A (en) High pressure bypass sliding setpoint for steam-cooled machine
JP2002061517A (en) Power generating plant and its operating method
JP6946012B2 (en) CO2 liquefaction system and CO2 liquefaction method
JP2870243B2 (en) Coal gasification plant and its operation method
JP2003056312A (en) Closed-cycle gas turbine and power generation system using the gas turbine
JPH0791278A (en) Gas turbine device
JP2003090227A (en) Generation plant with heavy oil reformer and its operating method
JPS566023A (en) Method of generating electricity by gas turbine for use at peak load
US9914642B2 (en) Method for producing hydrogen-containing gaseous fuel and thermal gas-generator plant
JPH04143425A (en) Gas turbine controller
JP3897674B2 (en) Gas turbine plant
Rizzari Analysis of hydrogen fired gas turbine cycles for peak generation
JPH0828304A (en) Gas turbine plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees