JPH07216990A - Method for forming spherical lattice shell of single layer - Google Patents

Method for forming spherical lattice shell of single layer

Info

Publication number
JPH07216990A
JPH07216990A JP1354494A JP1354494A JPH07216990A JP H07216990 A JPH07216990 A JP H07216990A JP 1354494 A JP1354494 A JP 1354494A JP 1354494 A JP1354494 A JP 1354494A JP H07216990 A JPH07216990 A JP H07216990A
Authority
JP
Japan
Prior art keywords
lattice
triangle
layer
spherical
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1354494A
Other languages
Japanese (ja)
Inventor
Kiyoshi Okamura
潔 岡村
Mamoru Kimura
衛 木村
Kimihiko Mogami
公彦 最上
Jitsusaburou Imamiya
実三郎 今宮
Mutsuo Sahashi
睦雄 佐橋
Yutaka Soga
裕 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP1354494A priority Critical patent/JPH07216990A/en
Publication of JPH07216990A publication Critical patent/JPH07216990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PURPOSE:To promote efficiency of fabrication and assembling by a method wherein a circle, as a plan view of a semispherical dome, is divided into sectors and each of the sides thereof is divided into equal parts so that a network pattern including almost regular triangles each having a side equal to the divided part constitutes a spherical lattice shell. CONSTITUTION:A circle 1, as a plan view of a semispherical dome, is divided from the center T thereof into sectors 2 and a side of the sector (radius) is divided into several equal parts (e.g. five parts). Next, an equilateral triangle TA1B1 is formed from lattice members. The triangle should be formed into a regular triangle as far as possible. The second layer and following layers of lattice are formed in the similar manner. And lattice members for a segment portion 16 are formed separately. Hence distribution of rigidity of a dome is made uniform and isotropy thereof can be nearly achieved so that kinds of lattice members can be reduced. As a result, fabrication and assembling can be easily performed, thereby reducing costs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、体育館、文化センタ
ー等の無柱建物のドーム屋根を建築するにあたって実施
される、特には半球状ドーム屋根を二等辺三角形の集合
による球面ラチスシェルで構成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is carried out in constructing a dome roof of a pillarless building such as a gymnasium and a cultural center, and in particular, a method of constructing a hemispherical dome roof with a spherical lattice shell by a set of isosceles triangles. Regarding

【0002】[0002]

【従来の技術】半球状ドーム屋根を球面ラチスシェルで
構成するにあたっては、球面ラチスシェル全体架構の座
屈安全性、部材応力の均一性等を考慮すると、ラチス部
材を三方向の格子状に配列したもの、即ち三角形ネット
ワークパターンを球面上に配列する構成方法が合理的と
されるが、この場合、ラチス部材製作の省力化、低コス
ト化の観点から、できるだけラチス部材の長さを均一に
かつ種類が少なくなるように工夫することが重要であ
る。
2. Description of the Related Art In constructing a hemispherical dome roof with spherical lattice shells, considering the buckling safety of the entire spherical lattice shell structure, the uniformity of member stress, etc., the lattice members are arranged in a grid pattern in three directions. That is, a method of arranging the triangular network pattern on the spherical surface is rational, but in this case, from the viewpoint of labor saving and cost reduction of the production of the lattice member, the lattice members should be as uniform in length and kind as possible. It is important to devise so that the number is reduced.

【0003】半球状ドームの球面ラチスシェルを構成す
る方法として、長さが同一のラチス部材で正三角形を構
成することは幾何学的に至難である。そこで、従来、で
きるだけ均一な正三角形で球面ラチスシェルを構成する
改良方法が、例えば、昭和61年8月に北海道で催され
た日本建築学会において、「単層剛接ラチスシェルの座
屈に関するフレーム解析とシェル解析の対応性に関する
研究」として発表された。
As a method of constructing a spherical lattice shell of a hemispherical dome, it is geometrically difficult to construct an equilateral triangle with lattice members having the same length. Therefore, conventionally, an improved method of constructing a spherical lattice shell with an equilateral triangle as uniform as possible has been described, for example, in the Architectural Institute of Japan held in Hokkaido in August 1986, "Frame analysis regarding buckling of single-layer rigid-contact lattice shells. On the compatibility of shell analysis ”.

【0004】前記研究の内容は、図2及び図3に示した
ように、まず半球状ドームを平面的に見た円1を6等分
割した扇形の主分割線A,BをそれぞれN等分して頂部
に二等辺三角形△TA11を作る。次に、分割心Dと等
分点A2,B2とで構成される平面と球面が交わる曲線を
求め、同曲線の二等分点を節点C2とする。同様に、分
割心Dと等分点AN,BNとで構成される平面と球面が交
わる曲線を求め、同曲線のN等分点を節点CNとすると
ころまで続ける。扇形のうち弦AN−BNより外側に残っ
た割円部分は、斜辺T−AN,T−BNの延長上に仮想の
等分点AN+1,BN+1を設け、これと分割心Dとで構成さ
れる平面と仮想球面が交わる曲線を求め、これのN+1
等分点を仮想の節点CN+1とする。前記仮想の節点CN+1
と、それに対応する節点CNを球面上の最短距離で結ぶ
曲線と弧ANNの交点を最外周の節点とする。なお、前
記分割心Dは、仮想等分点AN+1,BN+1と弧ANNの中
点Cとで構成される平面と球面の中心軸OO’との交点
を云う。
As shown in FIG. 2 and FIG. 3, the contents of the above research are as follows. First, a fan-shaped main dividing line A and B obtained by dividing a circle 1 in which a hemispherical dome is viewed in plan into six equal parts is divided into N equal parts. Then, make an isosceles triangle ΔTA 1 B 1 on the top. Next, a curve at which the plane formed by the dividing center D and the equal points A 2 and B 2 intersects the spherical surface is obtained, and the bisector of the curve is set as the node C 2 . Similarly, a curve at which the plane formed by the dividing center D and the equally divided points A N and B N intersects with the spherical surface is obtained, and the N equally divided points of the same curve are set as the nodes C N. The split circle portion remaining outside the chord A N −B N of the fan shape is provided with virtual equal points A N + 1 and B N + 1 on the extension of the hypotenuses T−A N and T−B N. A curve that intersects the plane formed by this and the dividing center D and the virtual spherical surface is obtained, and N + 1 of this curve
Let the equal points be virtual nodes C N + 1 . The virtual node C N + 1
And the intersection of the curve A N B N and the curve connecting the corresponding node C N at the shortest distance on the spherical surface is the outermost node. The dividing center D is the intersection of the central axis OO ′ of the spherical surface and the plane formed by the virtual equal points A N + 1 and B N + 1 and the midpoint C of the arc A N B N.

【0005】[0005]

【本発明が解決しようとする課題】上記従来のように半
球の頂点を通る円弧を6等分割して三角形ネットワーク
パターンを構成する方法では、構成された三角形の底辺
の長さは各層毎に等しいとしても斜辺の長さまでは統一
することはできない。例えば、扇形の頂点から弦までの
二等辺三角形△TANNについて、前記扇形の主分割線
A,Bを5等分した場合(N=5の場合)には16種
類、10等分した場合(N=10の場合)には51種類
のラチス部材を組み合わせた三角形ネットワークパター
ンで球面ラチスシェルを構成することになる。したがっ
て、できるだけ均一な正三角形ネットワークパターンで
構成する方法といっても、まだまだ製作するラチス部材
の種類数が多すぎることを否めず、ラチス部材の製作及
びその組合せ作業に多くの手間が掛かり、製造、組立て
コストも嵩む。
In the method of forming a triangle network pattern by dividing an arc passing through the apex of a hemisphere into six equal parts as in the above-mentioned conventional method, the length of the base of the formed triangle is equal for each layer. However, the length of the hypotenuse cannot be unified. For example, for an isosceles triangle ΔTA N B N from the apex of a fan to a chord, when the main dividing lines A and B of the fan are divided into 5 equal parts (when N = 5), 16 types are divided into 10 equal parts. In the case (N = 10), the spherical lattice shell is configured by a triangular network pattern in which 51 types of lattice members are combined. Therefore, even if it is a method of configuring with a uniform triangle network pattern as much as possible, it can not be denied that there are still too many types of lattice members to be manufactured, and it takes a lot of time and effort to manufacture and combine the lattice members. Assembling cost also increases.

【0006】従って、本発明の目的は、はるかに少ない
種類数の三角形ネットワークパターンで単層の球面ラチ
スシェルを構成して半球状ドームを建築でき、もってラ
チス部材製作及び組合せの手数を大幅に削減し、省力化
と低コスト化を更に進めることが可能な単層の球面ラチ
スシェルの構成方法を提案することである。
Therefore, it is an object of the present invention to construct a hemispherical dome by constructing a single-layer spherical lattice shell with a much smaller number of triangular network patterns, thereby significantly reducing the number of lattice member manufacturing and assembly steps. , A method of constructing a single-layer spherical lattice shell capable of further saving labor and cost.

【0007】[0007]

【課題を解決するための手段】上記従来技術の課題を解
決するための手段として、この発明に係る単層の球面ラ
チスシェルの構成方法は、半球状ドームを平面的に見た
円1を、できるだけ剛性分布が均一になり、できるだけ
等方性に近くなるように、即ち一つ一つの三角形ができ
るだけ正三角形に近くなるように数等分割した扇形2の
内角を頂角θとし、また、前記扇形2の斜辺である球面
上の二つの主分割線A,Bを各々数等分に分割して得ら
れた一層目の二つの斜辺5,5と該斜辺5,5の等分点
1,B1を結んだ底辺3とで形成される一つの二等辺三
角形4をラチス部材で作る。
As a means for solving the above-mentioned problems of the prior art, the method for constructing a single-layer spherical lattice shell according to the present invention uses a circle 1 in which a hemispherical dome is viewed in plan as much as possible. The apex angle θ is defined as the internal angle of the sector 2 divided into equal parts so that the rigidity distribution becomes uniform and is as close to isotropic as possible, that is, each triangle is as close to an equilateral triangle as possible. The two main dividing lines A and B on the sphere, which are the hypotenuses of 2, are obtained by dividing each of the two main dividing lines A and B into several equal parts, and the first dividing lines A 1 and One isosceles triangle 4 formed by the base 3 connecting B 1 is made of lattice members.

【0008】次に、前記二等辺三角形4をその底辺3を
回転軸として約180度回転させたに等しい二等辺三角
形4aを球面上にラチス部材で作り、更に前記主分割線
上の二層目の等分点A2,B2と前記回転された二等辺三
角形の頂点14とを結ぶ線分を底辺6とする二つの二等
辺三角形7,7を各々ラチス部材で作り、次に前記二つ
の二等辺三角形7,7を各底辺6を回転軸として約18
0度回転させたに等しい二等辺三角形7a,7aを球面
上にラチス部材で作り、更に前記主分割線上の三層目の
等分点A3,B3と前記回転された二つの二等辺三角形の
各頂点15,15とを結ぶ線分を底辺9,9と10とす
る三つの二等辺三角形11,11と12を各々ラチス部
材で作り、以下、同様の手順を前記主分割線上の最下層
NNに到達するまで繰り返して、球面を三角形ネット
ワークパターンの球面ラチスシェルで構成することを特
徴とする。
Next, an isosceles triangle 4a equivalent to that obtained by rotating the isosceles triangle 4 about its base 3 by about 180 degrees is formed by a lattice member on the spherical surface, and further the second layer on the main dividing line is formed. Two isosceles triangles 7 and 7 having a base 6 as a line segment connecting the equally divided points A 2 and B 2 and the vertex 14 of the rotated isosceles triangle are made of lattice members, respectively, and then the two two isosceles triangles are formed. Approximately 18 equilateral triangles 7 and 7 with each base 6 as the axis of rotation
0 degree rotation is equal isosceles 7a to was, 7a and made in lattice member on a spherical surface, two isosceles triangles that are further said rotation equal point A 3, B 3 of the third layer of the main dividing line The three isosceles triangles 11, 11 and 12 having bases 9, 9 and 10 connecting the respective vertices 15 and 15 are made of lattice members respectively, and the same procedure is followed for the bottom layer on the main dividing line. It is characterized in that the spherical surface is constituted by spherical lattice shells of a triangular network pattern repeatedly until reaching A N B N.

【0009】本発明はまた、円1を数分割した扇形2の
主分割線上の最下層AN−BNまでは三角形の球面ラチス
シェルで構成され、残る割円部分16には、前記最下層
N−BNを構成する各ラチス部材とリング柱位置17…
により三角形が構成されること、も特徴とする。
The present invention also comprises triangular spherical lattice shells up to the lowermost layer A N -B N on the main dividing line of the sector 2 obtained by dividing the circle 1 into several parts, and the remaining split circle portion 16 has the lowermost layer A. N- B N each lattice member and ring column position 17 ...
Another feature is that a triangle is formed by.

【0010】[0010]

【作用】回転軸となる二等辺三角形の底辺の長さは各層
毎に微妙に異なるが、斜辺の長さは全て共通である。従
って、扇形の割円部分16を除く二等辺三角形TANN
について、例えば主分割線T−A,T−Bをそれぞれ5
等分した場合(N=5の場合)は10種類、10等分し
た場合(N=10の場合)は31種類のラチス部材を組
み合わせた三角形ネットワークパターンで球面ラチスシ
ェルを構成することができる。
The length of the base of the isosceles triangle serving as the axis of rotation is slightly different for each layer, but the length of the hypotenuse is the same. Therefore, the isosceles triangle TA N B N excluding the fan-shaped split circle portion 16
, The main dividing lines T-A and T-B are 5 respectively.
The spherical lattice shells can be configured with a triangular network pattern in which 10 types of lattice parts are combined (when N = 5) and 10 types of regions are divided (when N = 10) and 31 types of lattice members are combined.

【0011】[0011]

【実施例】以下に、図1に示した本発明の実施例を説明
する。図1は、半球状ドームを平面的に見た円1を6等
分割した、内角θが60度の扇形2の弦A5−B5の位置
(以下、最下層という)までを三角形ネットワークパタ
ーンで構成したスケルトンを示している。円1を内角が
60度の扇形に6等分割した理由は、できるだけ剛性分
布が均一になり、できるだけ等方性に近くなるように、
即ち一つ一つの三角形ができるだけ正三角形に近くなる
ようにするためである。三角形ネットワークパターンの
球面ラチスシェルの構成方法としては、前記扇形2の内
角60度を頂角とし、前記扇形2の斜辺である球面上の
二つの主分割線A,Bを各々5等分に分割して得られた
一層目の等分点A1,B1までの二つの斜辺T−A1(=
5),T−B1(=5)と前記等分点A1,B1とを結ん
だ底辺A1−B1(=3)とで形成される一つの二等辺三
角形△TA11(=4)をラチス部材で作る。
EXAMPLE An example of the present invention shown in FIG. 1 will be described below. FIG. 1 shows a triangular network pattern up to the position of a chord A 5 -B 5 of a sector 2 having an internal angle θ of 60 degrees (hereinafter referred to as the lowermost layer) obtained by dividing a circle 1 in which a hemispherical dome is viewed in plan into 6 equal parts. It shows a skeleton composed of. The reason why the circle 1 is divided into six equal sectors with an interior angle of 60 degrees is that the rigidity distribution is as uniform as possible and is as close to isotropic as possible.
That is to make each triangle as close to an equilateral triangle as possible. As a method of constructing the spherical lattice shell of the triangular network pattern, the internal angle of the sector 2 is 60 degrees, and the two main dividing lines A and B on the spherical surface which is the hypotenuse of the sector 2 are divided into 5 equal parts. two oblique side up equally divided points a 1, B 1 of the first layer was collected using T-a 1 (=
5), T-B 1 (= 5) and a base A 1 -B 1 (= 3) connecting the equal points A 1 and B 1 to each other, one isosceles triangle ΔTA 1 B 1 Make (= 4) with lattice members.

【0012】次に、前記第一層目の二等辺三角形4をそ
の底辺3を回転軸として180+α度回転させたに等し
い二等辺三角形4aを球面上にラチス部材で作る。更
に、この回転された二等辺三角形の頂点14と前記主分
割線上の二層目の等分点A2,B2とを結ぶ線分を底辺6
とする二つの二等辺三角形7,7を各々ラチス部材で作
る。前記二つの二等辺三角形7,7は、二辺とその間の
角が等しいから合同である。従って、対応する各底辺6
の長さは等しい。結局、前記二つの二等辺三角形4と4
aの斜辺である5,5の長さは同一であり、また前記二
つの二等辺三角形7と7の斜辺8と5とも同一である。
しかし、前記二つの二等辺三角形4,4aの底辺3と、
前記二つの二等辺三角形7,7の各底辺6の長さは若干
異なる。よって、以上の三角形ネットワークパターンを
形成するラチス部材の種類は3種類(符号の3と5と
6)となる。
Next, an isosceles triangle 4a equivalent to the isosceles triangle 4 of the first layer rotated 180 + α degrees around the base 3 as a rotation axis is formed on the spherical surface by a lattice member. Further, a line segment connecting the apex 14 of the rotated isosceles triangle and the equally dividing points A 2 and B 2 of the second layer on the main dividing line is a base 6
The two isosceles triangles 7 and 7 are made of lattice members. The two isosceles triangles 7, 7 are congruent because the two sides have the same angle between them. Therefore, each corresponding base 6
Are equal in length. After all, the two isosceles triangles 4 and 4
The lengths of the hypotenuses 5 and 5 of a are the same, and the hypotenuses 8 and 5 of the two isosceles triangles 7 and 7 are also the same.
However, with the base 3 of the two isosceles triangles 4 and 4a,
The bases 6 of the two isosceles triangles 7, 7 have slightly different lengths. Therefore, there are three types of lattice members that form the above triangular network pattern (reference numerals 3 and 5 and 6).

【0013】次に、前記二層目の二つの二等辺三角形
7,7を各々の底辺6を回転軸として180+α度回転
させたに等しい二等辺三角形7a,7aを三層目の球面
上にラチス部材で作る。更に、前記主分割線上の三層目
の等分点A3,B3と、前記回転された二つの二等辺三角
形7a,7aの各頂点15,15とを結ぶ線分を底辺
9,10とする三つの二等辺三角形11,12をラチス
部材で作る。前記両側二つの二等辺三角形11,11
は、二辺とその間の角が等しいから合同である。従って
両者の底辺9,9の長さは等しいが、残るもう一つの二
等辺三角形12の底辺10とは異なる。また、前記三層
目の三つの二等辺三角形11,11と12の斜辺5,
8,13の長さは全て同一である。よって、以上の三角
形ネットワークパターンを形成するラチス部材の種類は
5種類(符号の3と5と6と9と10)となる。
Next, the two isosceles triangles 7, 7 of the second layer are rotated 180 + α degrees around the base 6 of each as an axis of rotation, and isosceles triangles 7a, 7a equivalent to the third layer are latticed on the spherical surface of the third layer. Made from materials. Further, line segments connecting the third-layer equidistant points A 3 and B 3 on the main dividing line and the vertices 15 and 15 of the two rotated isosceles triangles 7a and 7a are defined as bases 9 and 10. The three isosceles triangles 11 and 12 are made of lattice members. The two isosceles triangles 11 and 11 on both sides
Is congruent because the two sides and the angle between them are equal. Therefore, although the bases 9 and 9 have the same length, they are different from the base 10 of the remaining isosceles triangle 12. Also, the hypotenuses 5 of the three isosceles triangles 11, 11 and 12 of the third layer
The lengths of 8 and 13 are all the same. Therefore, there are five types of lattice members that form the above triangular network pattern (reference numerals 3 and 5, 6 and 9 and 10).

【0014】以下、同様の手順を前記主分割線上の最下
層A5−B5(弦の位置)に到達するまで繰り返して、球
面を三角形ネットワークパターンの球面ラチスシェルで
構成する。その結果、主分割線A,Bを5等分した場合
(N=5の場合)には10種類のラチス部材の組合せに
よって前記扇形2の最下層A5−B5までの三角形ネット
ワークパターンを形成できる。同様に、10等分した場
合(N=10の場合)には、31種類のラチス部材の組
み合わせによって前記扇形2の最下層A5−B5までを三
角形ネットワークパターンの球面ラチスシェルで構成で
きる。
Hereinafter, the same procedure is repeated until the lowermost layer A 5 -B 5 (the position of the chord) on the main dividing line is reached, and the spherical surface is formed by a spherical lattice shell having a triangular network pattern. As a result, when the main dividing lines A and B are divided into 5 equal parts (when N = 5), a triangular network pattern up to the lowermost layer A 5 -B 5 of the sector 2 is formed by combining 10 types of lattice members. it can. Similarly, in the case of dividing into 10 equal parts (when N = 10), by combining 31 types of lattice members, the lowermost layer A 5 -B 5 of the sector 2 can be constituted by a spherical lattice shell having a triangular network pattern.

【0015】なお、扇形2のうち最下層A5−B5より外
側に残った割円部分16は、前記最下層A5−B5を構成
する各ラチス材とリング柱位置17…により三角形を構
成し、最終的には扇形2の全部分を三角形ネットワーク
パターンの球面ラチスシェルで構成し、半球状ドームを
建築することができる。また、前記扇形の全部分を球面
ラチスシェルで構成された三角形ネットワークパターン
の構造性能を調査したところ、全体架構及び部材ともに
従来法とほぼ同等の性能を有することが明らかとなっ
た。
The split circle portion 16 remaining outside the lowermost layer A 5 -B 5 of the fan-shaped portion 2 is formed into a triangular shape by each lattice member constituting the lowermost layer A 5 -B 5 and the ring column position 17 ... Finally, the whole part of the fan shape 2 can be composed of spherical lattice shells of a triangular network pattern to construct a hemispherical dome. In addition, when the structural performance of the triangular network pattern in which all the fan-shaped portions are formed of spherical lattice shells was investigated, it was revealed that the entire frame and the members have almost the same performance as the conventional method.

【0016】[0016]

【本発明が奏する効果】本発明に係る単層の球面ラチス
シェルの構成方法によれば、従来法に対して、主分割線
を5等分した場合には約63%、10等分した場合には
61%の種類のラチス部材で扇形の割円部分を除く二等
辺三角形部分を構成することができる。従って、部材製
作及び組立ての手数が大幅に削減され、その分だけ省力
化と低コスト化が達成される。
According to the method for constructing a single-layer spherical lattice shell according to the present invention, when the main dividing line is divided into 5 equal parts, about 63% and 10 equal parts are divided from the conventional method. Can form an isosceles triangle portion excluding a fan-shaped split circle portion with 61% kinds of lattice members. Therefore, the number of steps for manufacturing and assembling the members is greatly reduced, and labor saving and cost reduction are achieved accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】単層の球面ラチスシェルの構成方法を示した平
面図である。
FIG. 1 is a plan view showing a method for forming a single-layer spherical lattice shell.

【図2】従来例を示した平面図である。FIG. 2 is a plan view showing a conventional example.

【図3】従来例を示した正面図である。FIG. 3 is a front view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 円 2 扇形 θ 頂角 A 主分割線 B 主分割線 5 斜辺 A1 等分点 B1 等分点 3 底辺 4 二等辺三角形 4a 二等辺三角形 A2 等分点 B2 等分点 14 頂点 6 底辺 7 二等辺三角形 7a 二等辺三角形 A3 等分点 B3 等分点 15 頂点 9 底辺 10 底辺 11 二等辺三角形 12 二等辺三角形 AN 等分点 BN 等分点 16 割円部分 17 リング柱位置1 circle 2 fan-shaped θ vertex angle A main dividing line B main dividing line 5 hypotenuse A 1 equal point B 1 equal point 3 base 4 isosceles triangle 4a isosceles triangle A 2 equal point B 2 equal point 14 vertex 6 base 7 isosceles 7a isosceles A 3 equal parts the point B 3 equal portions point 15 vertex 9 base 10 base 11 isosceles triangles 12 isosceles triangles A N equally divided point B N equally divided points 16 Warien portions 17 ring column position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今宮 実三郎 愛知県名古屋市中区錦一丁目18番22号 株 式会社竹中工務店名古屋支店内 (72)発明者 佐橋 睦雄 愛知県名古屋市中区錦一丁目18番22号 株 式会社竹中工務店名古屋支店内 (72)発明者 曽我 裕 愛知県名古屋市中区錦一丁目18番22号 株 式会社竹中工務店名古屋支店内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinzaburo Imamiya 18-22 Nishiki, Naka-ku, Aichi Prefecture Nagoya City Takenaka Corporation Nagoya Branch (72) Inventor Mutsuo Sahashi Naka City, Aichi Prefecture Naka-ku, Aichi Prefecture Nishiki 1-Chome 18-22 Co., Ltd. Takenaka Corporation Nagoya Branch (72) Inventor Hiroshi Soga Nishiki 1-Chome 18-22 Naka Naka Ward, Aichi Prefecture Takenaka Corporation Nagoya Branch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半球状ドームを平面的に見た円を、できる
だけ剛性分布が均一になり、できるだけ等方性に近くな
るように、即ち一つ一つの三角形ができるだけ正三角形
に近くなるように数等分割した扇形の内角を頂角とし、
また、前記扇形の斜辺である球面上の二つの主分割線を
各々数等分に分割して得られた一層目の二つの斜辺と該
斜辺の等分点を結んだ底辺とで形成される一つの二等辺
三角形をラチス部材で作り、 次に、前記二等辺三角形をその底辺を回転軸として約1
80度回転させたに等しい二等辺三角形を球面上にラチ
ス部材で作り、更に前記主分割線上の二層目の等分点と
前記回転された二等辺三角形の頂点とを結ぶ線分を底辺
とする二つの二等辺三角形を各々ラチス部材で作り、 次に前記二つの二等辺三角形を各底辺を回転軸として約
180度回転させたに等しい二等辺三角形を球面上にラ
チス部材で作り、更に前記主分割線上の三層目の等分点
と前記回転された二つの二等辺三角形の各頂点とを結ぶ
線分を底辺とする三つの二等辺三角形を各々ラチス部材
で作り、 以下、同様の手順を前記主分割線上の最下層に到達する
まで繰り返して、球面を三角形ネットワークパターンの
球面ラチスシェルで構成することを特徴とする、単層の
球面ラチスシェルの構成方法。
1. A circle in which a hemispherical dome is viewed in plan view has a rigidity distribution as uniform as possible and is as close to isotropic as possible, that is, each triangle is as close to an equilateral triangle as possible. The apex angle is the interior angle of the fan divided into several parts,
Further, it is formed by two oblique lines of the first layer obtained by dividing each of the two main dividing lines on the spherical surface, which is the oblique side of the fan shape, into equal parts, and a base connecting the equally dividing points of the oblique sides. One isosceles triangle is made of lattice members, and then the isosceles triangle is rotated about 1 at its base.
An isosceles triangle equivalent to that rotated by 80 degrees is made of a lattice member on a spherical surface, and a line segment connecting the equal-division point of the second layer on the main dividing line and the vertex of the rotated isosceles triangle is defined as the base. Two isosceles triangles are each made of a lattice member, and then the above two isosceles triangles are each rotated about 180 degrees with each base as a rotation axis. Make three isosceles triangles whose bases are line segments that connect the equal points of the third layer on the main dividing line and the vertices of the two rotated isosceles triangles, respectively, using the lattice member. Is repeated until the lowermost layer on the main dividing line is reached, and the spherical surface is constituted by a spherical lattice shell having a triangular network pattern.
【請求項2】半球状ドームを平面的に見た円を、できる
だけ剛性分布が均一になり、できるだけ等方性に近くな
るように、即ち一つ一つの三角形ができるだけ正三角形
に近くなるように6等分割することを特徴とする、請求
項1に記載した単層の球面ラチスシェルの構成方法。
2. A circle in which a hemispherical dome is viewed two-dimensionally has a rigidity distribution as uniform as possible and is as close to isotropic as possible, that is, each triangle is as close as possible to an equilateral triangle. The method for constructing a single-layer spherical lattice shell according to claim 1, wherein the method is divided into six equal parts.
【請求項3】円を数分割した扇形の主分割線上の最下層
までは三角形の球面ラチスシェルで構成され、残る割円
部分には、最下層を構成する各ラチス部材とリング柱位
置により三角形が構成されることを特徴とする、請求項
1又は2に記載した単層の球面ラチスシェルの構成方
法。
3. A circular spherical lattice shell is formed up to the lowermost layer on a fan-shaped main dividing line obtained by dividing a circle into several parts, and the remaining split circle portion is a triangle formed by each lattice member forming the lowermost layer and the ring column position. The method for constructing a single-layer spherical lattice shell according to claim 1, wherein the spherical lattice shell is constructed.
JP1354494A 1994-02-07 1994-02-07 Method for forming spherical lattice shell of single layer Pending JPH07216990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1354494A JPH07216990A (en) 1994-02-07 1994-02-07 Method for forming spherical lattice shell of single layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1354494A JPH07216990A (en) 1994-02-07 1994-02-07 Method for forming spherical lattice shell of single layer

Publications (1)

Publication Number Publication Date
JPH07216990A true JPH07216990A (en) 1995-08-15

Family

ID=11836105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1354494A Pending JPH07216990A (en) 1994-02-07 1994-02-07 Method for forming spherical lattice shell of single layer

Country Status (1)

Country Link
JP (1) JPH07216990A (en)

Similar Documents

Publication Publication Date Title
US4719726A (en) Continuous spherical truss construction
US5505035A (en) Building systems with non-regular polyhedral nodes
US7591108B2 (en) Double-curved shell
US4092810A (en) Domical structure
US9863136B2 (en) Archimedean cages, polyhedra, and nanotube structures and methods
US3974600A (en) Minimum inventory maximum diversity building system
CN109411901B (en) Hemispherical array and spherical common mode antenna array sub-array arrangement method based on projection method
US9720881B2 (en) Convex equilateral polyhedra with polyhedral symmetry
US3061977A (en) Spherically domed structures
US4012872A (en) Geodesic dome-like panels
US3341989A (en) Construction of stereometric domes
JPH04231078A (en) Golf ball
US4241550A (en) Domical structure composed of symmetric, curved triangular faces
JPH11137721A (en) Golf ball
US20020166294A1 (en) Spherical and polyhedral shells with improved segmentation
JPH07216990A (en) Method for forming spherical lattice shell of single layer
JP2914151B2 (en) Golf ball
US2470986A (en) Insulation for spherical tank shells and method of making the same
Rizzuto et al. Polyhedric space structures using reciprocally supported elements of various cross-sections
RU2727980C1 (en) Spherical shell
CN206015888U (en) Water lily shaped single-layer latticed shell
RU217390U1 (en) Domed module
RU204595U1 (en) Composite module
CA1098679A (en) Polyhedral structures
RU217795U1 (en) Radial coating