JPH07216656A - Production of hot-melt conjugate fiber - Google Patents
Production of hot-melt conjugate fiberInfo
- Publication number
- JPH07216656A JPH07216656A JP2375194A JP2375194A JPH07216656A JP H07216656 A JPH07216656 A JP H07216656A JP 2375194 A JP2375194 A JP 2375194A JP 2375194 A JP2375194 A JP 2375194A JP H07216656 A JPH07216656 A JP H07216656A
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- melt
- component
- spinning
- cooling air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鞘に熱接着性を有する
ポリエステル、芯に繊維形成能を有するポリエステルを
配した芯鞘型の熱接着性複合繊維の製造方法に関するも
のであり、更に詳しくは、比較的低温で接着可能な熱接
着性複合繊維の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a core-sheath type heat-bondable composite fiber having a sheath having heat-adhesive polyester and a core having fiber-forming polyester. Relates to a method for producing a heat-bondable composite fiber which can be bonded at a relatively low temperature.
【0002】[0002]
【従来の技術】近年、ルーフィング資材、自動車用内装
材、カーペットの基布等に用いる不織布、枕やマットレ
ス等の繊維構造物において、構成繊維(主体繊維とい
う)相互間を接着する目的で熱接着性繊維が広く使用さ
れている。そして主体繊維としては比較的安価で優れた
物性を有するポリエステル繊維が最も多く使用されてお
り、これを接着する熱接着性繊維もポリエステル系のも
のが好ましいため、種々のポリエステル系熱接着性繊維
及びそれを用いて接着したポリエステル繊維構造物等が
提案されている(例えば米国特許第4129675 号等)。2. Description of the Related Art In recent years, in roofing materials, interior materials for automobiles, non-woven fabrics used for carpet base fabrics, etc., and fiber structures such as pillows and mattresses, thermal bonding has been performed in order to bond constituent fibers (main fibers) to each other. Natural fibers are widely used. And as the main fiber, polyester fibers having relatively low cost and excellent physical properties are most often used, and since the heat-adhesive fibers for adhering this are also preferably polyester-based, various polyester-based heat-adhesive fibers and A polyester fiber structure and the like bonded using the same has been proposed (for example, US Pat. No. 4,129,675).
【0003】これらの熱接着性繊維は接着成分がそれ自
身で繊維形成能を有する場合には単独で用いられるが、
繊維形成能がない場合、あるいは繊維化されても強度が
低い場合には鞘に熱接着性を有する成分、芯に繊維形成
能を有する成分を配した芯鞘型複合繊維としている。These heat-adhesive fibers are used alone when the adhesive component has a fiber-forming ability by itself,
When there is no fiber forming ability or when the strength is low even when formed into a fiber, a core-sheath type composite fiber in which a component having thermal adhesiveness is arranged in a sheath and a component having fiber forming ability is arranged in a core is used.
【0004】そして、これらのポリエステル系熱接着性
繊維の実用接着温度としては110 ℃、130 ℃、210 ℃、
220 ℃レベルのものが一般的に用いられていたが、最近
では、例えば抄紙用途として80℃以下の低温で接着でき
る熱接着性繊維が要望されている。しかしながら、この
ような80℃以下の低温の実用接着温度を有する複合繊維
は、溶融紡糸時に単糸間の密着が発生しやすいため、溶
融紡糸が困難であり、操業性よく得ることができなかっ
た。The practical bonding temperatures of these polyester heat-bondable fibers are 110 ° C., 130 ° C., 210 ° C.,
Although those of 220 ° C. level were generally used, recently, for example, for papermaking, there has been a demand for thermo-adhesive fibers capable of bonding at a low temperature of 80 ° C. or lower. However, such a composite fiber having a low practical adhesion temperature of 80 ° C. or less is likely to cause adhesion between single yarns during melt spinning, and thus melt spinning is difficult and cannot be obtained with good operability. .
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記に鑑
み、熱接着性複合繊維を溶融紡糸する際に発生する単糸
条の密着を解消し、品質のよい熱接着性複合繊維を操業
性よく製造する方法を提供することを技術的な課題とす
るものである。DISCLOSURE OF THE INVENTION In view of the above, the present invention eliminates the adhesion of a single yarn that occurs when melt-spinning a thermoadhesive conjugate fiber, and improves the operability of a thermoadhesive conjugate fiber of good quality. The technical problem is to provide a manufacturing method well.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討の結果、芯鞘型の複合繊維の芯
成分のポリエステルの溶融粘度を特定し、かつ紡出糸条
の近傍から20℃以下の冷却風で冷却すれば、80℃以下の
低温の実用接着温度を有する複合繊維を、単糸間の密着
を発生させずに溶融紡糸できることを見出し、本発明に
到達した。すなわち、本発明は、結晶融点が50〜80℃の
ポリエステルAを鞘成分、結晶融点が200 ℃以上のポリ
エステルBを芯成分とする芯鞘型の複合繊維を溶融紡糸
するに際し、B成分として溶融紡出時の溶融粘度が2500
〜5000ポイズのポリエステルを用い、紡糸口金に穿設し
たオリフィス孔の端部の列から25mm以内の位置から、紡
出糸条に20℃以下の冷却風を吹き付けることを特徴とす
る熱接着性複合繊維の製造方法を要旨とするものであ
る。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the inventors have specified the melt viscosity of polyester as a core component of a core-sheath type composite fiber, and The present invention has been found out that by cooling from near by a cooling air of 20 ° C. or less, a composite fiber having a low practical adhesion temperature of 80 ° C. or less can be melt-spun without causing adhesion between single yarns. That is, according to the present invention, when a core-sheath type composite fiber having polyester A having a crystal melting point of 50 to 80 ° C as a sheath component and polyester B having a crystalline melting point of 200 ° C or more as a core component is melt-spun, it is melted as a B component. Melt viscosity at spinning is 2500
A heat-adhesive composite characterized by blowing a cooling air of 20 ° C or less onto the spun yarn from a position within 25 mm from the end row of the orifice holes formed in the spinneret, using polyester of ~ 5000 poise. The gist is the method for producing fibers.
【0007】以下、本発明について詳細に説明する。本
発明では、まず、結晶融点が50〜80℃のポリエステルA
を鞘成分、結晶融点が200 ℃以上のポリエステルBを芯
成分とする芯鞘型の複合繊維を溶融紡糸する。鞘成分に
用いられる熱接着性を有し、結晶融点が50〜80℃のポリ
エステルAとしては、直鎖脂肪族ジカルボン酸成分と脂
肪族ジオール成分とから得られるものが挙げられ、直鎖
脂肪族ジカルボン酸の具体例としてはコハク酸、グルタ
ル酸、アジピン酸、セバシン酸、アゼライン酸、デカン
-1,10-ジカルボン酸、テトラデカン-1,14-ジカルボン
酸、オクタデカン-1,18-ジカルボン酸及びこれらのエス
テル形成性誘導体が挙げられ、コスト的にはデカン-1,1
0-ジカルボン酸が特に好ましい。脂肪族ジオール成分と
してはエチレングリコール、プロピレングリコール、1,
4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサ
ンジオール、ジエチレングリコール等が挙げられる。The present invention will be described in detail below. In the present invention, first, polyester A having a crystal melting point of 50 to 80 ° C.
Is a sheath component, and a core-sheath type composite fiber having polyester B having a crystalline melting point of 200 ° C. or more as a core component is melt-spun. Examples of the polyester A having thermal adhesiveness and a crystal melting point of 50 to 80 ° C. used for the sheath component include those obtained from a linear aliphatic dicarboxylic acid component and an aliphatic diol component, and a linear aliphatic Specific examples of the dicarboxylic acid include succinic acid, glutaric acid, adipic acid, sebacic acid, azelaic acid and decane.
-1,10-dicarboxylic acid, tetradecane-1,14-dicarboxylic acid, octadecane-1,18-dicarboxylic acid and ester-forming derivatives thereof, and decane-1,1 in terms of cost.
0-dicarboxylic acid is particularly preferred. Aliphatic diol components include ethylene glycol, propylene glycol, 1,
4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol and the like can be mentioned.
【0008】これらのジカルボン酸及びジオール成分は
各々2種以上併用してもよく、本発明の効果を損なわな
い範囲でテレフタル酸、イソフタル酸、フタル酸、5-ナ
トリウムスルホイソフタル酸、ヒドロキシ安息香酸、1,
4-シクロヘキサンジメタノール等を共重合成分として併
用したり、艶消剤、安定剤、着色剤等の添加剤を添加し
てもよい。また、上記の組合せの他に脂肪族ヒドロキシ
カルボン酸を重合、あるいは共重合したものでもよい。Two or more of these dicarboxylic acid and diol components may be used in combination, and terephthalic acid, isophthalic acid, phthalic acid, 5-sodium sulfoisophthalic acid, hydroxybenzoic acid, and 1,
4-Cyclohexanedimethanol or the like may be used in combination as a copolymerization component, or additives such as a matting agent, a stabilizer and a colorant may be added. Further, in addition to the above combinations, those obtained by polymerizing or copolymerizing an aliphatic hydroxycarboxylic acid may be used.
【0009】芯成分に用いられる繊維形成能を有し、結
晶融点が200 ℃以上のポリエステルBとしては、ポリエ
チレンテレフタレートあるいはポリブチレンテレフタレ
ートが挙げられ、本発明の効果を損なわない範囲で脂肪
族ジカルボン酸あるいは脂肪族ジオールを共重合した
り、艶消剤、安定剤、着色剤等の添加剤を添加してもよ
い。Examples of the polyester B having a fiber-forming ability and a crystal melting point of 200 ° C. or more, which is used as a core component, include polyethylene terephthalate and polybutylene terephthalate, which are aliphatic dicarboxylic acids within a range not impairing the effects of the present invention. Alternatively, an aliphatic diol may be copolymerized, and additives such as a matting agent, a stabilizer and a colorant may be added.
【0010】ポリエステルBの溶融粘度は2500〜5000ポ
イズであることが必要である。溶融粘度が2500ポイズ未
満の場合は、冷却時の糸条の変形速度が大きく、冷却域
で充分な冷却が行われずに単糸間で密着が発生し、延伸
工程で糸切れが多発する糸条となったり、さらには、全
紡糸孔から紡出された糸条が1本のリボン状になり、延
伸工程に供し得ない糸条となる場合がある。5000ポイズ
を超えると、高圧で押出すことが必要となるが、鞘成分
のポリエステルAとの粘度差が大きいため、同一紡糸孔
から吐出する鞘成分のポリエステルBと芯成分のポリエ
ステルAとの吐出斑が生じ、均斉度の悪い糸条となる。
さらに、この糸条を延伸すると糸切れが多発する。The melt viscosity of polyester B must be 2500 to 5000 poise. If the melt viscosity is less than 2500 poise, the deformation rate of the yarn during cooling is high, sufficient cooling is not performed in the cooling region, and adhesion occurs between single yarns, resulting in frequent yarn breakage during the drawing process. In addition, the yarn spun from all the spinning holes may become a single ribbon, which may not be used in the drawing step. Exceeding 5000 poise requires extrusion at high pressure, but since the viscosity difference with polyester A as the sheath component is large, discharge of polyester B as the sheath component and polyester A as the core component discharged from the same spinning hole. Streaks occur and the yarn becomes less uniform.
Furthermore, when this yarn is stretched, yarn breakage frequently occurs.
【0011】本発明では、上記したポリエステルAを鞘
成分、ポリエステルBを芯成分として複合紡糸するが、
接着強力及び強度の面から芯:鞘の比率(断面積比)を
7:3〜3:7にすることが好ましい。In the present invention, the above-described polyester A is used as a sheath component and polyester B is used as a core component for composite spinning.
From the viewpoint of adhesive strength and strength, it is preferable to set the core: sheath ratio (cross-sectional area ratio) to 7: 3 to 3: 7.
【0012】次に、本発明では、紡糸された糸条に紡糸
口金に穿設したオリフィス孔の端部の列から25mm以内の
位置から20℃以下の冷却風を吹き付ける。冷却風の温度
は20℃以下にする必要があり、冷却風の温度が20℃を超
えると、冷却風の吹き付け側の糸条は充分に冷却される
が、冷却風の吹き付け側より離れた位置の糸条は充分に
冷却されず、冷却固化点が不均一となるため随伴流によ
る糸揺れが発生し、単糸間の密着が起きる。Next, in the present invention, the spun yarn is blown with a cooling air of 20 ° C. or lower from a position within 25 mm from the end row of the orifice holes formed in the spinneret. It is necessary to keep the temperature of the cooling air below 20 ° C. When the temperature of the cooling air exceeds 20 ° C, the yarn on the blowing side of the cooling air is cooled sufficiently, but at a position away from the blowing side of the cooling air. The yarn is not sufficiently cooled, and the solidification point upon cooling becomes uneven, so that the yarn sways due to the accompanying flow, and the single yarns come into close contact with each other.
【0013】また、オリフィス孔の端部の列から25mmを
超えて離れた位置から冷却風を吹き付ける場合は、通常
の冷却風の吹き付け速度(4〜9m/秒)では、冷却風
の吹き付け側より離れた位置の糸条に充分に冷却風が貫
通しないため、充分な冷却が行われず、前記と同様に単
糸間の密着が起きる。また、冷却風の吹き付け速度を通
常の吹き付け速度より上げると、冷却風の吹き付け側よ
り離れた位置の糸条まで冷却風が貫通するが、吹き付け
側の糸条の糸揺れが激しくなり、単糸間の密着が発生す
るので好ましくない。When the cooling air is blown from a position more than 25 mm away from the end row of the orifice holes, the cooling air is blown from the side where the cooling air is blown at a normal cooling air blowing speed (4 to 9 m / sec). Since the cooling air does not sufficiently penetrate the yarns at the distant positions, sufficient cooling is not performed, and the close contact between the single yarns occurs as described above. Also, when the cooling air blowing speed is increased above the normal blowing speed, the cooling air penetrates to the yarns located away from the cooling air blowing side, but the yarns on the blowing side become violently shaken, and the single yarn It is not preferable because adhesion occurs between them.
【0014】上記の条件で冷却風を吹き付ける位置は、
紡糸口金面より10〜300 mm下方の位置とし、糸条に太さ
斑を生じないようにこの範囲内で適宜選択すればよい。The position where the cooling air is blown under the above conditions is
The position may be 10 to 300 mm below the surface of the spinneret, and may be appropriately selected within this range so as not to cause thickness unevenness in the yarn.
【0015】また、冷却風の吹き付け方式としては、オ
リフィス孔の外周に設置した環状吹き付け装置より冷却
風を吹き付ける環状吹き付け方式、一方向から糸条に対
して水平方向に吹き付ける横吹き付け方式等が挙げられ
るが、環状吹き付け方式が好ましい。また、糸条群の中
心部に環状吹き付け装置を設け、内側の糸条より外側の
糸条に向かって吹き付けるセンター吹き付け方式も用い
ることができる。As the cooling air blowing method, there are an annular blowing method in which the cooling air is blown from an annular blowing device installed on the outer circumference of the orifice hole, a lateral blowing method in which the cooling air is blown horizontally to the yarn from one direction, and the like. However, the annular spraying method is preferable. Further, a center spraying method can also be used in which an annular spraying device is provided at the center of the yarn group and the yarns are sprayed toward the outer yarns from the inner yarns.
【0016】以上のように冷却された糸条は一旦巻き取
られた後、8〜100 万デニールとなるよう引き揃え、通
常の延伸機を用いて鞘成分の融点以下の延伸温度で、速
度70〜150 m/min 、倍率2.5 〜3.5 倍で延伸される。The yarns cooled as described above are once wound up, and then aligned so as to have a denier of 80 to 1,000,000, and drawn at a drawing temperature not higher than the melting point of the sheath component by using a usual drawing machine at a speed of 70. It is stretched at a rate of 150 m / min and a draw ratio of 2.5 to 3.5.
【0017】[0017]
【作用】本発明によると、芯成分となるポリエステルB
の溶融粘度を2500〜5000ポイズとすることにより糸条形
成時の糸条の変形速度を充分に小さくできるので、冷却
域での充分な冷却が可能となる。さらに、20℃以下の冷
却風をオリフィス孔の端部の列より25mm以内の位置から
吹き付けることにより、冷却風の吹き付け側より離れた
位置の糸条まで冷却風が貫通し、糸条が急冷されるの
で、単糸間の密着が防止される。したがって、80℃以下
の低温で接着可能な熱接着性複合繊維が操業性よく製造
されるものである。According to the present invention, polyester B as a core component
By setting the melt viscosity to 2500 to 5000 poise, the deformation rate of the yarn at the time of forming the yarn can be made sufficiently small, so that sufficient cooling in the cooling region becomes possible. Furthermore, by blowing a cooling air of 20 ° C or less from a position within 25 mm from the row of the end of the orifice hole, the cooling air penetrates to the yarns located far from the blowing side of the cooling air, and the yarns are rapidly cooled. Therefore, the close contact between the single yarns is prevented. Therefore, the thermoadhesive conjugate fiber capable of adhering at a low temperature of 80 ° C. or less is produced with good operability.
【0018】[0018]
【実施例】以下、本発明を実施例を用いて具体的に説明
する。 (1) 結晶融点 パーキンエルマー社製示差走査型熱量計DSC-2型を用
い、昇温速度20℃/minで測定した。 (2) 溶融粘度 島津製作所製フローテスター(CFT-500) を用いて、ポリ
マーを所定温度で溶融し、ノズルから吐出するポリマー
のせん断速度が1000 sec-1の時の粘度を溶融粘度とし
た。 (3) ポリエステルの相対粘度 フェノールと四塩化炭素との等重量混合溶媒を用い、濃
度0.5g/dl 、温度20℃で測定した。 (4) 単糸間の密着度 紡糸後の未延伸糸の状況を目視で観察し、次の3段階で
評価した。 ○:密着がない。 △:一部が密着していた。 ×:ほとんどが密着してリボン状になり、延伸工程に供
し得る繊維ではなかった。 (5) 冷却風温度 冷却風の吹き出し面から10mmの位置で安達計器社製デジ
タル温度計HL-300(E)で測定した。EXAMPLES The present invention will be specifically described below with reference to examples. (1) Crystal melting point Measured at a temperature rising rate of 20 ° C / min using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elmer. (2) Melt viscosity A polymer was melted at a predetermined temperature using a flow tester (CFT-500) manufactured by Shimadzu Corporation, and the viscosity when the shear rate of the polymer discharged from the nozzle was 1000 sec -1 was defined as the melt viscosity. (3) Relative viscosity of polyester It was measured at a concentration of 0.5 g / dl and a temperature of 20 ° C. using a mixed solvent of equal weight of phenol and carbon tetrachloride. (4) Adhesion between single yarns The state of the undrawn yarn after spinning was visually observed and evaluated in the following three stages. ○: There is no close contact. Δ: A part was in close contact. X: Most of the fibers were in close contact with each other and formed into a ribbon shape, which was not a fiber that can be used in the stretching step. (5) Cooling air temperature It was measured with a digital thermometer HL-300 (E) manufactured by Adachi Keiki Co., Ltd. at a position 10 mm from the blowing surface of the cooling air.
【0019】実施例1 デカン-1,10-ジカルボン酸と1,6-ヘキサンジオールとか
ら得られた、結晶融点68℃のポリエステルをA成分と
し、相対粘度1.40のポリエチレンテレフタレート(融点
262 ℃、紡糸温度290 ℃における溶融粘度3400ポイズ)
をB成分として、断面積比1:1の割合で紡糸温度290
℃、吐出量206g/minで、円形3列429 孔の口金より紡糸
した。口金面から50mm下方の位置に環状吹き付け装置を
設け、オリフィス孔の端部の列より15mm離れた位置から
18℃の冷却風を吹き付け、冷却固化した後、油剤を付与
し、800m/minの紡糸速度で引き取り、巻き取った。次い
で、この未延伸糸を10万デニールになるように引き揃
え、延伸速度100m/min、延伸温度60℃で3.0 倍に延伸し
た。紡糸後の未延伸糸の単糸間の密着度及び延伸性の評
価結果を表1に示す。Example 1 Polyester obtained from decane-1,10-dicarboxylic acid and 1,6-hexanediol and having a crystal melting point of 68 ° C. was used as component A, and polyethylene terephthalate having a relative viscosity of 1.40 (melting point) was used.
Melt viscosity at 262 ℃, spinning temperature 290 ℃ 3400 poise)
As component B, the cross-sectional area ratio is 1: 1 and the spinning temperature is 290.
Spinning was performed from a spinneret having 429 holes in 3 rows of 3 ° C. at a discharge rate of 206 g / min. An annular spraying device is provided 50 mm below the die surface, and from the position 15 mm away from the end row of orifice holes.
After cooling with a cooling air of 18 ° C. to solidify by cooling, an oil agent was applied, and the product was taken up at a spinning speed of 800 m / min and wound up. Then, the undrawn yarns were aligned so as to have a denier of 100,000 and drawn 3.0 times at a drawing speed of 100 m / min and a drawing temperature of 60 ° C. Table 1 shows the evaluation results of the adhesion between single yarns and the drawability of the undrawn yarn after spinning.
【0020】実施例2〜3、比較例1〜6 ポリエステルBの溶融粘度、冷却風を吹き付けたオリフ
ィス孔の端部の列からの距離、冷却風の温度を表1のよ
うに変更した以外は実施例1と同様に行った。紡糸後の
未延伸糸の単糸間の密着度及び延伸性の評価結果を併せ
て表1に示す。Examples 2 to 3 and Comparative Examples 1 to 6 Except that the melt viscosity of polyester B, the distance from the row of the ends of the orifice holes sprayed with the cooling air, and the temperature of the cooling air were changed as shown in Table 1. The same procedure as in Example 1 was performed. Table 1 also shows the evaluation results of the adhesion between single yarns and the drawability of the undrawn yarns after spinning.
【0021】[0021]
【表1】 [Table 1]
【0022】実施例4 セバシン酸と1,4-ブタンジオールとから得られた結晶融
点56℃のポリエステルをA成分とした以外は実施例1と
同様に行った。その結果、単糸間の密着も起こらず、良
好に紡糸することができた。また、得られた未延伸糸を
延伸温度40℃で3.0 倍に延伸したところ糸切れもなく、
順調に延伸できた。Example 4 Example 1 was repeated except that the polyester having a crystal melting point of 56 ° C. obtained from sebacic acid and 1,4-butanediol was used as the component A. As a result, the single yarns did not adhere to each other, and good spinning was possible. When the obtained undrawn yarn was drawn 3.0 times at a drawing temperature of 40 ° C, no yarn breakage occurred.
It could be stretched smoothly.
【0023】比較例7 アジピン酸と1,5-ペンタンジオールとから得られた結晶
融点41℃のポリエステルをA成分とした以外は実施例1
と同様に行った。その結果、紡糸時に単糸間の密着が起
こり、紡糸することができなかった。Comparative Example 7 Example 1 except that polyester A having a crystal melting point of 41 ° C. obtained from adipic acid and 1,5-pentanediol was used as the component A
I went the same way. As a result, the single yarns adhered to each other during the spinning, and the spinning could not be performed.
【0024】[0024]
【発明の効果】本発明によれば、結晶融点が50〜80℃の
ポリエステルを鞘成分とし、結晶融点が200 ℃以上のポ
リエステルを芯成分とする芯鞘型の複合繊維の紡糸にお
いて、単糸間の密着を発生させずに溶融紡糸することが
可能であり、品質がよく、低温で接着可能な熱接着性複
合繊維を操業性よく製造することができる。INDUSTRIAL APPLICABILITY According to the present invention, in the spinning of a core-sheath type composite fiber having a polyester having a crystalline melting point of 50 to 80 ° C. as a sheath component and a polyester having a crystalline melting point of 200 ° C. or more as a core component, a single yarn It is possible to carry out melt spinning without causing adhesion between them, and it is possible to produce a heat-adhesive conjugate fiber having good quality and capable of adhering at low temperature with good operability.
Claims (1)
鞘成分、結晶融点が200 ℃以上のポリエステルBを芯成
分とする芯鞘型の複合繊維を溶融紡糸するに際し、B成
分として溶融紡出時の溶融粘度が2500〜5000ポイズのポ
リエステルを用い、紡糸口金に穿設したオリフィス孔の
端部の列から25mm以内の位置から、紡出糸条に20℃以下
の冷却風を吹き付けることを特徴とする熱接着性複合繊
維の製造方法。1. When melt-spinning a core-sheath type composite fiber comprising polyester A having a crystalline melting point of 50 to 80 ° C. as a sheath component and polyester B having a crystalline melting point of 200 ° C. or more as a core component, melt spinning is performed as a B component. Using polyester with a melt viscosity of 2500-5000 poise at the time of ejection, blow the cooling air of 20 ° C or less to the spun yarn from a position within 25 mm from the end row of the orifice holes formed in the spinneret. A method for producing a heat-adhesive conjugate fiber, which is characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2375194A JPH07216656A (en) | 1994-01-25 | 1994-01-25 | Production of hot-melt conjugate fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2375194A JPH07216656A (en) | 1994-01-25 | 1994-01-25 | Production of hot-melt conjugate fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07216656A true JPH07216656A (en) | 1995-08-15 |
Family
ID=12119026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2375194A Pending JPH07216656A (en) | 1994-01-25 | 1994-01-25 | Production of hot-melt conjugate fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07216656A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228493B1 (en) | 1998-10-27 | 2001-05-08 | Kyoto Institute Of Technology | Conjugate fibers and manufacturing method of the same |
-
1994
- 1994-01-25 JP JP2375194A patent/JPH07216656A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228493B1 (en) | 1998-10-27 | 2001-05-08 | Kyoto Institute Of Technology | Conjugate fibers and manufacturing method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5355225B2 (en) | Polylactic acid-based long fiber nonwoven fabric and method for producing the same | |
JP6652855B2 (en) | Continuous fiber nonwoven fabric and method for producing the same | |
JPS62243824A (en) | Production of ultrafine polyester filament yarn | |
JP2000136478A (en) | Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric | |
JPH07216656A (en) | Production of hot-melt conjugate fiber | |
JP2009013522A (en) | Polyester filament nonwoven fabric | |
JP4847312B2 (en) | Non-woven binder fiber and method for producing the same | |
JPH10226952A (en) | Forming nonwoven fabric and its production | |
JP4049940B2 (en) | Heat-sealable composite fiber and method for producing the same | |
JP3261028B2 (en) | Self-adhesive composite fiber | |
JPH1161561A (en) | Biodegradable highly oriented undrawn yarn, and its production | |
JPH1161620A (en) | Continuous fiber nonwoven fabric for molding and its production, container-shaped product using the same and its production | |
JP6537431B2 (en) | Core-sheath composite binder fiber | |
JP4173072B2 (en) | Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric | |
JP5704875B2 (en) | Method for producing heat-bondable polyester-based long-fiber nonwoven fabric and heat-bonding sheet material comprising the same | |
JP2005105434A (en) | Polyester-based filament nonwoven fabric | |
JP2000096417A (en) | Filament nonwoven fabric for forming, its production and container-shaped article using the nonwoven fabric | |
JP2003119626A (en) | Divided-type polyester conjugate fiber | |
JP5219107B2 (en) | Method for producing polyester fiber | |
JP2842243B2 (en) | Melt spinning equipment | |
JP3605231B2 (en) | Heat resistant nonwoven | |
JPH11302925A (en) | Polylactic acid-based filament and its production | |
JPH1161560A (en) | Biodegradable staple fiber and its production | |
EP4450690A1 (en) | Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same | |
JP3782558B2 (en) | Method for producing latent crimped composite polyester fiber |