JPH0721491A - Process control system for road construction - Google Patents
Process control system for road constructionInfo
- Publication number
- JPH0721491A JPH0721491A JP15964593A JP15964593A JPH0721491A JP H0721491 A JPH0721491 A JP H0721491A JP 15964593 A JP15964593 A JP 15964593A JP 15964593 A JP15964593 A JP 15964593A JP H0721491 A JPH0721491 A JP H0721491A
- Authority
- JP
- Japan
- Prior art keywords
- road
- section
- construction
- distance
- occupying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はガス,上下水道,通信用
ケーブル等の道路下埋設物敷設工事、路面の道路工事
等、道路の片側に道路占用区間が設定されて、片側交通
規制が行われている道路での工事の工程管理システムに
関する。[Industrial field of application] The present invention sets a road occupancy section on one side of a road, such as gas, water and sewage, laying under the road such as communication cables, road surface construction, etc. It relates to the process control system for construction on known roads.
【0002】[0002]
【従来の技術】道路上で工事を行なう場合には道路占用
区間が設定されるが、この道路占用区間長は道路の交通
量、並びに工事施工者側における工事進捗性等と密接な
関係にあり、その設定に際しては居住者に与える影響が
大きい場合には関係者の協議で決定されるが、他の場合
は工事の進捗性も勘案して公的機関により一律に設定さ
れているのが現状である。例えば交通量の多い主要国
道,市街地道路では50m 以下である。2. Description of the Related Art When a construction is carried out on a road, a road occupation section is set, and this road occupation section length is closely related to the traffic volume of the road and the construction progress of the construction operator. However, when the setting has a large impact on the residents, it will be decided by consultation of the concerned parties, but in other cases, it is set uniformly by the public institution considering the progress of the construction. Is. For example, it is less than 50m on major national roads and city roads with heavy traffic.
【0003】[0003]
【発明が解決しようとする課題】しかし同じ一級道路で
あっても地域によっては交通量が多い場所,少ない場所
があり、道路占用区間長は場所によっては交通に渋滞を
招き、また工事の円滑な進捗に支障が生じる場合も少な
くない。本発明はかかる事情に鑑みなされたものであっ
て、その目的とするところはシミュレーションにより道
路占用区間長及びその両側に設置される仮設信号機の青
(又は赤)信号点灯制御を車輌サービス率が高く、しか
も工事進捗上からの要求をも加味して適正に設定すると
共に、設定した道路占用区間長の範囲内で工事の作業能
率が高くなるよう工程の管理をする道路工事の工程管理
システムを提供することにある。However, even on the same first-class road, there are places where there is a large amount of traffic and places where there is a small amount of traffic, and the length of the road-occupying section causes traffic congestion in some places, and smooth construction is also possible. There are many cases in which progress is hindered. The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the vehicle service rate by controlling the blue (or red) signal lighting control of the length of the occupied road section and the temporary traffic lights installed on both sides thereof by simulation. In addition, we provide a road construction process management system that manages the process so that the work efficiency can be increased within the set road occupation section length while appropriately considering the demands from the construction progress. To do.
【0004】[0004]
【課題を解決するための手段】本発明に係る道路工事の
工程管理システムは、道路の幅員の一部に道路占用区間
を設定し、該道路占用区間の両端延長上に夫々設置した
仮設信号機により道路の幅員の残りの部分で車輌に対す
る片側交通規制を行いつつ、前記道路占用区間で工事を
行い、工事の進行に伴って道路占用区間を道路に沿って
移動してゆくようにした道路工事工程管理システムであ
って、予め求めた道路における双方向夫々の車輌交通量
データに基づいて各仮設信号機設置位置への車輌到着率
を求める手段と、この車輌到着率に基づき各仮設信号機
の青点灯時間を設定する手段と、前記車輌到着率と予め
定めた許容車輌待ち台数とを比較し、この比較結果に基
づいて道路占用区間長を定める手段と、設定された道路
占用区間長及び予め定めてある保安距離に基づき前記道
路占用区間内での最大可能掘置距離を求める手段と、こ
の最大可能掘置距離に基づき工事のサイクル期間を求め
る手段とを備えることを特徴とする。A road construction process management system according to the present invention uses a temporary traffic signal installed on each extension of both ends of the road occupation section by setting a road occupation section on a part of the width of the road. A road construction process in which construction is carried out in the road occupying section while one-sided traffic control is applied to vehicles at the remaining width of the road, and the road occupying section is moved along the road as the construction progresses. In the management system, means for obtaining the vehicle arrival rate at each temporary traffic signal installation position based on the bidirectional vehicle traffic volume data on the road obtained in advance, and the blue lighting time of each temporary traffic signal based on this vehicle arrival rate And a means for setting the road occupancy section length based on the comparison result, and comparing the vehicle arrival rate with a predetermined allowable number of vehicles waiting. Means for determining the maximum possible Ho置 distance in the road private use segment based on safety distances are determined, characterized in that it comprises a means for determining the cycle period of the construction work on the basis of the maximum possible Ho置 distance.
【0005】[0005]
【作用】本発明にあっては、これによって、適正な道路
占用区間長を定め、定められた道路占用区間長内で所定
の工事進捗度が得られるよう工程管理を行うことが可能
となる。According to the present invention, this makes it possible to determine an appropriate road occupation section length and perform process control so that a predetermined construction progress degree can be obtained within the determined road occupation section length.
【0006】[0006]
【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。図1は道路占用区間を設定した道路
の模式的側面図、図2は同じく道路占用区間を設定した
道路の模式的平面図である。図1,図2において、1は
往復2車線の道路、2は長さLの道路占用区間、3,4
は仮設信号機、5,6は車輌検出器を示している。道路
占用区間2は道路1の片側車線を塞ぐ態様で設定され、
道路占用区間2の両端から夫々bだけ隔てた位置に仮設
信号機3,4が、またここから更に夫々距離cだけ隔て
た位置に車輌検出器5,6が設置してある。道路占用区
間2の長さLは後述するシミュレーション結果に基づき
得た長さに設定されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a schematic side view of a road in which a road occupation section is set, and FIG. 2 is a schematic plan view of a road in which a road occupation section is set. In FIGS. 1 and 2, 1 is a two-way round trip road, 2 is a road occupying section of length L, 3, 4
Is a temporary traffic light, and 5 and 6 are vehicle detectors. The road occupying section 2 is set so as to block one lane of the road 1,
Temporary traffic lights 3 and 4 are installed at positions separated by b from both ends of the road occupying section 2, and vehicle detectors 5 and 6 are installed at positions further separated from them by distance c. The length L of the road occupying section 2 is set to the length obtained based on the simulation result described later.
【0007】仮設信号機3,4、車輌検出器5,6はい
ずれも演算制御装置7に接続され、該演算制御装置7に
て予め求めたシミュレーション結果に基づく仮設信号機
3,4の青信号点灯時間のもとで片側交通規制が行わ
れ、また道路占用区間2内ではシミュレーションにより
求めた工程のもとで道路工事が行われる。The temporary traffic lights 3, 4 and the vehicle detectors 5, 6 are all connected to the arithmetic and control unit 7, and the green signal lighting time of the temporary traffic lights 3, 4 based on the simulation result obtained in advance by the arithmetic and control unit 7 One-sided traffic regulation is performed at first, and road construction is performed within the road occupation section 2 based on the process obtained by simulation.
【0008】図3は道路占用区間内での工事概要を示す
説明図である。長さLの道路占用区間2内においては、
その両端から夫々距離l1 ,l2 の間は保安区間5,6
であり、また距離lの間は掘置区間である。道路占用区
間2夫々の延長上には夫々距離bを隔てて仮設信号機
3,4が設置され、更にその延長上に距離cを隔てて車
輌検出器5,6が設置されている。掘置区間7において
は道路を必要な深さに掘削し、連結すべきガス管11を掘
置区間7内に一列に並べて吊り降ろし、その一端側の壁
面から突き出させてあるガス管11にガス管を順次溶接連
結し、所定長までガス管11が連結されると、その部分に
対する埋め戻しを行うと共に、埋め戻し相当分の長さだ
け図3において右側に掘削を行う。またこの埋め戻し、
掘削の進行に伴って各仮設信号機3,4、車輌検知器
5,6の位置も夫々図3において右側にずらしてゆく。
このような工程を1サイクルとしてこれを反復して道路
占用区間2を順次右側に移動させてガス管の埋設工事を
行ってゆく。FIG. 3 is an explanatory view showing an outline of construction work in the road occupation section. In the road occupying section 2 of length L,
From the both ends, the distance between l 1 and l 2 , respectively, is the security section 5, 6
And the distance l is an excavation section. Temporary traffic lights 3 and 4 are installed on the extensions of the road occupying sections 2 at a distance b, and vehicle detectors 5 and 6 are installed on the extensions at a distance c. In the excavation section 7, the road is excavated to a required depth, the gas pipes 11 to be connected are lined up in a line in the excavation section 7 and suspended, and the gas pipe 11 protruding from the wall surface on one end side When the pipes are sequentially welded and connected to each other and the gas pipe 11 is connected to a predetermined length, the portion is backfilled and the length corresponding to the backfilling is excavated to the right side in FIG. This backfill again,
As the excavation progresses, the positions of the temporary traffic lights 3, 4 and the vehicle detectors 5, 6 are also shifted to the right in FIG.
By repeating this process as one cycle, the road occupying section 2 is sequentially moved to the right to bury the gas pipe.
【0009】いま図3に示す工事起点Oから 工事進行方向における掘置区間先端部までの累積距離:
H、 吊降し済みパイプ先端位置までの累積距離:I、 溶接済みパイプ先端までの累積距離:J、 埋め戻し先端位置までの累積距離:K とする。Cumulative distance from the construction start point O shown in FIG. 3 to the tip of the excavation section in the construction progress direction:
H, cumulative distance to suspended pipe tip position: I, cumulative distance to welded pipe tip: J, cumulative distance to backfill tip position: K.
【0010】 また、掘置区間距離 :l(=H−K) …(1) 掘削先端から吊降し済みパイ プ先端までの距離 :m(=H−I) …(2) 吊降し済みパイプ先端から溶 接済みパイプ先端までの距離:n(=I−J) …(3) とする。Further, the excavation section distance: l (= H−K) (1) Distance from the excavation tip to the suspended pipe tip: m (= HI) (2) Suspended The distance from the pipe tip to the welded pipe tip: n (= IJ) (3).
【0011】次にシミュレーション時の処理過程を図
4,図5に示すフローチャートに従って説明する。シミ
ュレーションにおいては図1,図2に示したのと同様の
条件をシミュレーション条件として設定し、予め道路占
用区間長,仮設信号機3,4の青点灯時間等について経
験的に得てある値を夫々初期値a0 ,t0 として与え、
予め実測により得た当該道路1の車輌の交通量データに
基づきシミュレーションを実行する。Next, the processing steps in the simulation will be described with reference to the flow charts shown in FIGS. In the simulation, the same conditions as those shown in FIGS. 1 and 2 are set as the simulation conditions, and the empirically obtained values for the road occupation section length, the blue lighting time of the temporary traffic lights 3 and 4, etc. are respectively set as initial values. Given as values a 0 and t 0 ,
The simulation is executed based on the traffic data of the vehicle on the road 1 obtained by actual measurement in advance.
【0012】図4,図5は本発明におけるシミュレーシ
ョン装置での処理過程を示すフローチャートである。予
め求めてある車輌検知器5,6による車輌検知データを
シミュレーション装置に読み込み(ステップS1) 、道路
1のA方向, B方向夫々について仮設信号機3,4への
車輌到着率RA , RB (台/秒)を求める(ステップS
2) 。予め定めてあるサービス率(台/秒) 、道路占用
区間2を設定している部分の車輌走行時間(秒)、逆方
向交通との安全性を考慮した安全距離に相当する保安時
間(秒)、各車輌到着率RA , RB 、並びにステップS1
3 で適正と判断されたときの作業サイクル期間等に基づ
き仮設信号機3,4の青信号現示時間 (秒) 及び青, 赤
信号点灯サイクル時間 (秒) を求める (ステップS3) 。4 and 5 are flow charts showing the processing steps in the simulation apparatus according to the present invention. The vehicle detection data obtained by the vehicle detectors 5 and 6 which have been obtained in advance are read into the simulation device (step S1), and the vehicle arrival rates R A and R B to the temporary traffic lights 3 and 4 for the A direction and the B direction of the road 1 respectively ( (Units / second) is calculated (step S
2). Predetermined service rate (vehicles / second), vehicle travel time (seconds) in the part where the private road section 2 is set, security time (seconds) equivalent to the safety distance in consideration of safety with reverse traffic , Vehicle arrival rates R A , R B , and step S1
Based on the work cycle period when it is judged to be appropriate in step 3, the green signal display time (seconds) and the blue and red signal lighting cycle time (seconds) of the temporary traffic lights 3 and 4 are calculated (step S3).
【0013】各仮設信号機3,4設置位置でのクリティ
カルな状態での各車輌待ち台数 (台) を計算し (ステッ
プS4) 、これと予め求めてある許容車輌待ち台数 (台)
とに基づいて最大許容道路占用区間長(m)を決定する
(ステップS5) 。次にデータベース化してある建設機械
配置計画内の建設機械占用距離(m),保安距離
(m)、ステップS11 で求めた後述する作業のサイクル
期間,最大許容道路占用区間長(m)等に基づいて最大
可能掘置距離(m)を決定する(ステップS6) 。The number of vehicles waiting for each vehicle (units) in the critical state at each temporary traffic signal 3, 4 installation position is calculated (step S4), and this and the allowable number of waiting vehicles for the vehicle (units) are calculated in advance.
Determine the maximum allowable road occupation section length (m) based on
(Step S5). Next, based on the construction machine occupation distance (m), the safety distance (m), the work cycle period described later obtained in step S11, the maximum allowable road occupation section length (m), etc. The maximum possible excavation distance (m) is determined (step S6).
【0014】更に別途求めてある一日当たり掘削可能距
離(m/日) 、一日当たり埋め戻し可能距離(m/日) 及び
工事総延長Rを読み出し、これらと、先に決定した最大
可能掘置距離(m)とに基づき、起点Oから埋め戻し先
端位置までの累積距離KがRとなるまでi←1,i←i
+1を反復し(ステップS7) 、各作業日毎のH,K,
I,Jを求め(ステップS8) 、また(1),(2),(3) 式に従
って各作業日毎のl,m,nを求める(ステップS9) 。Furthermore, the excavable distance per day (m / day), the backfillable distance per day (m / day), and the total construction length R, which are separately obtained, are read out, and the maximum possible excavation distance previously determined. Based on (m), i ← 1, i ← i until the cumulative distance K from the starting point O to the backfill tip position becomes R.
+1 is repeated (step S7), and H, K, and
I, J are obtained (step S8), and l, m, n for each work day are obtained according to the equations (1), (2), (3) (step S9).
【0015】そして3種類の値l,m,nの距離が全て
同じとなる日を検索する(ステップS10)。その結果、例
えば第X日目と第X+Y日目とにおいてl,m,nが全
て同じになると(ステップS11)、これらに基づいて 作業のサイクル期間 :X+Y−1 サイクル日数 :Y 溶接リング数(回数):Z 溶接能率 :Z/Y を求め(ステップS12)、これをモニタに表示する。Then, the days in which the distances of the three values l, m and n are all the same are searched (step S10). As a result, for example, when l, m, and n are all the same on the Xth day and the X + Yth day (step S11), based on these, work cycle period: X + Y-1 cycle days: Y weld ring number ( (Number of times): Z Welding efficiency: Z / Y is calculated (step S12) and displayed on the monitor.
【0016】パイプを連結する溶接作業がパイプ回りを
1周する溶接作業を「1リング」と記するものとして、
溶接作業がZリング分行なわれた場合、溶接能率はZ/
Y(リング/日)と表示する。また工事総延長に対する
総工期日数は全工程、例えばバーチャート、又はグラフ
式工程表により表示する。Assuming that the welding work for connecting the pipes makes one turn around the pipes, it is referred to as "1 ring".
When the welding work is performed for Z rings, the welding efficiency is Z /
Displayed as Y (ring / day). In addition, the total number of construction days for the total length of construction is displayed in all processes, for example, a bar chart or a graph-type process chart.
【0017】前記作業のサイクル期間は、例えばステッ
プS7において第X日目と第X+Y日目とでl,m,nの
値が同じとなった場合、即ち(lX ,mX ,nX )=
(lX+ Y ,mX+Y ,nX+Y )となった場合、第X日目か
ら第X+Y−1日目までを1サイクルとした工事が行な
われることを意味する。The cycle period of the work is, for example, when the values of l, m and n are the same on the Xth day and the X + Yth day in step S7, that is, (l X , m X , n X ) =
In the case of (l X + Y , m X + Y , n X + Y ), it means that the construction is performed with one cycle from the Xth day to the X + Y−1th day.
【0018】求めたサイクル期間, サイクル日数, 溶接
リング数, 溶接能率について工期短縮期間, 配員, 建機
削減等に基づきこれがコストを最下限値にするための最
適条件か否かを判断し (ステップS13)、最適でない場合
はステップS7に戻って前述した過程を反復し、また最適
である場合にはこれに基づき最適工事計画を策定し (ス
テップS14)、これに基づき座標式の工程表を作成する
(ステップS15)。Regarding the calculated cycle period, number of cycle days, number of welding rings, and welding efficiency, it is judged whether or not this is the optimum condition for making the cost the minimum value based on the shortened construction period, manpower, and reduction of construction equipment ( (Step S13), if it is not optimal, return to Step S7 and repeat the above-mentioned process, and if it is optimal, formulate an optimal construction plan based on this (Step S14), and based on this, create a coordinate-based process schedule. create
(Step S15).
【0019】図6は最大掘置距離56m、作業工程の1サ
イクルが8日で、そのうち掘削日は5日、埋戻し日は3
日の工程表の1例を示す説明図であり、横軸に作業日
(日)を、また縦軸に施工延長距離(m)をとって示し
てある。図中pは掘削工程、qは埋戻し工程、ハッチン
グ部分は溶接工程、□部分はパイプの吊降ろし工程を示
している。なお掘削、埋戻しには0.45m3 級のバックホ
ー1台を用いることとする。FIG. 6 shows a maximum excavation distance of 56 m, one cycle of working process is 8 days, of which 5 days are excavation days and 3 days are backfilling days.
It is explanatory drawing which shows an example of the process table of a day, and the horizontal axis | shaft shows the working day (day), and the vertical axis | shaft has shown the construction extension distance (m). In the figure, p is an excavation process, q is a backfilling process, the hatching part is a welding process, and the □ part is a pipe hanging process. For excavation and backfilling, one 0.45m 3 class backhoe will be used.
【0020】次に図1,図2,図3に示す如く実際の道
路においてシミュレーション結果により決定した道路占
用区間長Lを設定し、また仮設信号機3,4の青信号点
灯時間、青,赤信号点灯サイクル時間で制御しつつ道路
占用区間2内で工事を実施する。 同時に車輌検出器
5,6にて車輌を検出し、これらの実績データに基づき
演算制御装置7にて車輌サービス率が高くなるよう仮設
信号機3,4の青信号点灯時間の設定、青,赤信号点灯
サイクル時間、道路占用区間長Lの短縮長さ又は延長長
さを求め、これに従ってシミュレーション結果に基づく
値を修正する。同時にこれを実績値としてシミュレーシ
ョン結果と実際の結果とのずれ量を解消すべくシミュレ
ーション装置に学習を行わせる。Next, as shown in FIGS. 1, 2 and 3, the road occupation section length L determined by the simulation result is set on the actual road, and the green signal lighting time, blue and red signal lighting of the temporary traffic signals 3 and 4 are set. Construction will be carried out within the road-occupied section 2 while controlling the cycle time. At the same time, the vehicle detectors 5 and 6 detect the vehicle, and the arithmetic and control unit 7 sets the green signal lighting time of the temporary traffic lights 3 and 4 and lights the blue and red signals so that the vehicle service rate becomes high based on the actual data. The cycle time and the shortened length or the extended length of the road occupation section length L are obtained, and the value based on the simulation result is corrected accordingly. At the same time, using this as the actual value, the simulation device is made to perform learning in order to eliminate the deviation amount between the simulation result and the actual result.
【0021】次に学習前,後における道路占用区間長を
対比してみると、図7,図8に示す如くである。図7は
学習前、即ちシミュレーション結果により定めた工程
表、図8は学習後の工程表である。これから明らかな如
く、学習前にあっては道路占用区間長60m,掘置距離36
mであったのに対し、学習後は道路占用区間長80m,掘
置距離56mとなり、作業能率の大幅な向上が図れること
が解る。しかも車輌サービス率も同時に向上し得ること
となる。Next, comparing the road occupation section lengths before and after learning, the results are as shown in FIGS. 7 and 8. FIG. 7 is a process chart before learning, that is, a process chart defined by simulation results, and FIG. 8 is a process chart after learning. As is clear from this, before the study, the road occupancy section length was 60m and the excavation distance was 36m.
After learning, the length of the occupied section of the road was 80 m and the excavation distance was 56 m, which shows that the work efficiency can be greatly improved. Moreover, the vehicle service rate can be improved at the same time.
【0022】[0022]
【発明の効果】以上の如く本発明に係る道路工事の工程
管理システムにあっては、道路占用区間長さを各仮設信
号機設置位置での車輌待ち台数のもとで適正に定め、定
めた道路占用区間長のもとでの掘置距離,工事サイクル
期間を求めて工事進捗性を大幅に向上させ得る等本発明
は優れた効果を奏するものである。As described above, in the road construction process management system according to the present invention, the length of the road occupation section is properly determined based on the number of vehicles waiting at each temporary traffic signal installation position. The present invention has an excellent effect such that the digging distance under the occupied section length and the construction cycle period can be obtained to greatly improve the construction progress.
【図1】本発明に係る道路工事の工程管理システムを適
用する道路の模式的側面図である。FIG. 1 is a schematic side view of a road to which a road construction process management system according to the present invention is applied.
【図2】同じく道路の模式的平面図である。FIG. 2 is also a schematic plan view of a road.
【図3】道路占用区間での工事概要を示す説明図であ
る。FIG. 3 is an explanatory diagram showing an outline of work in a road occupied section.
【図4】道路占用区間長設定及び道路工事の工程管理の
シミュレーション過程を示すフローチャートである。FIG. 4 is a flowchart showing a simulation process of road occupation section length setting and road construction process management.
【図5】道路占用区間長設定及び道路工事の工程管理の
シミュレーション過程を示すフローチャートである。FIG. 5 is a flowchart showing a simulation process of road occupation section length setting and road construction process management.
【図6】道路工事の工程表の一例である。FIG. 6 is an example of a road construction process chart.
【図7】学習前の道路工事の工程表である。FIG. 7 is a process chart of road construction before learning.
【図8】学習後の道路工事の工程表である。FIG. 8 is a process chart of road construction after learning.
1 道路 2 道路占用区間 3,4 仮設信号機 5,6 車輌検出器 7 保安区間 8 掘置区間 1 Road 2 Road occupancy section 3,4 Temporary traffic light 5,6 Vehicle detector 7 Security section 8 Excavation section
Claims (1)
し、該道路占用区間の両端延長上に夫々設置した仮設信
号機により道路の幅員の残りの部分で車輌に対する片側
交通規制を行いつつ、前記道路占用区間で工事を行い、
工事の進行に伴って道路占用区間を道路に沿って移動し
てゆくようにした道路工事工程管理システムであって、
予め求めた道路における双方向夫々の車輌交通量データ
に基づいて各仮設信号機設置位置への車輌到着率を求め
る手段と、この車輌到着率に基づき各仮設信号機の青点
灯時間を設定する手段と、前記車輌到着率と予め定めた
許容車輌待ち台数とを比較し、この比較結果に基づいて
道路占用区間長を定める手段と、設定された道路占用区
間長及び予め定めてある保安距離に基づき前記道路占用
区間内での最大可能掘置距離を求める手段と、この最大
可能掘置距離に基づき工事のサイクル期間を求める手段
とを備えることを特徴とする道路工事の工程管理システ
ム。1. A road occupying section is set in a part of the width of the road, and one-sided traffic control for vehicles is carried out at the rest of the width of the road by temporary traffic lights installed on extensions of both ends of the road occupying section. , Construction work in the section occupied by the road,
It is a road construction process management system that moves along the road along the road occupying section as the construction progresses.
Means for determining the vehicle arrival rate at each temporary traffic signal installation position based on the bidirectional vehicle traffic volume data obtained in advance on the road, and means for setting the blue lighting time of each temporary traffic signal based on this vehicle arrival rate, Means for comparing the vehicle arrival rate with a predetermined allowable number of waiting vehicles and determining a road occupation section length based on the result of the comparison, and the road based on the set road occupation section length and a predetermined safety distance A road construction process management system comprising: a means for obtaining a maximum possible excavation distance within a private section; and a means for obtaining a construction cycle period based on the maximum possible excavation distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15964593A JPH0721491A (en) | 1993-06-29 | 1993-06-29 | Process control system for road construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15964593A JPH0721491A (en) | 1993-06-29 | 1993-06-29 | Process control system for road construction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0721491A true JPH0721491A (en) | 1995-01-24 |
Family
ID=15698242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15964593A Pending JPH0721491A (en) | 1993-06-29 | 1993-06-29 | Process control system for road construction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0721491A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018092487A (en) * | 2016-12-06 | 2018-06-14 | 綜合警備保障株式会社 | Traffic guidance system, construction device and traffic guidance method |
-
1993
- 1993-06-29 JP JP15964593A patent/JPH0721491A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018092487A (en) * | 2016-12-06 | 2018-06-14 | 綜合警備保障株式会社 | Traffic guidance system, construction device and traffic guidance method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5605419A (en) | Underground duct banks | |
US3706125A (en) | Pipe line construction method | |
CN113482044B (en) | Power pipeline relocation method for invading subway station structure | |
EP0466348A1 (en) | A method and system for controlling a travelling body so as to move forward along a predetermined route | |
CN102767375A (en) | Tunnel construction method | |
US11473262B2 (en) | Bailey support system applied to cross protection of complex pipes and cables and construction method thereof | |
JPH0721491A (en) | Process control system for road construction | |
CN107130965A (en) | Anchor cable sweep-out method and removing system in a kind of tunnel | |
CN211579545U (en) | Protection structure for pipeline passing through | |
Tervydis et al. | Horizontal directional drilling pilot bore simulation | |
CN107905258A (en) | Pipe gallery exterior wall concrete construction method | |
CN111244832B (en) | Moving and modifying method for integrally lifting and protecting pipe-jacking type underground high-voltage cable in situ | |
CN210266160U (en) | Construction device for shield to pass through underground pipeline | |
JPH0721490A (en) | Traffic control system in single side traffic regulation area | |
CN109707397A (en) | Pipe curtain construction method | |
CN110486074A (en) | A kind of the stringing design method and construction method of major long tunnel construction ventilation | |
JP2848745B2 (en) | Direct laying method of optical fiber cable | |
CN107237924A (en) | A kind of construction method of installation of the long distance pipeline laid along irrigation canals and ditches periphery | |
JPH0313691A (en) | Construction method for underground tunnel | |
SU1718320A1 (en) | Assembly for cable laying | |
CN110593268B (en) | Underground pipeline excavation construction method based on support pile and bailey truss protection | |
RU1810708C (en) | Process of construction of underground pipe-line out of pipes with factory insulation | |
JP2006063750A (en) | Management system for manhole installation | |
CN111951530A (en) | Greening maintenance safety protection method | |
JPS6224596B2 (en) |