JPH0721280B2 - Non-removal soil promotion method for buried pipes - Google Patents
Non-removal soil promotion method for buried pipesInfo
- Publication number
- JPH0721280B2 JPH0721280B2 JP2401711A JP40171190A JPH0721280B2 JP H0721280 B2 JPH0721280 B2 JP H0721280B2 JP 2401711 A JP2401711 A JP 2401711A JP 40171190 A JP40171190 A JP 40171190A JP H0721280 B2 JPH0721280 B2 JP H0721280B2
- Authority
- JP
- Japan
- Prior art keywords
- excavator
- earth
- diameter
- buried
- sand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、埋設管の無排土推進
工法に関し、詳しくは、下水道等の地下埋設管を施工す
る際に、地盤を開削することなく、地中に埋設孔を掘削
形成しながら、形成された埋設孔に埋設管を順次推進さ
せて埋設していくとともに、掘削された土砂を外部に排
出することなく地盤内で処理する、いわゆる無排土推進
工法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-removing earth propulsion method for buried pipes, and more specifically, when constructing underground buried pipes for sewers, etc., excavating a buried hole in the ground without excavating the ground. This is related to a so-called no-soil promotion method in which buried pipes are sequentially pushed into the formed burial holes while being formed and buried, and the excavated earth and sand are treated in the ground without being discharged to the outside. .
【0002】[0002]
【従来の技術】地下埋設管の推進工法として、先端にオ
ーガー等の掘削機構を備えた掘進機で、地中に埋設孔を
掘削しながら、掘削機の掘削推進につづいて埋設管を推
進埋設していく方法があり、この工法は、一般にオーガ
ー工法などと呼ばれている。オーガー工法では、通常、
掘進機で掘削された土砂は、推進埋設される埋設管列の
内部を通して後方に搬送し、埋設管列の後端から立坑あ
るいは地表まで運搬されて廃棄処分される。しかし、こ
の方法では、掘進機から埋設管列の後端まで、狭い埋設
孔の内部に排土の搬送機構を設置する必要があり、装置
が複雑になり、設備コストおよび稼動コストが高くつく
ことや、排土の搬送容量に合わせて掘進機の推進速度を
設定しなければならず推進速度をあまり速くできないこ
と、掘削された土砂を廃棄物として処分する手間および
コストがかかること、などの問題があった。2. Description of the Related Art As a method for provoking underground buried pipes, an excavator equipped with an excavating mechanism such as an auger at the tip is used to excavate a buried hole in the ground while the excavator excavates and drives the buried pipe. There is a method of doing this, and this construction method is generally called the auger construction method. In the auger method,
The earth and sand excavated by the excavator is conveyed rearward through the interior of the buried pipe row for propulsion and buried, and is transported from the rear end of the buried pipe row to the vertical shaft or the surface and disposed of. However, with this method, it is necessary to install a soil transfer mechanism inside the narrow burial hole from the excavator to the rear end of the burial pipe line, which complicates the equipment and increases the equipment cost and operating cost. Also, the propulsion speed of the excavator has to be set according to the transfer capacity of the excavated soil, the propulsion speed cannot be too fast, and it takes time and cost to dispose the excavated earth and sand as waste. was there.
【0003】そこで、比較的小口径の埋設管の場合、掘
削された土砂を埋設孔内部で処理して、外部には排土を
出さない、無排土方式の推進工法が採用されている。具
体的には、円錐状等をなす先導体を地盤中に圧入して埋
設孔を形成する。先導体で外周側に排除された土砂は、
埋設孔の内壁すなわち地盤側に圧密されるので、排土を
外部に出すことなく埋設孔を形成することができる。具
体的な無排土推進工法としては、圧縮空気による衝撃圧
入方式あるいは油圧ジャッキによる圧入方式などが採用
されている。しかし、これらの無排土工法では、地盤に
先導体を圧入するのに非常に大きな抵抗があり、先導体
に極めて大きな推進力を加えなくてはならない。そのた
め、推進力を与える元押しジャッキ等の設備が大型化
し、稼動に必要な動力も増大するなどの問題が生じる。Therefore, in the case of a buried pipe having a relatively small diameter, a non-discharging type propulsion method is employed in which excavated earth and sand are treated inside the embedding hole and the soil is not discharged to the outside. Specifically, a conical or the like conductor is press-fitted into the ground to form a buried hole. The earth and sand removed from the outer circumference by the conductor
Since the inner wall of the embedding hole, that is, the ground side, is compacted, the embedding hole can be formed without discharging the soil to the outside. As a concrete no-ejecting method, an impact press-fitting method using compressed air or a press-fitting method using a hydraulic jack is adopted. However, in these non-removal earthing methods, there is a great resistance to press-fit the lead conductor into the ground, and it is necessary to apply an extremely large propulsive force to the lead conductor. Therefore, there is a problem that equipment such as a source push jack that gives a propulsion force becomes large in size and power required for operation increases.
【0004】上記問題を解消する無排土工法として、以
下に説明する工法が提案されている。その工法は、ま
ず、先導体の先端に前記オーガー工法のような掘削機構
を備えておき、この先導体すなわち掘進機で、掘進機前
面の地盤を掘削して掘削機の外径に相当する埋設孔を形
成し、掘削された土砂を一旦掘進機の内部に取り込み、
取り込まれた土砂を掘進機の後方で、掘進機の外周面に
開口する排土口から放射方向に押し出して、埋設孔の内
壁から地盤側に圧密する。この工法では、掘進機で地盤
を掘削してから外周の地盤に圧密するので、先導体をむ
りやり地盤に圧入するのに比べて、軸方向の抵抗が少な
く、比較的小さな推進力でも推進させることができると
いうものである。また、上記工法において、掘進機の内
部に、偏心回転する円錐状のコーンロータを設け、この
コーンロータの偏心回転に伴う半径方向の力で土砂を排
土口から放射方向に押し出すようにしておくことによっ
て、土砂の地盤側への圧密を効率的に行う方法も提案さ
れている。As a non-removing earth method for solving the above problems, the following method has been proposed. The construction method is that the tip of the tip conductor is provided with an excavation mechanism like the auger construction method, and the tip conductor, that is, the excavator, excavates the ground in front of the excavator to bury a hole corresponding to the outer diameter of the excavator. Form, and once the excavated earth and sand are taken into the excavator,
The earth and sand taken in is pushed out in the radial direction at the rear of the excavator from a soil discharge port that opens on the outer peripheral surface of the excavator, and is compacted from the inner wall of the buried hole to the ground side. In this method, since the ground is excavated by an excavator and then the ground is compacted on the outer circumference, the resistance in the axial direction is small compared to the case where the pre-conductor is forcedly pressed into the ground. It is possible to do. Further, in the above construction method, a cone-shaped cone rotor that eccentrically rotates is provided inside the excavator, and the earth and sand are pushed out radially from the soil discharge outlet by the radial force associated with the eccentric rotation of the cone rotor. Therefore, a method for efficiently consolidating the soil to the ground side has also been proposed.
【0005】上記の改良された無排土工法によれば、よ
り低コストで効率的に埋設管の推進埋設施工が行えると
されている。According to the above-mentioned improved soil-free construction method, it is said that the propulsion and burying construction of the burial pipe can be carried out efficiently at a lower cost.
【0006】[0006]
【発明が解決しようとする課題】ところが、上記の改良
された無排土工法でも、埋設管の口径が大きくなるのに
つれて掘進機および埋設管列の推進が困難になり、口径
の大きな埋設管には適用できないという問題がある。す
なわち、無排土工法では、埋設管の口径が大きくなるの
に伴って、掘進機で掘削する地盤の掘削径が大きくな
り、大きな掘削径分の大量の土砂を、掘進機外周の地盤
に圧密しなければならないが、この土砂の圧密量が増え
れば、推進時の抵抗が増え、大きな推進力が要求される
ことになり、地盤の土質によって決まる圧密の許容量を
超えれば、それ以上は圧密が出来なくなり、推進が不可
能になってしまう。However, even with the above-mentioned improved soil-free earthing method, as the diameter of the buried pipe becomes larger, it becomes more difficult to drive the excavator and the buried pipe row, and the buried pipe having a large diameter can be obtained. Is not applicable. In other words, in the non-removing earth method, the excavation diameter of the ground excavated by the excavator increases as the diameter of the buried pipe increases, and a large amount of earth and sand corresponding to the large excavation diameter is compacted on the ground around the excavator. However, if the amount of soil compaction increases, the resistance at the time of propulsion increases, and a large propulsion force is required. Will not be possible, and promotion will be impossible.
【0007】上記問題を詳しく説明する。図4に示すよ
うに、外径Dの埋設管を埋設する場合、断面積πD2 /
4に相当する範囲の土砂を完全に地盤側に圧密排土しな
ければならない。地盤の土質条件と掘進機の有する側方
圧縮能力から、地盤の断面において、埋設孔の内壁を外
周側に圧縮して拡げることのできる距離、すなわち圧密
可能深さをtとすると、 π(D+2t)2 /4−πD2 /4 が、側方圧縮によって形成可能な空隙、すなわち土砂を
収容できる空間の断面積となり、この断面積の中に埋設
管の外径断面積に相当する範囲の土砂が排土されなけれ
ばならないことになる。この場合、掘削土砂の圧密によ
る体積減少率をαと仮定すれば、 (1−α)πD2 /4 の断面積に相当する範囲の土砂が、前記した空隙断面積
の中に完全に取り込まれなければならない。そのため、
埋設孔の内径、すなわち推進埋設する埋設管の外径Dに
は、下式の制限が付されることになる。The above problem will be described in detail. As shown in FIG. 4, when embedding a buried pipe having an outer diameter D, the cross-sectional area πD 2 /
Sediment in the range of 4 must be completely compacted and discharged to the ground side. From the soil condition of the ground and the lateral compression capacity of the excavator, in the cross section of the ground, if the inner wall of the burial hole can be compressed and expanded to the outer peripheral side, that is, the consolidating depth is t, then π (D + 2t ) 2/4-πD 2/ 4 is capable of forming voids by lateral compression, i.e. becomes the cross-sectional area of the space for accommodating the soil, sediment range corresponding to the outer径断area of buried pipe in the cross-sectional area Will have to be excavated. In this case, assuming the volume reduction rate due compaction drilling soil and alpha, the sediment range corresponding to the cross-sectional area of the (1-α) πD 2/ 4, fully incorporated into the void cross-sectional area described above There must be. for that reason,
The inner diameter of the embedding hole, that is, the outer diameter D of the embedding pipe for propulsion embedding is limited by the following formula.
【0008】 (1−α)πD2 /4≦π(D+2t)2 /4−πD2 /4 すなわち、D≦{2/〔(2−α)0.5 −1〕}t 言い換えると、無排土推進が可能な埋設管の外径Dは、
側方圧縮深さをt、掘削土砂の圧密による体積減少率を
αとしたときには、{2/〔(2−α)0.5 −1〕}t
までと言うことになる。[0008] (1-α) πD 2/ 4 ≦ π (D + 2t) 2/4-πD 2/4 That is, D ≦ {2 / [(2-α) 0.5 -1]} t In other words, no dumping The outer diameter D of the buried pipe that can be propelled is
When the lateral compression depth is t and the volume reduction rate due to consolidation of excavated soil is α, {2 / [(2-α) 0.5 -1]} t
Up to.
【0009】例えば、従来の無排土推進工法における一
般的な条件であるt=5cm、α=0.1(10%)の時
には、外径D=26.4cmまでの埋設管なら無排土推進
が可能であるが、それ以上の外径を有する埋設管では無
排土推進が不可能であると言うことになる。なお、前記
した偏心回転コーンロータを使用して圧密能力を高めた
りして、t=5cm、α=0.15になったとしても、前
式からD=44.6cmまでの埋設管にしか適用できな
い。すなわち、掘削土量が多く、その運搬処分のコスト
が施工コスト全体に大きな比重を占め、無排土工法によ
るメリットが大きいと考えられる、中口径管や大口径管
の場合には、ほとんど無排土推進工法が適用できないと
いうことになってしまう。For example, when t = 5 cm and α = 0.1 (10%), which are the general conditions in the conventional non-burning earth propulsion method, a non-burning earth is required for a buried pipe with an outer diameter D = 26.4 cm. It is possible to propel it, but it means that it is impossible to propel soil-free with a buried pipe having an outer diameter larger than that. Even if t = 5 cm and α = 0.15 are achieved by increasing the compaction capacity by using the eccentric rotating cone rotor, it is applicable only to the buried pipe from the previous formula to D = 44.6 cm. Can not. In other words, the amount of excavated soil is large, the cost of its transportation and disposal occupies a large proportion of the total construction cost, and it is considered that the advantages of the non-removal method are large. The soil propulsion method cannot be applied.
【0010】そこで、この発明の課題は、上記のような
従来の無排土工法における適用管径の限界に関する問題
点を解消し、中・大口径管にも良好に適用できる埋設管
の無排土工法を提供することにある。Therefore, an object of the present invention is to eliminate the above-mentioned problems relating to the limit of the applicable pipe diameter in the conventional soil-free construction method, and to eliminate the use of a buried pipe which can be favorably applied to medium and large diameter pipes. It is to provide earthwork method.
【0011】[0011]
【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる埋設管の無排土推進工法は、地盤内を推
進する掘進機の先端で地盤を掘削し、掘削された土砂を
掘進機内に取り込み、取り込まれた土砂を掘進機の外周
で地盤側に圧密排土し、掘進機の後方に形成される埋設
孔に埋設管を推進埋設していく埋設管の無排土推進工法
において、埋設管よりも外径の大きな先端大径部と、埋
設管とほぼ同じ外径の後方部とを備えた掘進機で、埋設
管の外径よりも大きな掘削径で地盤を掘削し、掘進機内
に取り込まれた土砂の少なくとも一部を、掘進機の先端
大径部よりも後方位置で掘進機の外周に排土する。In order to solve the above-mentioned problems, a buried pipe free earth propulsion method according to the present invention is to excavate the ground at the tip of an excavator for propelling in the ground and to excavate the excavated earth and sand. In the earth-free propulsion method for buried pipes, which is taken into the machine, the soil that has been taken in is compacted and discharged to the ground side on the outer periphery of the machine, and the buried pipe is propulsively buried in the buried hole formed behind the machine. An excavator equipped with a large-diameter tip with a larger outer diameter than the buried pipe and a rear part with an outer diameter almost the same as the buried pipe, excavates the ground with a larger excavation diameter than the outer diameter of the buried pipe, and excavates. At least a part of the earth and sand taken into the machine is discharged to the outer periphery of the excavator at a position rearward of the large-diameter tip of the machine.
【0012】掘進機の基本的な構造は、前記した従来に
おける、地盤の掘削を伴う無排土推進工法と同様のもの
が用いられる。掘進機の先端には、地盤を掘削するビッ
トもしくは掘削刃などを備えた掘削機構が設けられてい
る。掘削機構には、電気モータや油空圧モータなどの駆
動機構が取り付けられている。掘削機構の掘削径は、掘
進機の前方部分を構成する先端大径部の外径とほぼ同じ
か、これより小さく設定されている。掘進機の先端大径
部の外径および掘削機構の掘削径は、推進埋設しようと
する埋設管の外径よりも大きく設定されている。先端大
径部の外径および掘削径は、地盤の土質、掘進機の圧密
能力、あるいは、埋設管の外径などの施工条件によって
決定される。掘削機構で地盤から掘削された土砂は、掘
進機の内部に取り込まれて後方に送られる。As the basic structure of the excavator, the same structure as the above-mentioned conventional discharge-free propulsion method involving excavation of the ground is used. An excavation mechanism including a bit for excavating the ground or an excavation blade is provided at the tip of the excavator. A driving mechanism such as an electric motor or a hydraulic / pneumatic motor is attached to the excavation mechanism. The excavation diameter of the excavation mechanism is set to be substantially the same as or smaller than the outer diameter of the large-diameter tip portion forming the front portion of the excavator. The outer diameter of the large diameter portion at the tip of the excavator and the excavation diameter of the excavation mechanism are set to be larger than the outer diameter of the buried pipe to be propulsively buried. The outer diameter and the excavation diameter of the large-diameter portion at the tip are determined by the soil conditions of the ground, the compaction capacity of the excavator, or the construction conditions such as the outer diameter of the buried pipe. The earth and sand excavated from the ground by the excavation mechanism is taken inside the excavator and sent to the rear.
【0013】掘進機の後方部は、前記先端大径部よりも
外径が小さく、埋設管の外径とほぼ同じ外径になってお
り、掘進機の先端大径部と後方部の間には段差がついて
いる。掘進機の後方部に、順次埋設管が連結されて、掘
進機の推進とともに埋設管が推進埋設されていく。前記
掘削機構で掘削され、掘進機の後方に送られた土砂は、
先端大径部よりも後方位置で掘進機の外周に排土され
る。すなわち、掘進機の先端大径部と後方部との外径の
違いによって生じる段差の垂直壁部分に、掘進機の軸方
向で後方に向かって開口する軸方向排土口、あるいは、
掘進機の後方部外周に開口する後方部排土口などから、
土砂が排土されるようになっている。軸方向排土口は、
掘進機の軸方向と正確に同じ方向を向いているもののほ
か、斜め外側を向いて軸方向に対して傾斜していてもよ
い。後方部排土口は、掘進機の半径方向を向いていても
よいし、斜め後方に向かって傾斜していてもよい。軸方
向および後方部排土口は、掘進機の全周にわたって連続
する環状をなすものでもよいし、円周方向に間隔をあけ
て分割された複数個の排土口が並んでいてもよい。な
お、掘進機には、従来の掘進機と同様に、掘進機の最外
周となる先端大径部の外周面に放射方向に向かって開口
する最外周排土口を、前記軸方向排土口や後方部排土口
とともに設けておくこともできる。The rear portion of the excavator has a smaller outer diameter than the large-diameter portion at the tip and has an outer diameter substantially the same as the outer diameter of the buried pipe. Has a step. The buried pipes are sequentially connected to the rear part of the excavator, and the buried pipes are propulsively buried along with the promotion of the excavator. The earth and sand excavated by the excavation mechanism and sent to the rear of the excavator,
It is discharged to the outer periphery of the excavator at a position rearward of the large diameter tip. That is, in the vertical wall portion of the step caused by the difference in outer diameter between the large-diameter tip portion and the rear portion of the excavator, an axial soil outlet opening rearward in the axial direction of the excavator, or
From the rear soil discharge port that opens to the outer periphery of the rear part of the excavator,
The earth and sand are being discharged. The axial outlet is
In addition to being oriented in exactly the same direction as the axial direction of the excavator, it may be inclined outward and inclined with respect to the axial direction. The rear soil discharge port may be oriented in the radial direction of the excavator or may be inclined obliquely rearward. The axial and rear soil discharge ports may be formed in a continuous annular shape over the entire circumference of the excavator, or a plurality of soil discharge ports divided at intervals in the circumferential direction may be arranged. Incidentally, in the excavator, as in the case of the conventional excavator, the outermost peripheral soil discharge port that is opened in the radial direction on the outer peripheral surface of the tip large diameter portion that is the outermost periphery of the machine is the axial soil discharge port. It can also be installed along with the rear soil discharge port.
【0014】掘進機の先端大径部よりも後方位置で排土
された土砂は、地盤側に圧密されて埋設孔の内壁を構成
し、この埋設孔に埋設管が推進されていく。掘進機の内
部で土砂の通過部分に、偏心回転するコーンロータを設
けておくことができる。コーンロータは、掘削機構の後
方に位置する先端側が尖った概略円錐形をなし、後方の
外周先端が排土口の近くに配置される。コーンロータ
は、前記掘削機構と同様にモータなどの駆動機構で回転
されるとともに、コーンロータの中心軸が駆動機構の回
転軸に対して少し偏心して取り付けられる。コーンロー
タが偏心回転すると、土砂を攪拌粉砕しながら、コーン
ロータの円錐外形に沿って後方外周側へと送り、排土口
から地盤側に強い圧力を加えながら土砂を排土すること
ができる。すなわち、コーンロータには優れた圧密作用
がある。コーンロータの外壁構造は、土砂あるいは礫石
などの衝撃に耐える材料で構成し、礫石などを粉砕でき
るような突起や凹凸形状を設けておくことができる。The earth and sand discharged at a position rearward of the large diameter portion of the excavator is compacted on the ground side to form an inner wall of the burial hole, and the burial pipe is propelled into the burial hole. An eccentrically rotating cone rotor can be provided in the earth and sand passage portion inside the excavator. The cone rotor has a substantially conical shape with a sharp tip located on the rear side of the excavation mechanism, and the rear outer peripheral tip is arranged near the soil discharge port. The cone rotor is rotated by a drive mechanism such as a motor as in the excavation mechanism, and the central axis of the cone rotor is attached so as to be slightly eccentric with respect to the rotation axis of the drive mechanism. When the cone rotor rotates eccentrically, the earth and sand can be discharged to the rear outer peripheral side along the conical outer shape of the cone rotor while stirring and crushing the earth and sand, and applying strong pressure from the earth discharging port to the ground side. That is, the cone rotor has an excellent compaction effect. The outer wall structure of the cone rotor is made of a material such as earth and sand or pebbles that can withstand impact, and can be provided with projections and uneven shapes for crushing pebbles and the like.
【0015】上記コーンロータの代わりに、油圧シリン
ダなどで作動する圧密板を、土砂の通過経路で円周上に
並べて設置しておき、各圧密板を半径方向に作動させ
て、土砂を外周側に押しやり、地盤側への圧密作用を高
めることもできる。その他にも、土砂を地盤側へと効率
的に圧密できる機構を備えておけば、好ましい。掘進機
には、上記構造のほかに、掘進機の推進方向を制御する
方向制御機構や、掘進機の推進方向を測量する測量機
構、掘進機に電源や油圧を供給するための配線ケーブル
や配管、掘進機に埋設管を連結支持するための連結機構
など、通常の掘進機と同様の各種機構を設けておくこと
ができる。Instead of the above-mentioned cone rotor, compaction plates which are operated by hydraulic cylinders or the like are arranged side by side on the circumference of the earth and sand passage path, and each compaction plate is actuated in the radial direction so that the soil and sand on the outer peripheral side. It can also be pushed to the ground to enhance the consolidation effect on the ground side. In addition, it is preferable to provide a mechanism capable of efficiently consolidating the earth and sand to the ground side. In addition to the above structure, the excavator has a direction control mechanism that controls the propulsion direction of the excavator, a surveying mechanism that measures the propulsion direction of the excavator, and wiring cables and piping for supplying power and hydraulic pressure to the excavator. It is possible to provide various mechanisms similar to those of a normal excavator, such as a connecting mechanism for connecting and supporting the buried pipe to the excavator.
【0016】掘進機に推進力を与えるには、掘進機の後
方に連結した埋設管列の最後尾を、立坑内に設置された
元押しジャッキなどで押圧してもよいし、掘進機の後方
で、埋設管列の内部に鋼管などからなる推進軸体を順次
連結しておき、推進軸体の最後尾を、前記元押しジャッ
キなどで押圧してもよい。この場合、埋設管列は、推進
軸体とは別個に元押しジャッキで押圧してもよいし、埋
設管列の最先端を掘進機に固定しておき、掘進機の推進
に伴って埋設管列を牽引するようにしてよい。さらに、
埋設管列を、その内部に通された推進軸体に保持固定さ
せておき、推進軸体の推進とともに埋設管列を推進させ
ることもできる。このように埋設管列を推進軸体に保持
固定させる方法およびその具体的構造は、本願出願人が
先に特許出願している、特願昭63−298619号、
特願平1−183271号等に詳しく開示されている。In order to give propulsion to the excavator, the tail end of the buried pipe row connected to the rear of the excavator may be pushed by a source push jack or the like installed in the shaft, or at the rear of the excavator. Then, the propulsion shaft body made of a steel pipe or the like may be sequentially connected to the inside of the buried pipe row, and the tail end of the propulsion shaft body may be pressed by the original push jack or the like. In this case, the buried pipe row may be pressed by the push jack separately from the propulsion shaft body, or the tip of the buried pipe row may be fixed to the excavator and the buried pipe row may be moved along with the propulsion of the excavator. Rows may be towed. further,
It is also possible to hold and fix the embedded pipe row on the propulsion shaft body that is passed through the inside thereof, and to propel the embedded pipe row together with the propulsion of the propulsion shaft body. As described above, the method of holding and fixing the embedded pipe row to the propulsion shaft body and its specific structure are described in Japanese Patent Application No. 63-2981919, which has been previously filed by the applicant of the present application.
The details are disclosed in Japanese Patent Application No. 1-183271, etc.
【0017】埋設管の材料は、ヒューム管、鋼管、強化
プラスチック管、塩ビ管その他、通常の推進工法で利用
されている各種の管材料が使用でき、埋設管の用途も、
下水管、ガス管、電線管その他の任意の地中埋設管に適
用できる。As the material of the buried pipe, various kinds of pipe materials used in the ordinary propulsion method such as a fume pipe, a steel pipe, a reinforced plastic pipe, a vinyl chloride pipe and the like can be used.
It can be applied to sewer pipes, gas pipes, conduit pipes, and any other underground pipes.
【0018】[0018]
【作用】掘進機により、埋設管の外径よりも大きな掘削
径で地盤を掘削し、掘進機の先端大径部が推進されてい
くと、先端大径部の外径は、掘進機の後方部および埋設
管の外径よりも大きいので、先端大径部の外径と埋設管
の外径の間に段差すなわち空隙が生じる。この先端大径
部よりも後方位置に形成される空隙部分に土砂を排土す
れば、土砂には地盤側から大きな抵抗が加わらず、極め
てスムーズに排土されて埋設管列の外周を覆うことにな
り、推進に必要な推進力を削減することができる。[Operation] When the excavator excavates the ground with an excavation diameter larger than the outer diameter of the buried pipe and the tip large diameter portion of the excavator is propelled, the outer diameter of the tip large diameter portion becomes rear of the excavator. Since it is larger than the outer diameters of the portion and the buried pipe, a step, that is, a gap is formed between the outer diameter of the large diameter tip portion and the outer diameter of the buried pipe. If earth and sand are discharged into the voids formed behind the large diameter part of the tip, the earth and sand will not be subjected to a large resistance and the soil will be discharged very smoothly to cover the outer circumference of the buried pipe row. Therefore, it is possible to reduce the propulsive force required for propulsion.
【0019】また、掘進機の先端大径部の外径と埋設管
の外径との間に出来る空隙が圧密空間として利用できる
ので、掘進機の推進力もしくは圧密能力が小さくても、
必要とする外径の埋設孔が確実に形成でき、前記した従
来方法のように、適用可能な埋設管の外径に制限を受け
ることがない。このことを、図3にしたがって詳しく説
明する。掘進機の前方部外径すなわち掘削径をD1 、埋
設管の外径すなわち埋設孔の内径をD、前記地盤の圧密
可能深さをt、圧密による掘削土砂の体積減少率をαと
すると、 π(D1 +2t)2 /4−πD2 /4 が、掘削土砂を圧密排土できる空隙の断面積である。こ
の空隙に対して、圧密排土しなければならない土砂の量
は、体積減少率を考慮して、 (1−α)πD1 2 /4となる。Further, since the gap formed between the outer diameter of the large diameter portion of the tip of the excavator and the outer diameter of the buried pipe can be used as a compaction space, even if the propulsion force or compaction capacity of the excavator is small,
A buried hole having a required outer diameter can be reliably formed, and the outer diameter of the applicable buried pipe is not limited as in the conventional method described above. This will be described in detail with reference to FIG. When the outer diameter of the front part of the excavator, that is, the excavation diameter is D 1 , the outer diameter of the buried pipe, that is, the inner diameter of the buried hole is D, the consolidable depth of the ground is t, and the volume reduction rate of the excavated soil due to consolidation is α, π (D 1 + 2t) 2 /4-πD 2/4 is a cross-sectional area of the voids drilling sand can compaction dumping. For this gap, the amount of sediment that must be compacted earth removal, taking into account the volume reduction ratio, a (1-α) πD 1 2 /4.
【0020】そこで、下記の条件が成立する必要があ
る。 (1−α)πD1 2 /4≦π(D1 +2t)2 /4−πD2 /4 ここで、D1 =βD、t/D=γとおくと、上式は、 (1−α)β2 ≦(β+2γ)−1 と書き替えることができる。Therefore, the following conditions must be satisfied. (1-α) πD 1 2 /4 ≦ π (D 1 + 2t) 2/4-πD 2/4 , where, D 1 = βD, putting the t / D = γ, the above equation, (1-alpha ) Β 2 ≦ (β + 2γ) −1 can be rewritten.
【0021】さらに、上式を整理して、物理的意味を考
慮すれば、β≧{〔4γ2 +α(1−4γ2 )〕0.5 −
2γ}/αという条件のもとで、完全な無排土推進が可
能になる。具体的には、例えば、埋設管の外径D=65
cm、圧縮深さt=5cm、体積減少率α=0.1とすれ
ば、β≧1.944となり、掘進機の掘削径D1 をD1
=126.4cm以上に設定しておけばよいことになる。
同様に、t=8cm、α=0.15、D=100cmの場合
には、β=1.696で、掘削径D1 を約170cmに設
定しておけばよいことになる。Further, by rearranging the above equations and considering the physical meaning, β ≧ {[4γ 2 + α (1-4γ 2 )] 0.5 −
Under the condition of 2γ} / α, it is possible to completely promote soil-free soil. Specifically, for example, the outer diameter of the buried pipe D = 65
cm, compression depth t = 5 cm, volume reduction rate α = 0.1, β ≧ 1.944, and the excavator excavation diameter D 1 is D 1
= 126.4 cm or more should be set.
Similarly, when t = 8 cm, α = 0.15 and D = 100 cm, β = 1.696 and the excavation diameter D 1 should be set to about 170 cm.
【0022】何れにしても、埋設管の外径Dと地盤条件
などに合わせて、掘進機の掘削径D 1 を適当に設定すれ
ば、確実に無排土推進が可能になるのであり、従来の無
排土推進工法のように、埋設管の適用外径に理論的な限
界が生じることはない。また、埋設管の外径が同じであ
れば、従来の方法に比べて掘削土砂の圧密度合が少なく
て済むので、圧密に要するエネルギーすなわち推進力や
コーンロータの駆動力などが小さくて済み、推進機構や
駆動機構の装置コストおよび稼動コストを低減すること
ができる。In any case, the outer diameter D of the buried pipe and the ground condition
Excavator diameter D according to 1Should be set appropriately
If this is the case, it will be possible to reliably promote non-removing soil, and
There is a theoretical limit to the outer diameter of the buried pipe, such as the earthmoving propulsion method.
The world does not occur. Also, the outside diameter of the buried pipe is the same.
If this is the case, the density of excavated soil will be less than that of the conventional method.
Energy required for consolidation, that is, the driving force,
The driving force of the cone rotor is small, and the propulsion mechanism and
To reduce the equipment cost and operating cost of the drive mechanism
You can
【0023】[0023]
【実施例】ついで、この発明の実施例を、図面を参照し
ながら以下に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0024】図1は、施工状態における掘進機部分の構
造を示しており、地盤E内を推進する掘進機1は、先端
大径部10と、先端大径部10よりも外径の小さな後方
部20とからなる。先端大径部10の先端には、多数の
ビット31を備えた掘削機構30が取り付けられてい
る。掘削機構30は後方に設置されたモータ40によっ
て回転駆動される。掘削機構30には土砂取込口32が
開口しており、掘削された土砂を掘進機1内部に取り込
む。FIG. 1 shows the structure of the excavator portion in a construction state. The excavator 1 propelling in the ground E has a large tip portion 10 and a rear portion having a smaller outer diameter than the large tip portion 10. And part 20. An excavation mechanism 30 including a large number of bits 31 is attached to the tip of the tip large diameter portion 10. The excavation mechanism 30 is rotationally driven by a motor 40 installed at the rear. The excavation mechanism 30 has a sediment intake port 32 that takes in the excavated soil into the excavator 1.
【0025】掘削機構30の後方にはコーンロータ50
が取り付けられ、掘削機構30と同様にモータ40で回
転駆動される。コーンロータ50は、先端が尖った円錐
形をなしている。掘削機構30およびコーンロータ50
の外周を覆う、掘進機1の先端大径部10の内周面12
は、コーンロータ50とは逆に、後方側に向かって狭ま
る円錐形をなしている。したがって、掘削機構30の後
方に送りこまれた土砂は、先端大径部10の内周面12
とコーンロータ50で挟まれたテーパー状の空間を、よ
り狭い後方側へと移動する。コーンロータ50はモータ
40の回転軸に対して少し偏心して取り付けられてお
り、コーンロータ50全体が偏心回転するようになって
いる。そのため、コーンロータ50の外周に沿って後方
へと送られる土砂は、コーンロータ50の偏心回転に伴
う半径方向の力を受ける。このような過程を経て、土砂
もしくは礫石が細かく砕かれたり、圧密作用を受ける。Behind the excavation mechanism 30 is a cone rotor 50.
Is attached, and is driven to rotate by a motor 40 like the excavation mechanism 30. The cone rotor 50 has a conical shape with a sharp tip. Excavation mechanism 30 and cone rotor 50
Inner peripheral surface 12 of the large-diameter tip 10 of the machine 1 that covers the outer periphery of the
Has a conical shape that narrows toward the rear side, contrary to the cone rotor 50. Therefore, the earth and sand sent to the rear of the excavation mechanism 30 has the inner peripheral surface 12 of the tip large diameter portion 10.
The tapered space sandwiched by the cone rotor 50 moves toward a narrower rear side. The cone rotor 50 is attached so as to be slightly eccentric with respect to the rotation shaft of the motor 40, and the entire cone rotor 50 is eccentrically rotated. Therefore, the earth and sand sent rearward along the outer periphery of the cone rotor 50 receives a radial force associated with the eccentric rotation of the cone rotor 50. Through such a process, the earth and sand or gravel stones are finely crushed or subjected to a compaction action.
【0026】掘進機1の先端大径部10と後方部20と
の段差部分の直ぐ後方で、後方部20の外周に後方部排
土口60が開口している。コーンロータ50に沿って後
方に移動した土砂は、後方部排土口60から地盤側へと
排土される。排土された土砂は、先端大径部10の外径
と後方部20の外周との間に生じる空隙に収容され他状
態で圧密され、後方部20の後方に連結される埋設管
(図示せず)の外径に相当する埋設孔が形成される。Immediately behind the stepped portion between the large-diameter tip portion 10 and the rear portion 20 of the excavator 1, a rear soil discharge port 60 is opened on the outer periphery of the rear portion 20. The earth and sand moved rearward along the cone rotor 50 is discharged from the rear soil discharge port 60 to the ground side. The discharged earth and sand is housed in a gap formed between the outer diameter of the tip large-diameter portion 10 and the outer periphery of the rear portion 20, is compacted in other states, and is buried in the rear portion of the rear portion 20 (not shown). The buried hole corresponding to the outer diameter of (d) is formed.
【0027】掘進機1の後方部20は、先端大径部10
に固定された前筒部22と、埋設管列を連結する後筒部
24が、方向制御ジャッキ26で屈曲自在に連結されて
おり、前筒部22すなわち先端大径部10および掘削機
構30が自由に首を振れるようになっていて、推進方向
の修正が容易に行える。上記のような構造を有する掘進
機1を用いて埋設管の推進埋設を行うと、掘削機構30
で先端大径部10の外径に相当する範囲の地盤を掘削
し、掘削された土砂は、掘削機構30の土砂取込口32
から掘進機1内部に取り込まれる。土砂はコーンロータ
50に沿って後方に送られるとともに、コーンロータ5
0の偏心回転により外周方向へと押しやられる。後方部
排土口60まで送られた土砂は、先端大径部10と後方
部20の間の段差によって形成された空隙部分に送り出
される。排土された土砂および地盤の内壁部分の一定厚
みまでが圧密されることによって、掘削された土砂の全
体が、埋設管の外周部分に完全に圧密される。このよう
にして、掘進機1が推進されるとともに、推進機1の後
方に形成される埋設孔に埋設管が推進埋設されていき、
掘進機1で掘削された土砂は埋設管の外周部分に完全に
埋め戻される。The rear portion 20 of the excavator 1 has a large-diameter tip portion 10
The front cylinder portion 22 fixed to the rear cylinder portion 24 and the rear cylinder portion 24 for connecting the buried pipe row are flexibly connected by the direction control jack 26, and the front cylinder portion 22, that is, the large tip end diameter portion 10 and the excavation mechanism 30 are connected to each other. You can freely swing your head, and you can easily correct the propulsion direction. When the excavator 1 having the above-described structure is used to perform propulsive embedding of the embedding pipe, the excavation mechanism 30
The earth in the range corresponding to the outer diameter of the tip large diameter portion 10 is excavated, and the excavated earth and sand is collected by the earth and sand intake port 32 of the excavation mechanism 30.
It is taken into the inside of the excavator 1. The earth and sand are sent rearward along the cone rotor 50 and the cone rotor 5
The eccentric rotation of 0 pushes it toward the outer circumference. The earth and sand sent to the rear soil discharge port 60 is sent out to the void portion formed by the step between the large-diameter tip portion 10 and the rear portion 20. The excavated earth and sand and the inner wall portion of the ground are compacted to a certain thickness, whereby the whole excavated earth and sand is completely compacted on the outer peripheral portion of the buried pipe. In this way, the excavator 1 is propelled, and the buried pipe is propelled and buried in the buried hole formed behind the propulsion machine 1.
The earth and sand excavated by the excavator 1 is completely backfilled in the outer peripheral portion of the buried pipe.
【0028】つぎに、図2に示す実施例では、前記実施
例と排土口の構造が異なっている。すなわち、この実施
例では、先端大径部10と後方部20の段差部分に存在
する垂直壁部分に、掘進機1の軸方向で後方を向いて開
口した軸方向排土口64を備えている。軸方向排土口6
4から後方に向かって送り出される土砂は、地盤からの
抵抗力が小さくなるので、排土がスムーズに行える。ま
た、この実施例では、先端大径部10の外周、すなわち
掘進機1の最外周面に開口する最外周排土口62を備え
ている。したがって、掘削機構30で掘削された土砂の
うち、一部は軸方向排土口64から排土され、残りの一
部は最外周排土口62から排土されることになる。Next, in the embodiment shown in FIG. 2, the structure of the soil discharge port is different from that of the above embodiment. That is, in this embodiment, the vertical wall portion existing in the step portion between the large-diameter tip portion 10 and the rear portion 20 is provided with the axial soil discharge port 64 which is open rearward in the axial direction of the excavator 1. . Axial soil discharge port 6
Since the resistance force from the ground becomes small, the earth and sand sent from 4 toward the rear can be smoothly discharged. Further, in this embodiment, the outermost earth unloading port 62 is provided which is open to the outer periphery of the large-diameter tip portion 10, that is, the outermost peripheral surface of the machine 1. Therefore, a part of the earth and sand excavated by the excavation mechanism 30 is discharged from the axial soil discharge port 64, and the remaining part is discharged from the outermost periphery soil discharge port 62.
【0029】[0029]
【発明の効果】以上の述べた、この発明にかかる埋設管
の無排土推進工法によれば、埋設管の外径よりも大きな
掘削径で地盤を掘削し、掘削された土砂を、掘進機の先
端大径部と埋設管の外径との間に構成される空隙を利用
して、地盤側に圧密して排土するようにしているので、
土砂の圧密排土が非常にスムーズに行える。特に、埋設
管の外径に合わせて、掘進機の先端大径部と掘削径を適
当に選択するだけで、いかなる口径の埋設管でも容易に
推進埋設することが出来るので、従来の無排土推進工法
では適用困難であった、中口径あるいは大口径の埋設管
に対しても無排土で推進埋設することが可能になる。As described above, according to the earthless earth propulsion method for a buried pipe according to the present invention, the ground is excavated with a larger excavation diameter than the outer diameter of the buried pipe, and the excavated earth and sand is excavated. Since the gap formed between the large diameter part of the tip and the outer diameter of the buried pipe is used to consolidate and discharge the soil on the ground side,
Consolidation of soil and soil can be discharged very smoothly. In particular, by simply selecting the tip large diameter part of the excavator and the excavation diameter according to the outer diameter of the buried pipe, it is possible to easily perform propulsive embedding of a buried pipe of any diameter. It is possible to bury the medium or large diameter buried pipe, which was difficult to apply by the propulsion method, without discharging soil.
【図1】この発明の実施例を示す施工状態の断面図であ
る。FIG. 1 is a cross-sectional view of a construction state showing an embodiment of the present invention.
【図2】別の実施例を示す施工状態の断面図である。FIG. 2 is a cross-sectional view of a construction state showing another embodiment.
【図3】この発明における土砂の圧密状態を説明する埋
設孔の断面図である。FIG. 3 is a cross-sectional view of an embedding hole for explaining a consolidated state of earth and sand according to the present invention.
【図4】従来の方法における土砂の圧密状態を説明する
埋設孔の断面図である。FIG. 4 is a cross-sectional view of an embedding hole for explaining a consolidated state of earth and sand in a conventional method.
1 掘進機 10 先端大径部 20 後方部 30 掘削機構 60 後方部排土口 62 最外周排土口 64 軸方向排土口 E 地盤 1 excavator 10 tip large diameter part 20 rear part 30 excavation mechanism 60 rear part soil discharge port 62 outermost periphery soil discharge port 64 axial direction soil discharge port E ground
Claims (1)
掘削し、掘削された土砂を掘進機内に取り込み、取り込
まれた土砂を掘進機の外周で地盤側に圧密排土し、掘進
機の後方に形成される埋設孔に埋設管を推進埋設してい
く埋設管の無排土推進工法において、埋設管よりも外径
の大きな先端大径部と、埋設管とほぼ同じ外径の後方部
とを備えた掘進機で、埋設管の外径よりも大きな掘削径
で地盤を掘削し、掘進機内に取り込まれた土砂の少なく
とも一部を、掘進機の先端大径部よりも後方位置で掘進
機の外周に排土することを特徴とする埋設管の無排土推
進工法。1. A ground excavator is excavated at the tip of an excavator that propels in the ground, the excavated earth and sand is taken into the excavator, and the taken in sand is compacted and discharged to the ground side at the outer periphery of the excavator, and the excavator is excavated. In the non-removal earth propulsion method of a buried pipe, in which a buried pipe is propelled and buried in the buried hole formed in the rear of the, the large tip of the tip with a larger outer diameter than the buried pipe and the rear of the outer diameter almost the same as the buried pipe The excavator equipped with a section excavates the ground with an excavation diameter larger than the outer diameter of the buried pipe, and at least a part of the earth and sand taken into the excavator is located at a position rearward from the large-diameter tip of the excavator. The earth-free propulsion method for buried pipes, which is characterized in that the earth is discharged to the outer periphery of the excavator.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2401711A JPH0721280B2 (en) | 1990-12-12 | 1990-12-12 | Non-removal soil promotion method for buried pipes |
US07/803,884 US5211510A (en) | 1990-12-12 | 1991-12-09 | Propulsion method of pipe to be buried without soil discharge and an excavator |
AU88939/91A AU634916B2 (en) | 1990-12-12 | 1991-12-10 | Propulsion method of pipe to be buried without soil discharge and an excavator |
EP91121388A EP0490390B1 (en) | 1990-12-12 | 1991-12-12 | Propulsion method of pipe to be buried without soil discharge and an excavator |
DE69117691T DE69117691T2 (en) | 1990-12-12 | 1991-12-12 | Process for driving a pipe to be excavated without excavation and digging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2401711A JPH0721280B2 (en) | 1990-12-12 | 1990-12-12 | Non-removal soil promotion method for buried pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04213694A JPH04213694A (en) | 1992-08-04 |
JPH0721280B2 true JPH0721280B2 (en) | 1995-03-08 |
Family
ID=18511548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2401711A Expired - Fee Related JPH0721280B2 (en) | 1990-12-12 | 1990-12-12 | Non-removal soil promotion method for buried pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0721280B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711888A (en) * | 1993-06-25 | 1995-01-13 | Kajima Corp | Shielding machine |
JPH0711885A (en) * | 1993-06-25 | 1995-01-13 | Kajima Corp | Shielding machine |
JPH0711890A (en) * | 1993-06-25 | 1995-01-13 | Kajima Corp | Shielding machine |
JPH0711884A (en) * | 1993-06-25 | 1995-01-13 | Kajima Corp | Shielding machine |
JPH0711883A (en) * | 1993-06-25 | 1995-01-13 | Kajima Corp | Shielding machine |
KR100449002B1 (en) * | 2002-02-08 | 2004-09-18 | 조복래 | A tunnelling method for the small sized tunnel and its apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625596A (en) * | 1979-08-04 | 1981-03-11 | Hazama Gumi | Method of construction of covering tunnel |
JPS5729797A (en) * | 1980-07-24 | 1982-02-17 | Hitachi Construction Machinery | Tunnel excavator |
JPS60181490A (en) * | 1984-02-24 | 1985-09-17 | 日本電信電話株式会社 | Pipe embedding apparatus |
JPH0718316B2 (en) * | 1988-06-22 | 1995-03-01 | 株式会社イセキ開発工機 | Drilling method and device |
-
1990
- 1990-12-12 JP JP2401711A patent/JPH0721280B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04213694A (en) | 1992-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0490390B1 (en) | Propulsion method of pipe to be buried without soil discharge and an excavator | |
JPH0721280B2 (en) | Non-removal soil promotion method for buried pipes | |
JP2647692B2 (en) | Underground pipe laying replacement method and equipment | |
JPH10220173A (en) | Buried pipe construction combined muddy water pressure pipe jacking method and device thereof | |
JP7290621B2 (en) | rock excavator | |
JP3940681B2 (en) | Rectangular cross-section excavator | |
JP3517126B2 (en) | Underground pipe renewal method and underground excavation device | |
JP3454442B2 (en) | Excavation method and device for large section underground space | |
JP2652513B2 (en) | Shield construction method for removal of existing pipes and construction of new pipes | |
JP3546998B2 (en) | Gravel shield machine | |
JP7396709B1 (en) | Ground drilling method, drilling control device for ground drilling equipment, and its program | |
JPH037797B2 (en) | ||
JP3108735B2 (en) | Reconstruction method of large diameter sewer | |
JP2004169455A (en) | Mud type pipe jacking method and boring machine | |
JPH042160B2 (en) | ||
JP6400151B1 (en) | Excavation equipment for both earth removal and no earth removal | |
JPH0893398A (en) | Peripheral wall structure of foundation of large sectional underground space, excavation method and device thereof | |
JP3568844B2 (en) | Excavator and buried pipe | |
JPH0696949B2 (en) | Construction method of rectangular section tunnel and shield machine used for it | |
JP3137731B2 (en) | Existing tunnel removal shield machine | |
JP3245528B2 (en) | Starting method of shield excavator from branch tunnel entrance | |
JP2002061485A (en) | Earth-retaining wall excavation method and tunnel excavator | |
JP3776815B2 (en) | Shield machine | |
JPH083352B2 (en) | Installation replacement device for buried pipes | |
JP3253544B2 (en) | Bent tube propulsion machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |