JPH07211988A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH07211988A
JPH07211988A JP730594A JP730594A JPH07211988A JP H07211988 A JPH07211988 A JP H07211988A JP 730594 A JP730594 A JP 730594A JP 730594 A JP730594 A JP 730594A JP H07211988 A JPH07211988 A JP H07211988A
Authority
JP
Japan
Prior art keywords
active layer
layer
light emitting
semiconductor light
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP730594A
Other languages
Japanese (ja)
Inventor
Mitsuru Egawa
満 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP730594A priority Critical patent/JPH07211988A/en
Publication of JPH07211988A publication Critical patent/JPH07211988A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an InGaAs type semiconductor light emitting element having a high characteristic temperature and high light emitting efficiency by forming its active layer of InGaAs or InGaAsP and clad layers of ZnSSe of ZnCdSSe. CONSTITUTION:A semiconductor light emitting element is provided with clad layers 3 and 5 on both sides of an active layer 4. The active layer 4 is formed of InGaAs or InGaAsP and the clad layers 3 and 5 are formed of ZnSSe or ZnCdSSe. Or, after successively depositing the clad layers 3 and 5 composed of ZnSSe on a substrate 1 composed of GaAs, the active layer 4 having a different lattice constant front that of the layers 3 and 5 and composed of Inlays is deposited on the layers 3 and 5. Therefore, the difference in refractive index between the active layer 4 and clad layers 3 and 5 can be increased and large conductive zone offset energy can be realized while an appropriate lattice constant difference is maintained between the active layer 4 and clad layers 3 and 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はII-VI 族化合物半導体を
クラッド層としInGaAs系のIII-V 族化合物半導体
を活性層とする特性温度が高い半導体発光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device having a high characteristic temperature, which comprises a II-VI group compound semiconductor as a cladding layer and an InGaAs III-V group compound semiconductor as an active layer.

【0002】波長1.3μm帯の双方向通信の加入者系
の装置中で使用される発光素子,例えば半導体レーザに
は,InGaAs系のIII-V 族化合物半導体を活性層と
する半導体発光素子が注目されている。
A light emitting element used in a subscriber system device for bidirectional communication of a wavelength of 1.3 μm, for example, a semiconductor laser includes a semiconductor light emitting element using an InGaAs type III-V group compound semiconductor as an active layer. Attention has been paid.

【0003】かかる双方向通信の加入者系の装置で使用
される半導体レーザのように,広範な温度範囲において
使用され,かつ厳しい特性が要求される半導体発光素子
には,特に環境温度によるしきい値電流及び光出力等の
変動が小さいことが要求される。
A semiconductor light-emitting element used in a wide temperature range and required to have strict characteristics, such as a semiconductor laser used in such a two-way communication subscriber system device, has a threshold depending on the ambient temperature. It is required that the fluctuations of the value current and the light output are small.

【0004】このため,特性温度が高いInGaAs系
の半導体発光素子が必要とされている。
Therefore, there is a need for an InGaAs semiconductor light emitting device having a high characteristic temperature.

【0005】[0005]

【従来の技術】波長1.3μm帯で使用される特性温度
の高い半導体レーザとして,GaAs基板を用いた歪I
nGaAs半導体レーザが有望とされ開発が進められて
いる。この歪InGaAs半導体レーザは,GaAs基
板上に堆積されたGaAs層又はInGaP層をクラッ
ド層とし,クラッド層上にエピタキシャル成長された,
クラッド層と異なる格子定数を有するInGaAs薄層
を活性層とするもので,活性層であるInGaAs薄層
は大きな歪を有している。
2. Description of the Related Art As a semiconductor laser having a high characteristic temperature used in a wavelength band of 1.3 μm, a strain I using a GaAs substrate is used.
The nGaAs semiconductor laser is promising and is being developed. This strained InGaAs semiconductor laser has a GaAs layer or an InGaP layer deposited on a GaAs substrate as a cladding layer and is epitaxially grown on the cladding layer.
The InGaAs thin layer having a lattice constant different from that of the clad layer is used as the active layer, and the InGaAs thin layer which is the active layer has a large strain.

【0006】しかし,クラッド層がGaAs又はInG
aPからなる従来の歪InGaAs半導体レーザでは,
活性層とクラッド層との間の伝導帯の最低エネルギ準位
の差(以下「伝導帯オフセットエネルギ」という)が小
さいため,活性層からクラッド層への電子のオーバフロ
ーが大きく,半導体発光素子の特性温度を十分高くする
ことは困難であった。
However, the cladding layer is GaAs or InG.
In the conventional strained InGaAs semiconductor laser made of aP,
Since the difference in the lowest energy level of the conduction band between the active layer and the cladding layer (hereinafter referred to as "conduction band offset energy") is small, the overflow of electrons from the active layer to the cladding layer is large, and the characteristics of the semiconductor light emitting device It was difficult to raise the temperature sufficiently.

【0007】電子のオーバフローを抑制して特性温度を
高くするには,禁制帯幅の大きな化合物半導体をクラッ
ド層として使用し,伝導帯オフセットエネルギを大きく
することが有効である。ところが,禁制帯幅の大きなII
I-V 族化合物半導体をクラッド層として用いる場合,活
性層であるInGaAsとの格子定数の差異が大きくな
り過ぎ,結晶欠陥の少ない活性層を形成することが難し
い。
In order to suppress electron overflow and increase the characteristic temperature, it is effective to use a compound semiconductor having a large forbidden band width as a cladding layer and increase the conduction band offset energy. However, II with a large forbidden band
When a group IV compound semiconductor is used as a cladding layer, the difference in lattice constant from InGaAs, which is an active layer, becomes too large, and it is difficult to form an active layer with few crystal defects.

【0008】また,III-V 族化合物半導体であるInG
aAs系結晶の活性層に対して,同じIII-V 族化合物半
導体からなるクラッド層を用いるため,活性層とクラッ
ド層との屈折率の差が小さく,とくに活性層が薄い場合
には有効に光を閉じ込めることができない。このため,
発光効率が低いという問題がある。
Further, InG which is a III-V group compound semiconductor
Since the clad layer made of the same III-V group compound semiconductor is used for the active layer of aAs-based crystal, the difference in the refractive index between the active layer and the clad layer is small. Can't be trapped. For this reason,
There is a problem of low luminous efficiency.

【0009】[0009]

【発明が解決しようとする課題】上述したように,従来
のInGaAs系結晶を活性層とする半導体発光素子で
は,クラッド層にも活性層と同じIII-V 族化合物半導体
が用いられていた。このため,クラッド層と活性層との
屈折率の差が小さく,発光素子の発光効率が小さいとい
う問題がある。また,クラッド層と活性層との格子定数
の差を一定値以内に制限しなければならず,クラッド層
に禁制帯が大きな半導体を用いることができないため,
発光素子の特性温度が低いという欠点がある。
As described above, in the conventional semiconductor light emitting device using the InGaAs type crystal as the active layer, the same III-V group compound semiconductor as that of the active layer is used also for the cladding layer. Therefore, there is a problem that the difference in refractive index between the clad layer and the active layer is small, and the luminous efficiency of the light emitting element is small. In addition, the difference in lattice constant between the clad layer and the active layer must be limited within a certain value, and a semiconductor with a large forbidden band cannot be used for the clad layer.
There is a drawback that the characteristic temperature of the light emitting device is low.

【0010】本発明は,クラッド層にII-VI 族化合物半
導体であるZn1-x Cdx y Se 1-y (x=0の場合
を含む)を用いることにより,活性層とクラッド層との
屈折率の差を大きくし,かつ,クラッド層と活性層との
適切な格子定数の差を保持しつつ大きな伝導帯オフセッ
トエネルギを実現することで,高い特性温度と高い発光
効率とを有するInGaAs系半導体発光素子を提供す
ることを目的としている。
The present invention provides a II-VI group compound semi-conductor for the cladding layer.
Zn which is a conductor1-xCdxSySe 1-y(When x = 0
Is included in the active layer and the cladding layer.
The difference in refractive index is increased, and the difference between the cladding layer and the active layer
Large conduction band offset while maintaining an appropriate lattice constant difference.
Realization of high energy, high characteristic temperature and high light emission
Provide InGaAs semiconductor light emitting device having high efficiency
The purpose is to

【0011】[0011]

【課題を解決するための手段】図2は本発明の実施例断
面図であり,ストライプ型半導体レーザの断面構造を表
している。
FIG. 2 is a sectional view of an embodiment of the present invention and shows a sectional structure of a stripe type semiconductor laser.

【0012】上記課題を解決するために,図2を参照し
て,本発明の第一の構成は,活性層4と,該活性層4を
挟んで設けられたクラッド層3,5とを有する半導体発
光素子において,該活性層4は,InGaAs又はIn
GaAsPからなり,該クラッド層3,5は,ZnSS
e又はZnCdSSeからなることを特徴として構成
し,及び,第二の構成は,第一の構成の半導体発光素子
において,GaAsを基板1とし,該クラッド層3,5
は,該基板1上に堆積されたZnSSeからなり,該活
性層4は,該クラッド層3上に堆積された該クラッド層
3,5と異なる格子定数を有するInGaAsからなる
ことを特徴として構成する。
In order to solve the above problems, referring to FIG. 2, the first structure of the present invention has an active layer 4 and clad layers 3 and 5 sandwiching the active layer 4. In the semiconductor light emitting device, the active layer 4 is InGaAs or In
It is made of GaAsP, and the cladding layers 3 and 5 are made of ZnSS.
e or ZnCdSSe, and the second structure is the semiconductor light emitting device of the first structure in which GaAs is used as the substrate 1 and the cladding layers 3, 5
Is composed of ZnSSe deposited on the substrate 1, and the active layer 4 is composed of InGaAs having a lattice constant different from those of the cladding layers 3 and 5 deposited on the cladding layer 3. .

【0013】[0013]

【作用】本発明に係る半導体発光素子は,III-V 族化合
物半導体であるInGaAsP又はInGaAsを活性
層とし,II-VI 族化合物半導体であるZnCdSSe又
はZnSSeをクラッド層とする。これらのII-VI 族化
合物半導体は,GaAs又はInGaP等のIII-V 族化
合物半導体に較べて低い屈折率を有するから,これらの
II-VI 族化合物半導体をクラッド層とする半導体発光素
子の光閉じ込めの効果は,GaAs又はInGaPをク
ラッド層とする従来の発光素子より大きく,従って高い
発光効率の素子が実現される。
In the semiconductor light emitting device according to the present invention, InGaAsP or InGaAs which is a III-V group compound semiconductor is used as an active layer, and ZnCdSSe or ZnSSe which is a II-VI group compound semiconductor is used as a cladding layer. These II-VI group compound semiconductors have a lower refractive index than III-V group compound semiconductors such as GaAs or InGaP.
The light confining effect of the semiconductor light emitting device having the II-VI group compound semiconductor as the clad layer is greater than that of the conventional light emitting device having the clad layer of GaAs or InGaP, and thus a device having high luminous efficiency is realized.

【0014】他方,II-VI 族化合物半導体とIII-V 族化
合物半導体とのヘテロ接合のエネルギバンド構造,とく
にZnCdSSe又はZnSSeとInGaAsP又は
InGaAsとのヘテロ接合におけるエネルギーバンド
構造は未だ明確にされておらず,かかるヘテロ接合が発
光素子に必要なキャリア閉じ込め効果を有するか否かは
不明であった。このため,未だ上記化合物半導体をダブ
ルヘテロ構造の半導体発光素子に適用した試みは報告さ
れておらず,かかる素子が如何なる特性を有するかも不
明である。
On the other hand, the energy band structure of the heterojunction between the II-VI group compound semiconductor and the III-V group compound semiconductor, especially the energy band structure of the heterojunction between ZnCdSSe or ZnSSe and InGaAsP or InGaAs, has not been clarified yet. First, it was unclear whether such a heterojunction had the carrier confinement effect required for light emitting devices. Therefore, no attempt to apply the above compound semiconductor to a semiconductor light emitting device having a double hetero structure has been reported yet, and it is unclear what characteristics such a device has.

【0015】本発明の発明者は,ZnSSeとInGa
Asとのヘテロ接合におけるエネルギバンドを計算し,
そのエネルギーバンド構造を明らかにした。その結果,
このヘテロ接合において,キャリア閉じ込めに十分な伝
導帯オフセットエネルギを生ずることを明確にしたので
ある。以下,その計算の内容について説明する。
The inventors of the present invention have found that ZnSSe and InGa
Calculate the energy band at the heterojunction with As,
The energy band structure was clarified. as a result,
In this heterojunction, it was clarified that sufficient conduction band offset energy was generated for carrier confinement. The contents of the calculation will be described below.

【0016】図1は本発明の原理説明図であり,図1
(イ)はGaAs基板表面にZnSySe1-y (y=
0.06)からなるクラッド層,In1-x'Gax'As
(x' =0.5)からなる活性層,ZnSy Se
1-y (y=0.06)からなるクラッド層を順次堆積し
て作製したヘテロ構造のエネルギバンド構造の計算結果
の概要を表し,図1(ロ)はその構造における各堆積層
の屈折率,即ち屈折率分布を表している。
FIG. 1 is a diagram for explaining the principle of the present invention.
(A) is ZnS y Se 1-y (y =
0.06) clad layer, In 1-x ' Ga x' As
(X ' = 0.5) active layer, ZnS y Se
The outline of the calculation result of the energy band structure of the heterostructure produced by sequentially depositing the cladding layers of 1-y (y = 0.06) is shown in Fig. 1 (b). , That is, the refractive index distribution.

【0017】エネルギバンドは,周知のLCAO(Line
ar Combination of Atomic Orbital) 法を用いて計算し
た。なお,GaAs基板とクラッド層とは格子定数が一
致し,かつ,活性層は面内圧縮応力により歪むことでク
ラッド層との格子のコヒーレンシーが保持されていると
仮定した。
The energy band is the well-known LCAO (Line
ar Combination of Atomic Orbital) method. It is assumed that the GaAs substrate and the cladding layer have the same lattice constant, and the active layer is distorted by the in-plane compressive stress to maintain the lattice coherency with the cladding layer.

【0018】図1(イ)を参照して,先ず,上記構造に
おける各堆積層の価電子帯の上端のエネルギをLCAO
法により計算した。次いで,各堆積層の禁制帯幅を価電
子帯の上端エネルギに加えることで,各堆積層の伝導帯
の底のエネルギを計算した。なお,基板及びクラッド層
の禁制帯幅は歪のない単結晶の値を用い,活性層の禁制
帯幅は歪のない単結晶の値に歪の効果を加えて求めた。
Referring to FIG. 1A, first, the energy at the upper end of the valence band of each deposited layer in the above structure is determined by LCAO.
Calculated by the method. Next, the energy at the bottom of the conduction band of each deposited layer was calculated by adding the forbidden band width of each deposited layer to the top energy of the valence band. The forbidden band width of the substrate and the clad layer was obtained by using the value of the single crystal without strain, and the forbidden band width of the active layer was obtained by adding the effect of strain to the value of the single crystal without strain.

【0019】この計算によると,クラッド層の荷電子帯
上端のエネルギは,基板より0.96eV,活性層より
1.09eV低い。一方,クラッド層の伝導帯の底のエネ
ルギは,基板より0.19eV,また活性層より0.36
eV高くなる。即ち,クラッド層と活性層との伝導帯オフ
セットエネルギは0.36eVである。
According to this calculation, the energy at the upper end of the valence band of the cladding layer is 0.96 eV lower than that of the substrate and 1.09 eV lower than that of the active layer. On the other hand, the energy at the bottom of the conduction band of the clad layer is 0.19 eV from the substrate and 0.36 eV from the active layer.
eV becomes higher. That is, the conduction band offset energy between the clad layer and the active layer is 0.36 eV.

【0020】この伝導体オフセットエネルギ,0.36
eVは,従来法のGaAsクラッド層の場合の0.17eV
より略0.19eV大きく,InGaPクラッド層の場合
の伝導帯オフセットエネルギに略等しい。従って,本構
成を適用した半導体発光素子は,従来例と同等又はより
高い特性温度を有するのである。
This conductor offset energy, 0.36
eV is 0.17 eV for the conventional GaAs clad layer
It is larger by about 0.19 eV and is almost equal to the conduction band offset energy in the case of the InGaP cladding layer. Therefore, the semiconductor light emitting device to which this configuration is applied has a characteristic temperature equal to or higher than that of the conventional example.

【0021】光閉じ込め効果については,クラッド層と
活性層との屈折率の差Δnが大きいほど光閉じ込めの効
果が高い。図1(ロ)を参照して,既述したようにII-V
I 族化合物半導体であるZnCdSSe又はZnSSe
の屈折率は略2.6程度であり,III-V 族化合物半導体
からなる活性層との屈折率3.2程度よりかなり小さ
い。このため,クラッド層と活性層との屈折率の差Δn
は0.6程度になる。
Regarding the light confinement effect, the larger the difference Δn in refractive index between the cladding layer and the active layer, the higher the light confinement effect. II-V as described above with reference to FIG.
ZnCdSSe or ZnSSe which is a group I compound semiconductor
Has a refractive index of about 2.6, which is considerably smaller than the refractive index of about 3.2 with the active layer made of a III-V group compound semiconductor. Therefore, the difference Δn in the refractive index between the cladding layer and the active layer
Is about 0.6.

【0022】これに較べ,III-V 族化合物半導体をクラ
ッド層とする従来の発光素子では,Δnは0.1〜0.
2のオーダに過ぎない。従って,Δnの大きな本発明の
構成では,光閉じ込めが有効になされるため,これを適
用した半導体発光素子の発光効率は従来の素子より格段
に優れたものとなる。
On the other hand, in the conventional light emitting device using the III-V group compound semiconductor as the cladding layer, Δn is 0.1 to 0.
Only 2 orders. Therefore, in the configuration of the present invention in which Δn is large, the light confinement is effectively performed, and the light emitting efficiency of the semiconductor light emitting device to which this is applied is significantly superior to the conventional device.

【0023】上述した結果は,クラッド層をZn1-x
x y Se1-y (0≦x≦0.5)とし,活性層をI
nGaAsP又はInGaAsとした場合にも同様に適
用される。なお,yは通常は,次の述べる基板上にエピ
タキシャルにクラッド層及び活性層を堆積する場合に,
クラッド層の格子定数が基板と同一になるように決定さ
れる。このため,基板の選択における自由度が大きく,
素子設計が容易である。
The above results show that the cladding layer is made of Zn 1-x C
d x S y Se 1-y (0 ≦ x ≦ 0.5) and the active layer is I
The same applies to the case of using nGaAsP or InGaAs. It should be noted that y is usually, when the cladding layer and active layer are epitaxially deposited on the substrate described below,
The lattice constant of the clad layer is determined to be the same as that of the substrate. Therefore, the degree of freedom in selecting the substrate is large,
The element design is easy.

【0024】本発明の第二の構成では,半導体発光素子
の通常の製造工程を適用するために,クラッド層及び活
性層をエピタキシャルに堆積する。エピタキシャル堆積
の際にクラッド層に結晶欠陥を発生させないためには,
基板とクラッド層の格子定数の差を一定値以内に制限し
なければならない。このため,例えばGaAs基板上に
基板と格子定数が略一致する組成のZnS0.06Se 0.94
クラッド層を堆積する。なお,かかる組成のクラッド層
は,In0.5 Ga0. 5 As活性層に1.3μm帯の光を
放出するに適切な歪を付与する。従って,本構成では,
エピタキシー法による一般的な半導体レーザの製造方法
を用いて,所望の波長帯,例えば1.3μm帯の歪半導
体レーザを製造することができる。
In the second configuration of the present invention, the semiconductor light emitting device
In order to apply the usual manufacturing process of
The epitaxial layer is epitaxially deposited. Epitaxial deposition
In order to prevent crystal defects from occurring in the clad layer,
Limit the difference in lattice constant between the substrate and the cladding layer to within a certain value.
There must be. Therefore, for example, on a GaAs substrate
ZnS having a composition in which the lattice constant is substantially the same as that of the substrate0.06Se 0.94
Deposit a clad layer. The clad layer with such composition
Is In0.5Ga0. FiveLight in the 1.3 μm band on the As active layer
Appropriate strain to release. Therefore, in this configuration,
General semiconductor laser manufacturing method by epitaxy
, The strained semiconductor of the desired wavelength band, for example, 1.3 μm band
Body lasers can be manufactured.

【0025】なお,ZnSSeクラッド層のSが多い程
その格子定数が小さく高い歪を活性層にあたえるため,
クラッド層と活性層との伝導体オフセットエネルギーが
大きく温度特性の観点からは好ましい。他方,Sが0.
06より多いと基板との格子定数の差が大きくなり欠陥
が導入されるので,Sの量は制限される。
It should be noted that the larger the S content of the ZnSSe cladding layer, the smaller its lattice constant and the higher strain applied to the active layer.
The conductor offset energy between the clad layer and the active layer is large, which is preferable from the viewpoint of temperature characteristics. On the other hand, S is 0.
If it is more than 06, the difference in lattice constant from the substrate becomes large and defects are introduced, so the amount of S is limited.

【0026】既に第一の構成で述べたように,かかる基
板の格子定数との整合から生ずる制限を緩和するため
に,クラッド層にZnCdSSeを使用することができ
る。Cdを混入することで,クラッド層の格子定数を広
範に変えることができ,基板との格子整合が容易にな
る。さらに,クラッド層と活性層との格子定数の差を適
切な値に保持するために,活性層をInGaAsPとす
ることができる。
As already mentioned in the first configuration, ZnCdSSe can be used in the cladding layer in order to relax the restrictions resulting from matching with the lattice constant of such a substrate. By mixing Cd, the lattice constant of the cladding layer can be widely changed, and the lattice matching with the substrate becomes easy. Further, in order to keep the difference in lattice constant between the clad layer and the active layer at an appropriate value, the active layer can be made of InGaAsP.

【0027】[0027]

【実施例】本発明をダブルヘテロ構造のストライプ半導
体レーザの実施例を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to embodiments of a double heterostructure stripe semiconductor laser.

【0028】図2を参照して,n型GaAs基板1上に
n型GaAs層をバッファ層2として堆積する。次い
で,n型ZnS0.06Se0.94層をクラッド層3として堆
積する。次いで,例えば厚さ10nmのノンドープIn
0.5 Ga0.5 As層を活性層4として堆積する。次い
で,p型ZnS0.06Se0.94層をクラッド層5として堆
積し,さらにコンタクト層6としてp+ 型GaAs層を
堆積する。これらの堆積層は,例えばMBE(分子線エ
ピタキシー)により堆積される。
With reference to FIG. 2, an n-type GaAs layer is deposited as a buffer layer 2 on an n-type GaAs substrate 1. Then, an n-type ZnS 0.06 Se 0.94 layer is deposited as the cladding layer 3. Then, for example, non-doped In with a thickness of 10 nm
A 0.5 Ga 0.5 As layer is deposited as the active layer 4. Then, a p-type ZnS 0.06 Se 0.94 layer is deposited as the cladding layer 5, and a p + -type GaAs layer is further deposited as the contact layer 6. These deposition layers are deposited by, for example, MBE (Molecular Beam Epitaxy).

【0029】ここで,クラッド層の組成は,クラッド層
の格子定数が基板の格子定数と略一致するように選択さ
れる。次いで,コンタクト層6上にストライプ電極7
を,基板1の裏面上に下部電極を形成する。最後にスト
ライプ電極7の直角方向に基板1を劈開して,劈開面を
反射面とする光共振器を形成し,高歪活性層を有するス
トライプ型半導体レーザが製造される。
Here, the composition of the cladding layer is selected so that the lattice constant of the cladding layer substantially matches the lattice constant of the substrate. Next, the stripe electrode 7 is formed on the contact layer 6.
A lower electrode is formed on the back surface of the substrate 1. Finally, the substrate 1 is cleaved in the direction perpendicular to the stripe electrode 7 to form an optical resonator having the cleaved surface as a reflection surface, and a stripe type semiconductor laser having a high strain active layer is manufactured.

【0030】本実施例の半導体レーザにおけるエネルギ
バンド図及び屈折率分布は,先に図1に示した。図1を
参照して,本実施例の半導体発光素子は,伝導帯オフセ
ットエネルギが大きく特性温度が高い。また,屈折率の
差が大きく,発光効率が高い。従って,変換効率が高く
かつ温度による特性変動が小さい半導体レーザが得られ
る。なお,本実施例はレーザに関するが,活性層とクラ
ッド層とを有する発光素子,例えば発光ダイオードに適
用できる。
The energy band diagram and the refractive index distribution of the semiconductor laser of this embodiment are shown in FIG. Referring to FIG. 1, the semiconductor light emitting device of this embodiment has a large conduction band offset energy and a high characteristic temperature. In addition, the difference in refractive index is large and the luminous efficiency is high. Therefore, it is possible to obtain a semiconductor laser with high conversion efficiency and small characteristic variation due to temperature. Although this embodiment relates to a laser, it can be applied to a light emitting element having an active layer and a cladding layer, for example, a light emitting diode.

【0031】[0031]

【発明の効果】上述したように本発明によれば,InG
aAs又はInGaAsPを活性層とする半導体発光素
子のクラッド層にII-VI 族化合物半導体であるZnCd
SSe又はZnSSeを用いるので,クラッド層と活性
層との屈折率の差及び伝導帯オフセットエネルギが大き
くなり,変換効率が高くかつ特性温度の高い半導体発光
素子を提供することができる。従って,半導体発光素子
の性能向上に寄与するところが大きい。
As described above, according to the present invention, InG
ZnCd which is a II-VI group compound semiconductor is used as a cladding layer of a semiconductor light emitting device having an active layer of aAs or InGaAsP.
Since SSe or ZnSSe is used, the difference in the refractive index between the cladding layer and the active layer and the conduction band offset energy are increased, so that it is possible to provide a semiconductor light emitting device having high conversion efficiency and high characteristic temperature. Therefore, it greatly contributes to the performance improvement of the semiconductor light emitting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明の実施例断面図FIG. 2 is a sectional view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3,5 クラッド層 4 活性層 6 コンタクト層 7 ストライプ電極 8 下部電極 1 substrate 2 buffer layer 3,5 clad layer 4 active layer 6 contact layer 7 stripe electrode 8 lower electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性層(4)と,該活性層(4)を挟ん
で設けられたクラッド層(3,5)とを有する半導体発
光素子において,該活性層(4)は,InGaAs又は
InGaAsPからなり,該クラッド層(3,5)は,
ZnSSe又はZnCdSSeからなることを特徴とす
る半導体発光素子。
1. A semiconductor light-emitting device having an active layer (4) and cladding layers (3, 5) sandwiching the active layer (4), wherein the active layer (4) is made of InGaAs or InGaAsP. And the cladding layers (3, 5) are
A semiconductor light emitting device comprising ZnSSe or ZnCdSSe.
【請求項2】 請求項1記載の半導体発光素子におい
て,GaAsを基板(1)とし,該クラッド層(3,
5)は,該基板(1)上に堆積されたZnSSeからな
り,該活性層(4)は,該クラッド層(3)上に堆積さ
れた該クラッド層(3,5)と異なる格子定数を有する
InGaAsからなることを特徴とする半導体発光素
子。
2. The semiconductor light emitting device according to claim 1, wherein GaAs is used as the substrate (1), and the cladding layer (3) is used.
5) is made of ZnSSe deposited on the substrate (1), and the active layer (4) has a lattice constant different from that of the cladding layers (3, 5) deposited on the cladding layer (3). A semiconductor light-emitting device comprising InGaAs.
JP730594A 1994-01-27 1994-01-27 Semiconductor light emitting element Withdrawn JPH07211988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP730594A JPH07211988A (en) 1994-01-27 1994-01-27 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP730594A JPH07211988A (en) 1994-01-27 1994-01-27 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH07211988A true JPH07211988A (en) 1995-08-11

Family

ID=11662308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP730594A Withdrawn JPH07211988A (en) 1994-01-27 1994-01-27 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH07211988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018592A3 (en) * 1995-11-13 1997-07-17 Siemens Ag Opto-electronic component made from ii-vi semiconductor material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018592A3 (en) * 1995-11-13 1997-07-17 Siemens Ag Opto-electronic component made from ii-vi semiconductor material
US6265734B1 (en) 1995-11-13 2001-07-24 Siemens Aktiengesellschaft Opto-electronic component made from II-VI semiconductor material
US6495859B2 (en) 1995-11-13 2002-12-17 Siemens Aktiengesellschaft Opto-electronic component made from II-VI semiconductor material

Similar Documents

Publication Publication Date Title
US7421000B2 (en) Semiconductor laser device
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
EP0661782B1 (en) A semiconductor laser
KR910003465B1 (en) Opto-electronic device
US5299217A (en) Semiconductor light-emitting device with cadmium zinc selenide layer
US5345463A (en) Semiconductor laser with improved oscillation wavelength reproducibility
EP0293000B1 (en) Light emitting device
JPH0529713A (en) Semiconductor laser element
US5619520A (en) Semiconductor laser
JP3192560B2 (en) Semiconductor light emitting device
JPH0983071A (en) Semiconductor laser
JPH07211988A (en) Semiconductor light emitting element
EP0528439A1 (en) Semiconductor laser
JP2618677B2 (en) Semiconductor light emitting device
JP3665911B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
JP3005115B2 (en) Semiconductor light emitting device
US5491709A (en) Semiconductor laser device
JP2876543B2 (en) Semiconductor device and manufacturing method thereof
JPH05226781A (en) Production of semiconductor light emitting element
US6275515B1 (en) Semiconductor laser device and method of producing the same
US4969151A (en) Semiconductor laser devices
JPH0632334B2 (en) Semiconductor laser
JPH11340585A (en) Semiconductor light-emitting device
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPS60260184A (en) Semiconductor luminescent device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403