JPH07211458A - Thin film electroluminescent element - Google Patents

Thin film electroluminescent element

Info

Publication number
JPH07211458A
JPH07211458A JP6002863A JP286394A JPH07211458A JP H07211458 A JPH07211458 A JP H07211458A JP 6002863 A JP6002863 A JP 6002863A JP 286394 A JP286394 A JP 286394A JP H07211458 A JPH07211458 A JP H07211458A
Authority
JP
Japan
Prior art keywords
insulating layer
light emitting
thin film
emitting device
intermediate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6002863A
Other languages
Japanese (ja)
Inventor
Yukihiro Maruta
幸寛 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6002863A priority Critical patent/JPH07211458A/en
Priority to GB9500767A priority patent/GB2286081A/en
Priority to FR9500412A priority patent/FR2715262A1/en
Priority to DE1995101229 priority patent/DE19501229A1/en
Publication of JPH07211458A publication Critical patent/JPH07211458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To enhance visibility through a wide viewing angle by optimizing the refractive index and the optical film thickness of an intermediate insulating layer, and reducing the reflectivity of the intermediate insulating layer when an incident angle is not zero. CONSTITUTION:An intermediate insulating layer 7A is provided between a glass substrate 1 and a transparent electrode 2. The refractive index of the intermediate insulating layer 7A varies continuously between the refractive index of the glass substrate 1 and that of the transparent electrode 2, and the average optical film thickness of the intermediate layer 7A is 0.25 times the center wavelength of an emission spectrum or greater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜発光素子の中間絶
縁層に係り、特に発光層を出た光の反射を防止する中間
絶縁層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermediate insulating layer of a thin film light emitting device, and more particularly to an intermediate insulating layer for preventing reflection of light emitted from the light emitting layer.

【0002】[0002]

【従来の技術】Mnを発光中心とする蛍光体である発光層
の両面を絶縁層を介して透明電極ITOと背面電極で挟ん
だ二重絶縁型の薄膜エレクトロルミネセントディスプレ
イ(以下薄膜発光素子と称する)は、高輝度発光,高解
像度,大容量表示化が可能であることから、薄型表示用
のディスプレイパネルとして注目されている。
2. Description of the Related Art A double-insulation type thin film electroluminescent display (hereinafter referred to as thin film light emitting device Is called a display panel for thin display because it can emit high-luminance light, high resolution, and have a large capacity display.

【0003】図8は従来の二重絶縁型の薄膜発光素子を
示す斜視図である。薄膜発光素子はガラス基板1と中間
絶縁層7と透明電極2とアルミナAl2O3 ,シリカSiO2
たは窒化シリコンSi3N4 等からなる第一の絶縁層3と発
光層4と第一の絶縁層と同様の材料からなる第二の絶縁
層5とAlからなり透明電極2と平行且つ直交するように
配列された背面電極6から薄膜発光素子が構成される。
これらの各層の厚さは20ないし1000nmに設定され
る。透明電極2、第一の絶縁層3、第二の絶縁層5は一
般にスパッタ法で作製され、発光層4はスパッタ法ない
しは電子ビーム蒸着法で作製される。
FIG. 8 is a perspective view showing a conventional double insulation type thin film light emitting device. The thin film light emitting device includes a glass substrate 1, an intermediate insulating layer 7, a transparent electrode 2, a first insulating layer 3 made of alumina Al 2 O 3 , silica SiO 2 or silicon nitride Si 3 N 4, etc., a light emitting layer 4 and a first insulating layer 4. A thin film light emitting element is constituted by the second insulating layer 5 made of the same material as the insulating layer and the back electrode 6 made of Al and arranged in parallel and orthogonal to the transparent electrode 2.
The thickness of each of these layers is set to 20 to 1000 nm. The transparent electrode 2, the first insulating layer 3, and the second insulating layer 5 are generally formed by a sputtering method, and the light emitting layer 4 is formed by a sputtering method or an electron beam evaporation method.

【0004】この様な薄膜発光素子の発光層4は硫化亜
鉛ZnS 膜を母材として、その中に発光中心として少量の
MnやTbOFを添加した材料で構成される。発光層中の発光
中心は最適濃度( 硫化亜鉛ZnS に対しマンガンMn0.4 〜
0.6wt % )に維持して成膜され、次いで550℃程度の
高い温度で熱処理して発光層の結晶性の改善を行うとと
もに発光中心の分散性を高める。
The light emitting layer 4 of such a thin film light emitting device uses a zinc sulfide ZnS film as a base material, in which a small amount of light is used as an emission center.
It is composed of materials with Mn and TbOF added. The emission center in the emission layer is at the optimum concentration (manganese Mn 0.4 ~ for zinc sulfide ZnS).
The film thickness is maintained at 0.6 wt%), and then heat treatment is performed at a high temperature of about 550 ° C. to improve the crystallinity of the light emitting layer and enhance the dispersibility of the light emission center.

【0005】このような薄膜発光素子においては発光層
4で発生した光は一つはガラス基板の方向に向かい一部
は第一の絶縁層3を経由して透明電極2、中間絶縁層
7、ガラス基板1を透過し、他は透明電極2、中間絶縁
層7、ガラス基板1の界面で反射される。薄膜発光素子
の視認性を高めるためには薄膜発光素子の上記界面での
反射率を小さくして種々の入射角での透過率を大きくす
ることが必要である。
In such a thin film light emitting device, one of the lights generated in the light emitting layer 4 is directed toward the glass substrate, and a part of the light goes through the first insulating layer 3 to the transparent electrode 2, the intermediate insulating layer 7, The light is transmitted through the glass substrate 1, and the other light is reflected at the interfaces of the transparent electrode 2, the intermediate insulating layer 7 and the glass substrate 1. In order to improve the visibility of the thin film light emitting device, it is necessary to reduce the reflectance at the interface of the thin film light emitting device and increase the transmittance at various incident angles.

【0006】図9は従来の薄膜発光素子につき中間絶縁
層の屈折率を示す線図である。中間絶縁層の屈折率がガ
ラス基板と透明電極の中間値に階段的に変化している。
中間絶縁層の屈折率は透明電極の屈折率とガラス基板の
屈折率の積の平方根に等しい値であり、中間絶縁層の屈
折率と中間絶縁層の膜厚の積である光学膜厚を発光の中
心波長λの1/4に設定することが行われた。
FIG. 9 is a diagram showing the refractive index of the intermediate insulating layer in the conventional thin film light emitting device. The refractive index of the intermediate insulating layer changes stepwise to an intermediate value between the glass substrate and the transparent electrode.
The refractive index of the intermediate insulating layer is equal to the square root of the product of the refractive index of the transparent electrode and the glass substrate, and the optical film thickness that is the product of the refractive index of the intermediate insulating layer and the film thickness of the intermediate insulating layer is emitted. Was set to ¼ of the center wavelength λ of the.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述の設
定により反射率が低減してゼロになるのはガラス基板に
対して発光層からの光が垂直に入射する(入射角がゼ
ロ)場合であり、この場合には外部光の反射率も小さく
なるので視認性の上での問題は小さい。これに対してガ
ラス基板に対して発光層からの光が垂直に入射しない
(入射角>0)場合は発光層からの光の界面での反射率
が大きくなる上に外部光の反射率も大きくなりこのため
に視認性が大きく低下するという問題があった。
However, the reflectance is reduced to zero by the above setting when the light from the light emitting layer is vertically incident on the glass substrate (the incident angle is zero). In this case, the reflectance of external light is also small, so that the problem in viewability is small. On the other hand, when the light from the light emitting layer is not vertically incident on the glass substrate (incident angle> 0), the reflectance of the light from the light emitting layer at the interface is large and the reflectance of external light is also large. Therefore, there is a problem in that the visibility is greatly reduced.

【0008】この発明は上述の点に鑑みてなされその目
的は、中間絶縁層の屈折率と光学膜厚を最適にして入射
角がゼロでない場合における中間絶縁層の反射率を低減
し、広い視野角における視認性に優れる薄膜発光素子を
提供することにある。
The present invention has been made in view of the above points, and an object thereof is to optimize the refractive index and the optical film thickness of the intermediate insulating layer to reduce the reflectance of the intermediate insulating layer when the incident angle is not zero and to provide a wide field of view. An object of the present invention is to provide a thin film light emitting device having excellent visibility in a corner.

【0009】[0009]

【課題を解決するための手段】上記の目的は第一の発明
によれは、無機薄膜発光素子であって、(1)ガラス基
板と、(2)中間絶縁層と、(3)透明電極と、(4)
第一の絶縁層と、(5)発光層と、(6)第二の絶縁層
と、(7)背面電極とを包含し、ガラス基板は素子の支
持体で、ソーダガラスからなり、中間絶縁層はその屈折
率がガラス基板の屈折率と透明電極の屈折率の中間の特
定値をとり且つ中間絶縁層の屈折率と中間絶縁層の膜厚
を乗じた光学膜厚が発光スペクトルの中心波長の0.2
5倍と0.5倍の中間にあり、透明電極と背面電極の間
には電圧が印加され、発光層は無機質の発光物質からな
り第一の絶縁層との界面および第二の絶縁層との界面か
ら伝播する電子により励起して発光し、第一の絶縁層と
第二の絶縁層は、無機質の絶縁物質からなり、ガラス基
板上に順次中間絶縁層、透明電極、第一の絶縁層、発光
層、第二の絶縁層、背面電極が積層されてなるとするこ
とにより達成される。
According to the first aspect of the present invention, there is provided an inorganic thin film light emitting device, comprising: (1) a glass substrate, (2) an intermediate insulating layer, and (3) a transparent electrode. , (4)
It includes a first insulating layer, (5) a light emitting layer, (6) a second insulating layer, and (7) a back electrode, and the glass substrate is a support for the element, is made of soda glass, and has intermediate insulation. The refractive index of the layer takes a specific value between the refractive index of the glass substrate and that of the transparent electrode, and the optical film thickness obtained by multiplying the refractive index of the intermediate insulating layer and the film thickness of the intermediate insulating layer is the central wavelength of the emission spectrum. Of 0.2
It is between 5 times and 0.5 times, a voltage is applied between the transparent electrode and the back electrode, and the light emitting layer is made of an inorganic light emitting material and is formed at the interface with the first insulating layer and the second insulating layer. The first insulating layer and the second insulating layer are made of an inorganic insulating material, and are excited by electrons propagating from the interface of the, and the intermediate insulating layer, the transparent electrode, and the first insulating layer are sequentially formed on the glass substrate. And a light emitting layer, a second insulating layer, and a back electrode are laminated.

【0010】また第二の発明によれば無機薄膜発光素子
であって、(1)ガラス基板と、(2)中間絶縁層と、
(3)透明電極と、(4)第一の絶縁層と、(5)発光
層と、(6)第二の絶縁層と、(7)背面電極とを包含
し、ガラス基板は素子の支持体で、ソーダガラスからな
り、中間絶縁層はその屈折率がガラス基板の屈折率と透
明電極の屈折率の間に連続的に変化してなり、透明電極
と背面電極の間には電圧が印加され、発光層は無機質の
発光物質からなり第一の絶縁層との界面および第二の絶
縁層との界面から伝播する電子により励起して発光し、
第一の絶縁層と第二の絶縁層は、無機質の絶縁物質から
なり、ガラス基板上に順次中間絶縁層、透明電極、第一
の絶縁層、発光層、第二の絶縁層、背面電極が積層され
てなるとすることにより達成される。
According to a second aspect of the present invention, there is provided an inorganic thin film light emitting device, comprising: (1) a glass substrate, (2) an intermediate insulating layer,
The glass substrate includes (3) a transparent electrode, (4) a first insulating layer, (5) a light emitting layer, (6) a second insulating layer, and (7) a back electrode, and the glass substrate supports the element. The body is made of soda glass, and the refractive index of the intermediate insulating layer changes continuously between the refractive index of the glass substrate and that of the transparent electrode, and a voltage is applied between the transparent electrode and the back electrode. The light-emitting layer is made of an inorganic light-emitting substance and emits light by being excited by electrons propagating from the interface with the first insulating layer and the interface with the second insulating layer,
The first insulating layer and the second insulating layer are made of an inorganic insulating material, and an intermediate insulating layer, a transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a back electrode are sequentially formed on a glass substrate. This is achieved by being laminated.

【0011】[0011]

【作用】屈折率と光学膜厚を最適化すると干渉の位相差
により光の反射率が広い視野角で小さくなる。
When the refractive index and the optical film thickness are optimized, the reflectance of light becomes small in a wide viewing angle due to the phase difference of interference.

【0012】[0012]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。 実施例1 図1はこの発明の実施例に係る薄膜発光素子を示す斜視
図である。図8に示す従来の薄膜発光素子と同一の部分
は同一の符号を用いている。中間絶縁層7Aのみが従来
の薄膜発光素子と異なる。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a perspective view showing a thin film light emitting device according to an example of the present invention. The same parts as those of the conventional thin film light emitting device shown in FIG. 8 are denoted by the same reference numerals. Only the intermediate insulating layer 7A is different from the conventional thin film light emitting device.

【0013】ガラス基板1の空気と接する表面の垂直反
射率R0 は次式で与えられる。
The vertical reflectance R 0 of the surface of the glass substrate 1 in contact with air is given by the following equation.

【0014】[0014]

【数1】 [Equation 1]

【0015】ここでn1 はガラス基板の屈折率である。
ガラス基板にNA40(H0YA社製)を用いるとこの
ガラス基板の屈折率n1 は1.573であるから反射率
0 は4.97%となる。入射角60度における反射率
60は20.1%である。これに対しソーダガラス(n
1 =1.51)を用いると、R0 は0.41%となる。
入射角60度における反射率R60は18%である。従っ
て高視野角の薄膜発光素子としてはソーダガラスの方が
わずかではあるが有利である。ガラス基板としてはソー
ダガラスを用いることにする。
Where n1Is the refractive index of the glass substrate.
If NA40 (made by H0YA) is used for the glass substrate,
Refractive index n of glass substrate1Is 1.573, so the reflectance
R 0Is 4.97%. Reflectance at an incident angle of 60 degrees
R60Is 20.1%. On the other hand, soda glass (n
1= 1.51), R0Is 0.41%.
Reflectivity R at an incident angle of 60 degrees60Is 18%. Obey
As a thin film light emitting device with a wide viewing angle, soda glass is
There is a slight advantage. Saw as a glass substrate
I will use Douglas.

【0016】透明電極の屈折率をn0 ,中間絶縁層の屈
折率をn,ガラス基板の屈折率をn 1 ,中間絶縁層の膜
厚をd,光の入射角をθ,発光中心波長をλとするとき
に反射率Rは次式で表される。
Let the refractive index of the transparent electrode be n0, Bending of the intermediate insulation layer
The folding index is n, and the refractive index of the glass substrate is n. 1, Membrane of intermediate insulation layer
When the thickness is d, the incident angle of light is θ, and the emission center wavelength is λ
The reflectance R is expressed by the following equation.

【0017】[0017]

【数2】 [Equation 2]

【0018】ここにr1 とr2 とδはそれぞれ次式で表
される。
Here, r 1 , r 2 and δ are respectively expressed by the following equations.

【0019】[0019]

【数3】 [Equation 3]

【0020】n0 =2.00,n1 =2.51,n=
1.74として式(2),(3),(4)を式(1)に
代入し、光学膜厚ndをパラメータとして入射角と反射
係数の関係を光の位相差により算出した結果が表1に示
される。
N 0 = 2.00, n 1 = 2.51, n =
Substituting equations (2), (3), and (4) into equation (1) as 1.74, the relationship between the incident angle and the reflection coefficient is calculated by the optical phase difference using the optical film thickness nd as a parameter. 1 is shown.

【0021】[0021]

【表1】 [Table 1]

【0022】この反射係数の計算は発光中心波長λを5
80nmとし中間絶縁層が存在しないときの反射率を1
として基準化したものである。表1より光学膜厚が14
5nmと290nmの中間にあるときは、中間絶縁層の
反射率が広い視野角にわたって低減されることがわか
る。これは中心波長に対して0.25倍と0.50倍の
中間にあたる。
This reflection coefficient is calculated by setting the emission center wavelength λ to 5
The reflectance when the thickness is 80 nm and no intermediate insulating layer is present is 1
Is standardized as. From Table 1, the optical film thickness is 14
It can be seen that when it is between 5 nm and 290 nm, the reflectance of the intermediate insulating layer is reduced over a wide viewing angle. This is between 0.25 times and 0.50 times the center wavelength.

【0023】上述の結果はZnS:Tb、ZnS:Sm、ZnS:Tmの発
光中心波長である540nm,650nm,470nm
等の波長に対しても同様にあてはまる。図2は光学膜厚
ndをパラメータとして反射係数の入射角依存性を示す
線図である。光学膜厚は(1)72.5nm、(2)1
00nm、(3)145nm、(4)205nm、
(5)290nmの五種類である。
The above results show that the emission center wavelengths of ZnS: Tb, ZnS: Sm and ZnS: Tm are 540 nm, 650 nm and 470 nm.
The same applies to wavelengths such as. FIG. 2 is a diagram showing the incident angle dependence of the reflection coefficient with the optical film thickness nd as a parameter. Optical film thickness is (1) 72.5 nm, (2) 1
00 nm, (3) 145 nm, (4) 205 nm,
(5) There are five types of 290 nm.

【0024】光学膜厚が205nmの場合に広い視野角
で反射率が小さくなることがわかる。この発明の実施例
に係る薄膜発光素子は以下の方法で調製される。図3は
この発明の実施例に係る薄膜発光素子の製造に用いられ
る高周波スパッタリング装置を示す配置図である。チャ
ンバ5内には高周波(RF)電源13とターゲット12
とソーダガラス基板11とガス導入管14が配置され
る。ガス導入管14にはスパッタガスであるアルゴンガ
スと酸素ガスと窒素ガスを所定の割合で流した。ターゲ
ットはサイアロンSiALONを用いた。
It can be seen that when the optical film thickness is 205 nm, the reflectance becomes small over a wide viewing angle. The thin film light emitting device according to the example of the present invention is prepared by the following method. FIG. 3 is a layout view showing a high frequency sputtering apparatus used for manufacturing a thin film light emitting device according to an embodiment of the present invention. A radio frequency (RF) power supply 13 and a target 12 are provided in the chamber 5.
The soda glass substrate 11 and the gas introduction pipe 14 are arranged. Argon gas, oxygen gas, and nitrogen gas, which are sputtering gases, were flown through the gas introduction pipe 14 at a predetermined ratio. The target was Sialon SiALON.

【0025】スパッタガスとしてアルゴンガス、酸素ガ
ス、窒素ガスの混合ガスを10:0.1:0.05の割
合で流しながら高周波電圧を印加し、サイアロンSiALON
ターゲットをスパッタしてソーダガラス基板11の上に
屈折率1.73のサイアロンからなる中間絶縁層7Aを
形成した。光学膜厚は(1)72.5nm、(2)10
0nm、(3)145nm、(4)205nm、(5)
290nm、(6)400nmの六種類である。
A high-frequency voltage is applied while flowing a mixed gas of argon gas, oxygen gas, and nitrogen gas at a ratio of 10: 0.1: 0.05 as a sputtering gas, and sialon SiALON
A target was sputtered to form an intermediate insulating layer 7A made of sialon having a refractive index of 1.73 on the soda glass substrate 11. The optical film thickness is (1) 72.5 nm, (2) 10
0 nm, (3) 145 nm, (4) 205 nm, (5)
There are six types, 290 nm and (6) 400 nm.

【0026】中間絶縁層7Aの上にITO ターゲット(酸
化スズSnO210重量%の酸化インジウム)を用い透明電極
2を200nm厚さに形成した。透明電極の屈折率は約
2である。透明電極の上にスパッタリングの方法により
第一の絶縁層として酸化アルミニウムAl2O3 と酸化タン
タルTa2O5 を合計で350nmの厚さに成膜した。
A transparent electrode 2 having a thickness of 200 nm was formed on the intermediate insulating layer 7A using an ITO target (indium oxide containing 10% by weight of tin oxide SnO 2 ). The refractive index of the transparent electrode is about 2. On the transparent electrode, aluminum oxide Al 2 O 3 and tantalum oxide Ta 2 O 5 were deposited to a total thickness of 350 nm as a first insulating layer by a sputtering method.

【0027】引き続いてMOCVD 法によりZnS :Mn発光層
を700nmの厚さに成膜した。さらに第一の絶縁層と
同一の材料により第二の絶縁層をスパッタリングの方法
で形成した。得られた薄膜発光素子の垂直方向の発光輝
度は60HZ 駆動でピクセル輝度350cd/m2 であ
った。発光輝度が高いため上記(1)ないし(6)の薄
膜発光素子については正面からみた場合(入射角がゼ
ロ)の視認性に殆ど差が認められない。
Subsequently, a ZnS: Mn light emitting layer was formed to a thickness of 700 nm by the MOCVD method. Further, a second insulating layer was formed by the sputtering method using the same material as the first insulating layer. Vertical light emission luminance of the obtained thin film element was pixel luminance 350 cd / m 2 at 60H Z drive. Since the emission brightness is high, the thin-film light emitting devices of the above (1) to (6) show almost no difference in visibility when viewed from the front (incident angle is zero).

【0028】これに対し、入射角がゼロより大きい場合
は室内光のガラス基板での反射が観測される。特に入射
角が30度以上の場合は室内光による反射が顕著にな
る。光学膜厚が145nmと290nmの中間の場合に
広い視野角で良好な視認性があり、特に光学膜厚が20
5nmの場合に良好な結果が得られ理論計算との一致が
確認された。
On the other hand, when the incident angle is larger than zero, reflection of room light on the glass substrate is observed. In particular, when the incident angle is 30 degrees or more, reflection due to room light becomes remarkable. When the optical film thickness is between 145 nm and 290 nm, there is good visibility in a wide viewing angle.
Good results were obtained in the case of 5 nm, and it was confirmed that the results were in agreement with theoretical calculations.

【0029】上記光学膜厚が205nmの場合には入射
角45度近傍で発光層からの放射光の反射率が最小にな
るが、室内光の入射角も45度近傍で最小にすることが
できる。そのためにガラス基板に中間絶縁層と対称に外
部絶縁層を設けることができる。外部絶縁層の屈折率は
ガラス基板の屈折率と空気の屈折率の中間値とし、膜厚
を適当に選定して外部絶縁層の光学膜厚が205nmと
なるようにする。
When the optical film thickness is 205 nm, the reflectance of the radiated light from the light emitting layer is minimized in the vicinity of the incident angle of 45 degrees, but the incident angle of the room light can be minimized in the vicinity of 45 degrees. . Therefore, the outer insulating layer can be provided on the glass substrate symmetrically with the intermediate insulating layer. The refractive index of the external insulating layer is set to an intermediate value between the refractive index of the glass substrate and the refractive index of air, and the film thickness is appropriately selected so that the optical film thickness of the external insulating layer is 205 nm.

【0030】中間絶縁層の光学膜厚は薄膜発光素子の要
求品質により決定することができる。例えばパソコン等
のように要求される視野角が比較的小さい場合は光学膜
厚は比較的小さい値を採用すればよい。これに対し、F
A機器等のように要求される視野角が比較的大きい場合
は光学膜厚は比較的大きな値を採用すればよい。また上
述の中間絶縁層においてはサイアロンを用いているがこ
れに替えて酸化アルミニウムAl2O3 等の屈折率が1.7
4に近い絶縁物であれば屈折率の多少の差は許容され
る。 実施例2 図6はこの発明の異なる実施例に係る薄膜発光素子の中
間絶縁層につき屈折率の酸素ガス比依存性を示す線図で
ある。
The optical film thickness of the intermediate insulating layer can be determined according to the required quality of the thin film light emitting device. For example, when the required viewing angle is relatively small, such as in a personal computer, the optical film thickness may be relatively small. On the other hand, F
When the required viewing angle is comparatively large, such as in the case of equipment A, the optical film thickness may be relatively large. Further, sialon is used in the above-mentioned intermediate insulating layer, but instead of this, the refractive index of aluminum oxide Al 2 O 3 or the like is 1.7.
If the insulator is close to 4, a slight difference in refractive index is allowed. Example 2 FIG. 6 is a diagram showing the oxygen gas ratio dependency of the refractive index of the intermediate insulating layer of the thin film light emitting device according to another example of the present invention.

【0031】アルゴンガスは10、窒素ガスは0.05
に固定し、酸素ガスのみ0から0.3の範囲に変化させ
た〔(10:0:0.05)ないし(10:0.3:
0.05)〕。屈折率が透明電極であるITO の2.00
からガラス基板の1.51に連続的に変化していること
がわかる。図4はこの発明の異なる実施例に係る薄膜発
光素子につき中間絶縁層の屈折率の一例を示す線図であ
る。
Argon gas is 10, nitrogen gas is 0.05
The oxygen gas was changed to a range of 0 to 0.3 [(10: 0: 0.05) to (10: 0.3:
0.05)]. The refractive index of ITO, which is a transparent electrode, is 2.00
From this, it can be seen that the glass substrate continuously changes to 1.51. FIG. 4 is a diagram showing an example of the refractive index of the intermediate insulating layer in the thin film light emitting device according to another embodiment of the present invention.

【0032】中間絶縁層の屈折率は透明電極ITO の屈折
率からガラス基板の屈折率に連続的に変化している。図
5はこの発明の異なる実施例に係る薄膜発光素子につき
反射率の平均光学膜厚(平均の屈折率と膜厚の積)依存
性を示す線図である。屈折率を連続的に変化するときは
平均光学膜厚が中心波長の1/4以上において反射率が
小さくなることがわかる。平均光学膜厚が大きい程効果
が大きい。屈折率の変化は直線的であることが最も望ま
しい。
The refractive index of the intermediate insulating layer continuously changes from that of the transparent electrode ITO to that of the glass substrate. FIG. 5 is a diagram showing the dependence of reflectance on average optical film thickness (product of average refractive index and film thickness) for thin film light emitting devices according to different examples of the present invention. It can be seen that when the refractive index is continuously changed, the reflectance decreases when the average optical film thickness is ¼ or more of the center wavelength. The larger the average optical film thickness, the greater the effect. Most preferably, the change in refractive index is linear.

【0033】図7はこの発明の異なる実施例に係る薄膜
発光素子の中間絶縁層につき分光透過率の波長依存性を
示す線図である。アルゴンガスと酸素ガスと窒素ガスの
スパッタガス混合比を種々に変化させた。(a)10:
0.005:0、(b)10:0:0.02、(c)1
0:0:0.1、(d)10:0.2:0.05、
(e)10:0:0.05スパッタガス混合比が(d)
と(e)の場合に分光透過率特性がフラットであること
がわかる。このスパッタガス混合比は中間絶縁層の反射
率を透明電極であるITO の2.00からガラス基板の
1.51に連続的に変化させる範囲内にある。 スパッ
タガス混合比が(a)と(b)と(c)の場合は短波長
において分光透過率特性が低下するので光の透過性が悪
くなる。
FIG. 7 is a diagram showing the wavelength dependence of the spectral transmittance of the intermediate insulating layer of the thin film light emitting device according to another embodiment of the present invention. The sputter gas mixing ratio of argon gas, oxygen gas, and nitrogen gas was variously changed. (A) 10:
0.005: 0, (b) 10: 0: 0.02, (c) 1
0: 0: 0.1, (d) 10: 0.2: 0.05,
(E) 10: 0: 0.05 Sputtering gas mixture ratio is (d)
It can be seen that in the cases of (e) and (e), the spectral transmittance characteristics are flat. This sputter gas mixing ratio is within a range in which the reflectance of the intermediate insulating layer is continuously changed from 2.00 of ITO which is a transparent electrode to 1.51 of a glass substrate. When the sputter gas mixture ratios are (a), (b), and (c), the spectral transmittance characteristics deteriorate at short wavelengths, and therefore the light transmittance becomes poor.

【0034】サイアロンを用いて屈折率を連続的に変化
させた上記の中間絶縁層は、二次イオン質量分析法で測
定した結果、ガラス基板であるソーダガラスに対するア
ルカリ拡散阻止効果に優れ、酸化アルミニウムAl2O3
酸化シリコンSiO2よりもアルカリ拡散阻止効果が大きい
こともわかった。中間絶縁層の屈折率を連続的に変化さ
せる場合は前述のように光学膜厚は発光スペクトルの中
心波長の1/4以上であれば反射率を低減できるので光
学膜厚を大きくしておけば中心波長の値の如何に係わら
ず反射率を小さくすることができるという効果も得られ
るのでカラー薄膜発光素子の場合に有効に適用すること
ができる。
As a result of measurement by secondary ion mass spectrometry, the above-mentioned intermediate insulating layer whose refractive index is continuously changed by using sialon has an excellent alkali diffusion inhibiting effect on soda glass which is a glass substrate, and aluminum oxide. It was also found that the alkali diffusion blocking effect is greater than that of Al 2 O 3 and silicon oxide SiO 2 . When the refractive index of the intermediate insulating layer is continuously changed, the reflectance can be reduced if the optical film thickness is 1/4 or more of the center wavelength of the emission spectrum as described above. Since the effect of reducing the reflectance can be obtained regardless of the value of the center wavelength, it can be effectively applied to a color thin film light emitting device.

【0035】[0035]

【発明の効果】第一の発明によれば中間絶縁層はその屈
折率がガラス基板の屈折率と透明電極の屈折率の中間の
特定値をとり且つ中間絶縁層の屈折率と中間絶縁層の膜
厚を乗じた光学膜厚が発光スペクトルの中心波長の0.
25倍と0.5倍の中間にあり、また第二の発明によれ
ば中間絶縁層はその屈折率がガラス基板の屈折率と透明
電極の屈折率の間に連続的に変化し、且つ平均の光学膜
厚が発光スペクトルの中心波長の0.25倍以上である
ので、広い視野角において視認性に優れる薄膜発光素子
が得られる。
According to the first aspect of the present invention, the refractive index of the intermediate insulating layer takes a specific value between the refractive index of the glass substrate and the refractive index of the transparent electrode, and the refractive index of the intermediate insulating layer and the refractive index of the intermediate insulating layer. The optical film thickness multiplied by the film thickness is 0.
According to the second invention, the refractive index of the intermediate insulating layer continuously changes between the refractive index of the glass substrate and the refractive index of the transparent electrode, and the average is 25 times and 0.5 times. Since the optical film thickness is 0.25 times or more the center wavelength of the emission spectrum, it is possible to obtain a thin film light emitting device having excellent visibility in a wide viewing angle.

【0036】また高周波スパッタリング法によりアルゴ
ンガスと酸素ガスと窒素ガスを用い、サイアロンをスパ
ッタするので連続的に屈折率の変化する中間絶縁層が得
られ視認性に優れる有機薄膜発光素子が得られる。さら
にアルゴンガスと酸素ガスと窒素ガスを所定比にしてス
パッタするので分光透過率とナトリウム拡散防止性にも
優れる有機薄膜発光素子が得られる。
Further, since sialon is sputtered by the high frequency sputtering method using argon gas, oxygen gas and nitrogen gas, an intermediate insulating layer having a continuously changing refractive index can be obtained, and an organic thin film light emitting device having excellent visibility can be obtained. Further, since an argon gas, an oxygen gas, and a nitrogen gas are sputtered at a predetermined ratio, an organic thin film light emitting device having excellent spectral transmittance and sodium diffusion preventing property can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る薄膜発光素子を示す斜
視図
FIG. 1 is a perspective view showing a thin film light emitting device according to an embodiment of the present invention.

【図2】光学膜厚ndをパラメータとして反射係数の入
射角依存性を示す線図
FIG. 2 is a diagram showing an incident angle dependency of a reflection coefficient with an optical film thickness nd as a parameter.

【図3】この発明の実施例に係る薄膜発光素子の製造に
用いられる高周波スパッタリング装置を示す配置図
FIG. 3 is a layout view showing a high frequency sputtering apparatus used for manufacturing a thin film light emitting device according to an embodiment of the present invention.

【図4】この発明の異なる実施例に係る薄膜発光素子に
つき中間絶縁層の屈折率の一例を示す線図
FIG. 4 is a diagram showing an example of a refractive index of an intermediate insulating layer in a thin film light emitting device according to another embodiment of the present invention.

【図5】この発明の異なる実施例に係る薄膜発光素子に
つき反射率の平均光学膜厚(平均の屈折率と膜厚の積)
依存性を示す線図
FIG. 5 is an average optical film thickness of reflectance (product of average refractive index and film thickness) for thin film light emitting devices according to different embodiments of the present invention.
Diagram showing dependency

【図6】この発明の異なる実施例に係る薄膜発光素子の
中間絶縁層につき反射率の酸素ガス比依存性を示す線図
FIG. 6 is a diagram showing the oxygen gas ratio dependency of the reflectance of an intermediate insulating layer of a thin film light emitting device according to another embodiment of the present invention.

【図7】この発明の異なる実施例に係る薄膜発光素子の
中間絶縁層につき分光透過率の波長依存性を示す線図
FIG. 7 is a diagram showing wavelength dependence of spectral transmittance of an intermediate insulating layer of a thin film light emitting device according to another embodiment of the present invention.

【図8】従来の二重絶縁型の薄膜発光素子を示す斜視図FIG. 8 is a perspective view showing a conventional double-insulation type thin film light emitting device.

【図9】従来の薄膜発光素子につき中間絶縁層の屈折率
を示す線図
FIG. 9 is a diagram showing the refractive index of an intermediate insulating layer in a conventional thin film light emitting device.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 第一の絶縁層 4 発光層 5 第二の絶縁層 6 背面電極 7 中間絶縁層 7A 中間絶縁層 11 ソーダガラス基板 12 ターゲット 13 RF電源 14 ガス導入管 15 チャンバ 1 Glass Substrate 2 Transparent Electrode 3 First Insulating Layer 4 Light Emitting Layer 5 Second Insulating Layer 6 Back Electrode 7 Intermediate Insulating Layer 7A Intermediate Insulating Layer 11 Soda Glass Substrate 12 Target 13 RF Power Supply 14 Gas Inlet Tube 15 Chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】無機薄膜発光素子であって、 (1)ガラス基板と、 (2)中間絶縁層と、 (3)透明電極と、 (4)第一の絶縁層と、 (5)発光層と、 (6)第二の絶縁層と、 (7)背面電極とを包含し、 ガラス基板は素子の支持体で、ソーダガラスからなり、 中間絶縁層はその屈折率がガラス基板の屈折率と透明電
極の屈折率の中間の特定値をとり且つ中間絶縁層の屈折
率と中間絶縁層の膜厚を乗じた光学膜厚が発光スペクト
ルの中心波長の0.25倍と0.5倍の中間にあり、 透明電極と背面電極の間には電圧が印加され、 発光層は無機質の発光物質からなり第一の絶縁層との界
面および第二の絶縁層との界面から伝播する電子により
励起して発光し、 第一の絶縁層と第二の絶縁層は、無機質の絶縁物質から
なり、 ガラス基板上に順次中間絶縁層、透明電極、第一の絶縁
層、発光層、第二の絶縁層、背面電極が積層されてなる
ことを特徴とする薄膜発光素子。
1. An inorganic thin film light emitting device, comprising: (1) a glass substrate, (2) an intermediate insulating layer, (3) a transparent electrode, (4) a first insulating layer, and (5) a light emitting layer. (6) The second insulating layer and (7) the back electrode are included, the glass substrate is a support for the device and is made of soda glass, and the refractive index of the intermediate insulating layer is the same as that of the glass substrate. The optical film thickness, which is a specific value in the middle of the refractive index of the transparent electrode and is multiplied by the refractive index of the intermediate insulating layer and the film thickness of the intermediate insulating layer, is between 0.25 times and 0.5 times the center wavelength of the emission spectrum. A voltage is applied between the transparent electrode and the back electrode, and the light emitting layer is made of an inorganic light emitting material and excited by electrons propagating from the interface with the first insulating layer and the interface with the second insulating layer. The first insulating layer and the second insulating layer are made of an inorganic insulating material, and A thin-film light emitting device comprising an intermediate insulating layer, a transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a back electrode, which are sequentially stacked.
【請求項2】無機薄膜発光素子であって、 (1)ガラス基板と、 (2)中間絶縁層と、 (3)透明電極と、 (4)第一の絶縁層と、 (5)発光層と、 (6)第二の絶縁層と、 (7)背面電極とを包含し、 ガラス基板は素子の支持体で、ソーダガラスからなり、 中間絶縁層はその屈折率がガラス基板の屈折率と透明電
極の屈折率の間に連続的に変化し、且つ平均の光学膜厚
が発光スペクトルの中心波長の0.25倍以上であり、 透明電極と背面電極の間には電圧が印加され、 発光層は無機質の発光物質からなり第一の絶縁層との界
面および第二の絶縁層との界面から伝播する電子により
励起して発光し、 第一の絶縁層と第二の絶縁層は、無機質の絶縁物質から
なり、 ガラス基板上に順次中間絶縁層、透明電極、第一の絶縁
層、発光層、第二の絶縁層、背面電極が積層されてなる
ことを特徴とする薄膜発光素子。
2. An inorganic thin film light emitting device comprising: (1) a glass substrate, (2) an intermediate insulating layer, (3) a transparent electrode, (4) a first insulating layer, and (5) a light emitting layer. (6) The second insulating layer and (7) the back electrode are included, the glass substrate is a support for the device and is made of soda glass, and the refractive index of the intermediate insulating layer is the same as that of the glass substrate. It continuously changes during the refractive index of the transparent electrode, and the average optical film thickness is 0.25 times or more of the center wavelength of the emission spectrum, and a voltage is applied between the transparent electrode and the back electrode. The layer is made of an inorganic luminescent material and is excited by electrons propagating from the interface with the first insulating layer and the interface with the second insulating layer to emit light, and the first insulating layer and the second insulating layer are made of an inorganic material. Which is made of an insulating material of, an intermediate insulating layer, a transparent electrode, a first insulating layer, a light emitting layer, and A thin film light emitting device comprising a second insulating layer and a back electrode laminated.
【請求項3】請求項2に記載の薄膜発光素子において、
中間絶縁層はサイアロンであることを特徴とする薄膜発
光素子。
3. The thin film light emitting device according to claim 2,
A thin film light emitting device characterized in that the intermediate insulating layer is sialon.
【請求項4】請求項3記載の薄膜発光素子において、中
間絶縁層は高周波スパッタリング法を用いて成膜されて
なることを特徴とする薄膜発光素子。
4. The thin film light emitting device according to claim 3, wherein the intermediate insulating layer is formed by a high frequency sputtering method.
【請求項5】請求項4記載の薄膜発光素子において、中
間絶縁層はアルゴンガス、酸素ガス、窒素ガスを用いて
成膜されてなることを特徴とする薄膜発光素子。
5. The thin film light emitting device according to claim 4, wherein the intermediate insulating layer is formed by using argon gas, oxygen gas, and nitrogen gas.
【請求項6】請求項5記載の薄膜発光素子において、中
間絶縁層はアルゴンガス、酸素ガス、窒素ガスの混合比
を10:0:0.05ないし10:0.2:0.05の
範囲に変化させて成膜してなることを特徴とする薄膜発
光素子。
6. The thin film light emitting device according to claim 5, wherein the intermediate insulating layer has a mixing ratio of argon gas, oxygen gas and nitrogen gas in the range of 10: 0: 0.05 to 10: 0.2: 0.05. A thin film light emitting device, characterized in that the thin film light emitting device is formed by changing the film thickness.
JP6002863A 1994-01-17 1994-01-17 Thin film electroluminescent element Pending JPH07211458A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6002863A JPH07211458A (en) 1994-01-17 1994-01-17 Thin film electroluminescent element
GB9500767A GB2286081A (en) 1994-01-17 1995-01-16 Thin film light-emitting element
FR9500412A FR2715262A1 (en) 1994-01-17 1995-01-16 Light emitting element with thin layers.
DE1995101229 DE19501229A1 (en) 1994-01-17 1995-01-17 Thin film light emission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6002863A JPH07211458A (en) 1994-01-17 1994-01-17 Thin film electroluminescent element

Publications (1)

Publication Number Publication Date
JPH07211458A true JPH07211458A (en) 1995-08-11

Family

ID=11541216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6002863A Pending JPH07211458A (en) 1994-01-17 1994-01-17 Thin film electroluminescent element

Country Status (4)

Country Link
JP (1) JPH07211458A (en)
DE (1) DE19501229A1 (en)
FR (1) FR2715262A1 (en)
GB (1) GB2286081A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2005208603A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005242338A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005242339A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Light emitting device
JP2006511045A (en) * 2002-12-20 2006-03-30 アイファイアー・テクノロジー・コープ Barrier layers for thick film dielectric electroluminescent displays
US7187121B2 (en) 2002-04-09 2007-03-06 Canon Kabushiki Kaisha Organic luminescence device with anti-reflection layer and organic luminescence device package
US7274044B2 (en) 2004-01-26 2007-09-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7315047B2 (en) 2004-01-26 2008-01-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2008282053A (en) * 2001-03-22 2008-11-20 Lumimove Inc Electroluminescent sign
US7476908B2 (en) 2004-05-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7495257B2 (en) 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7554263B2 (en) 2003-02-12 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having transparent film varying refractive index and manufacturing method thereof
US7687404B2 (en) 2004-05-14 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US7851997B2 (en) 2006-06-02 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2012506607A (en) * 2008-10-24 2012-03-15 サン−ゴバン グラス フランス Glass substrate with electrodes, especially substrate used for organic light-emitting diode elements
WO2016151819A1 (en) * 2015-03-25 2016-09-29 パイオニア株式会社 Light-emitting device
US9751267B2 (en) 2011-02-14 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Optical element, light-emitting device, lighting device, and method for manufacturing optical element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9609282D0 (en) 1996-05-03 1996-07-10 Cambridge Display Tech Ltd Protective thin oxide layer
KR100748818B1 (en) 2000-08-23 2007-08-13 이데미쓰 고산 가부시키가이샤 Organic el display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104555A (en) * 1977-01-27 1978-08-01 Atkins & Merrill, Inc. High temperature encapsulated electroluminescent lamp
US4159443A (en) * 1978-07-18 1979-06-26 Bell Telephone Laboratories, Incorporated Electroluminescent optical devices
DE3231727A1 (en) * 1981-09-21 1983-04-07 Sun Chemical Corp., New York, N.Y. ELECTROLUMINESCENT DISPLAY DEVICE
US5003221A (en) * 1987-08-29 1991-03-26 Hoya Corporation Electroluminescence element
CA1302547C (en) * 1988-12-02 1992-06-02 Jerzy A. Dobrowolski Optical interference electroluminescent device having low reflectance
US5072152A (en) * 1990-02-05 1991-12-10 Planar Systems, Inc. High brightness TFEL device and method of making same
JP3274527B2 (en) * 1992-09-22 2002-04-15 株式会社日立製作所 Organic light emitting device and its substrate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282053A (en) * 2001-03-22 2008-11-20 Lumimove Inc Electroluminescent sign
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
US7187121B2 (en) 2002-04-09 2007-03-06 Canon Kabushiki Kaisha Organic luminescence device with anti-reflection layer and organic luminescence device package
US7332859B2 (en) 2002-04-09 2008-02-19 Canon Kabushiki Kaisha Organic luminescence device with anti-reflection layer and organic luminescence device package
JP2006511045A (en) * 2002-12-20 2006-03-30 アイファイアー・テクノロジー・コープ Barrier layers for thick film dielectric electroluminescent displays
JP2010171027A (en) * 2002-12-20 2010-08-05 Ifire Ip Corp Barrier layer for thick film dielectric electroluminescent displays
US7989088B2 (en) 2002-12-20 2011-08-02 Ifire Ip Corporation Barrier layer for thick film dielectric electroluminescent displays
US7554263B2 (en) 2003-02-12 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having transparent film varying refractive index and manufacturing method thereof
US9911800B2 (en) 2003-12-26 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9583545B2 (en) 2003-12-26 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9196638B2 (en) 2003-12-26 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2005208603A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Light emitting device
US8624257B2 (en) 2003-12-26 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7495257B2 (en) 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7274044B2 (en) 2004-01-26 2007-09-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7977685B2 (en) 2004-01-26 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8669567B2 (en) 2004-01-26 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7315047B2 (en) 2004-01-26 2008-01-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2005242339A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005242338A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Light emitting device
US7687404B2 (en) 2004-05-14 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US7476908B2 (en) 2004-05-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7851997B2 (en) 2006-06-02 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2012506607A (en) * 2008-10-24 2012-03-15 サン−ゴバン グラス フランス Glass substrate with electrodes, especially substrate used for organic light-emitting diode elements
US9751267B2 (en) 2011-02-14 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Optical element, light-emitting device, lighting device, and method for manufacturing optical element
WO2016151819A1 (en) * 2015-03-25 2016-09-29 パイオニア株式会社 Light-emitting device

Also Published As

Publication number Publication date
FR2715262A1 (en) 1995-07-21
DE19501229A1 (en) 1995-07-20
GB2286081A (en) 1995-08-02
GB9500767D0 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JPH07211458A (en) Thin film electroluminescent element
US20080054810A1 (en) Composition of dielectric for plasma display panel
JPH05182766A (en) Thin film el element
EP0159531B1 (en) Thin film el panel
US4634639A (en) Electroluminescent panel having a light absorption layer of germanium oxide
JPH07211460A (en) Manufacture of electro luminescence element
JPH08162069A (en) Flat type fluorescent lamp
JP3533710B2 (en) Electroluminescence device and multicolor electroluminescence device
US20060181213A1 (en) Flat display device
JPS5824915B2 (en) Thin film EL element
JPH027072B2 (en)
JPH0325916B2 (en)
JPS6315719B2 (en)
JPH0266867A (en) Color el display device and manufacture thereof
JPS5855636B2 (en) Thin film EL element
JPH01194292A (en) Electroluminescence element and its manufacture
JPH0460317B2 (en)
JPH07263147A (en) Thin film light emitting element
JPH0460318B2 (en)
JPH0152878B2 (en)
JPH0369158B2 (en)
JPH088063A (en) Thin-film blue electroluminescent element
JPS598040B2 (en) Thin film EL element
JP4807032B2 (en) Plasma display panel
JPS5855635B2 (en) Thin film EL element