JPH07209648A - Liquid crystal display panel - Google Patents

Liquid crystal display panel

Info

Publication number
JPH07209648A
JPH07209648A JP6023160A JP2316094A JPH07209648A JP H07209648 A JPH07209648 A JP H07209648A JP 6023160 A JP6023160 A JP 6023160A JP 2316094 A JP2316094 A JP 2316094A JP H07209648 A JPH07209648 A JP H07209648A
Authority
JP
Japan
Prior art keywords
liquid crystal
display panel
alignment
crystal display
crystal molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6023160A
Other languages
Japanese (ja)
Other versions
JP3469624B2 (en
Inventor
Takafumi Koike
啓文 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02316094A priority Critical patent/JP3469624B2/en
Publication of JPH07209648A publication Critical patent/JPH07209648A/en
Application granted granted Critical
Publication of JP3469624B2 publication Critical patent/JP3469624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the visual angle dependency of the liquid crystal display panel in an intermediate display state. CONSTITUTION:The liquid crystal display panel has a couple of substrates 1 and 2 which are arranged opposite each other across a specific gap and a nematic liquid crystal layer 3 held in the gap. A counter electrode 5 and pixel electrodes 4 are formed on the internal surfaces of both the substrates 1 and 2 and face each other to prescribe pixel areas in a matrix. Orientation films 15 and 14 are formed on the internal surfaces of the substrates 1 and 2 and come into contact with the nematic liquid crystal layer 3 to hold its liquid crystal molecules 16 in a twist array state. The oriented film 14 or 15 on at least one substrate side is irradiated partially with ultraviolet rays in individual pixel areas to control the twist array state of the liquid crystal molecules 16 on an orientation division basis. The orientation layers 14 and 15 are formed of polyimide oriented films which are rubbed and selectively irradiated with the ultraviolet rays to vary the pretilt angle of the liquid crystal molecules 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示パネルに関す
る。より詳しくは、中間調表示における視角特性の改善
技術に関する。さらに詳しくは、視角改善の為の配向制
御技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel. More specifically, it relates to a technique for improving viewing angle characteristics in halftone display. More specifically, it relates to an orientation control technique for improving the viewing angle.

【0002】[0002]

【従来の技術】従来から液晶表示パネルでは、ツイスト
整列されたネマティック液晶が一般的に利用されてい
る。図7はツイストネマティックモードの液晶表示パネ
ルの動作原理を示す模式図である。左側が電圧無印加状
態を示し右側が電圧印加状態を示す。上側の偏光板10
1の偏光軸Aと下側の偏光板102の偏光軸Bは互いに
直交している。又、上側の配向膜103の配向方向と下
側の配向膜104の配向方向も互いに直交している。従
って、ネマティック液晶分子105は90°捩れたツイ
スト整列となる。電圧無印加状態では、上側の偏光板1
01を通過した入射光の直線偏光成分が、ツイスト整列
された液晶分子105により90°旋光され下側の偏光
板102を透過する。従って電圧無印加状態では白色表
示が得られる。一方、電圧を印加すると液晶分子105
は立ち上がり旋光能が失なわれる。従って、入射光の直
線偏光成分は下側の偏光板102により遮断され黒色表
示が得られる。この様な表示方式はノーマリホワイトモ
ードと呼ばれている。印加電圧のレベルを適宜選択する
事により、白色表示と黒色表示の間の中間調表示(灰色
表示)が得られる。中間調表示ではネマティック液晶分
子105は完全に寝た状態と完全に立ち上がった状態の
間にあり、その分子軸は基板面に対して傾斜している。
中間調表示もしくは階調表示は、例えばテレビジョン画
像やビデオ画像の再生に必要となる。
2. Description of the Related Art Conventionally, nematic liquid crystals in a twisted alignment have been generally used in liquid crystal display panels. FIG. 7 is a schematic diagram showing the operation principle of a twist nematic mode liquid crystal display panel. The left side shows the state where no voltage is applied, and the right side shows the state where voltage is applied. Upper polarizing plate 10
The polarization axis A of 1 and the polarization axis B of the lower polarizing plate 102 are orthogonal to each other. Further, the alignment direction of the upper alignment film 103 and the alignment direction of the lower alignment film 104 are also orthogonal to each other. Therefore, the nematic liquid crystal molecules 105 are twist-aligned with a 90 ° twist. When no voltage is applied, the upper polarizing plate 1
The linearly polarized light component of the incident light passing through 01 is rotated by 90 ° by the twist-aligned liquid crystal molecules 105 and is transmitted through the lower polarizing plate 102. Therefore, white display is obtained when no voltage is applied. On the other hand, when a voltage is applied, the liquid crystal molecules 105
Stands up and the optical rotation is lost. Therefore, the linearly polarized component of the incident light is blocked by the lower polarizing plate 102, and black display is obtained. Such a display system is called a normally white mode. By properly selecting the level of the applied voltage, a halftone display (gray display) between white display and black display can be obtained. In the halftone display, the nematic liquid crystal molecules 105 are between the completely laid state and the completely raised state, and their molecular axes are tilted with respect to the substrate surface.
The halftone display or gradation display is necessary for reproducing, for example, a television image or a video image.

【0003】[0003]

【発明が解決しようとする課題】ツイストネマティック
モードの液晶表示パネルは視角特性が悪いという課題が
ある。即ち、液晶表示パネルの透過率には視野角依存性
があり、見る方向により表示濃度が変化し視認性が悪
い。この視野角依存性は特に中間調表示で顕著になり、
画像品位が著しく損なわれる。場合によっては、見る方
向により表示状態が反転し画像品位を著しく低下させて
いた。前述した様に、中間調表示では液晶分子が傾斜状
態(ティルト状態)にあり、分子軸の方向と視認方向と
の関係に依存して、透過率が極端に変化し最悪の場合に
は画像反転が起きてしまう。
The liquid crystal display panel of twisted nematic mode has a problem that the viewing angle characteristic is poor. That is, the transmittance of the liquid crystal display panel has a viewing angle dependency, and the display density changes depending on the viewing direction, resulting in poor visibility. This viewing angle dependency becomes particularly noticeable in halftone display,
Image quality is significantly impaired. In some cases, the display state is reversed depending on the viewing direction, and the image quality is significantly degraded. As described above, in the halftone display, the liquid crystal molecules are in a tilted state, and the transmittance changes extremely depending on the relationship between the direction of the molecular axis and the viewing direction, and in the worst case, the image is inverted. Will happen.

【0004】かかる視野角依存性を改善する為、例えば
特開昭64−88520号公報に配向分割技術が開示さ
れている。液晶分子の配向方向を1画素内で複数個の領
域に分割し、各々の領域で配向方向を異ならしめてい
る。これにより、目の位置が液晶パネルの法線から傾斜
し、ある部分で画像が白黒反転し、ある部分では白抜け
を生じた場合でも1画素全体では平均化されて、画面全
体では視野角に関係なく白黒反転や白抜けが生じない良
好な画像を得ることができる。しかしながら、実際には
個々の微細な画素内で配向方向を領域毎に異ならせる事
は製造技術上極めて困難である。
In order to improve such viewing angle dependence, for example, Japanese Patent Laid-Open No. 64-88520 discloses an alignment division technique. The orientation direction of liquid crystal molecules is divided into a plurality of regions within one pixel, and the orientation directions are made different in each region. As a result, even if the position of the eyes is tilted from the normal line of the liquid crystal panel, the image is inverted in black and white at a certain portion, and white spots occur at a certain portion, the whole pixel is averaged and the viewing angle is changed over the entire screen. It is possible to obtain a good image in which black-and-white inversion and white spots do not occur regardless of this. However, in actuality, it is extremely difficult in terms of manufacturing technology to make the orientation direction different for each region within each minute pixel.

【0005】[0005]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明はツイストネマティックモードの液晶
表示パネルにおいて、中間調表示の視野角依存性を簡便
な配向制御で改善する事を目的とする。かかる目的を達
成する為に以下の手段を講じた。即ち、本発明にかかる
液晶表示パネルは基本的な構成として、所定の間隙を介
して対向配置した一対の基板と、該間隙に保持されたネ
マティック液晶層とを有している。両基板の内表面には
所定の電極が形成されており互いに対向してマトリクス
状の画素領域を規定する。各基板の内表面には配向層が
形成されておりネマティック液晶層と接してこれをツイ
スト整列状態に維持している。本発明の特徴事項とし
て、少なくとも一方の基板側の配向層は、個々の画素領
域内で部分的に紫外線照射処理を受けており、ネマティ
ック液晶層のツイスト整列状態を配向分割的に制御して
いる。例えば、配向層はラビング処理を施されたポリイ
ミド配向膜からなり、紫外線照射処理を受けてネマティ
ック液晶層に含まれる液晶分子のプレティルト角に変化
を与えている。この場合、前記配向膜は各画素領域内に
おいて紫外線照射部位が変動しても常に一定の紫外線照
射面積を有している。かかる構成を有する液晶表示パネ
ルはアクティブマトリクス型や単純マトリクス型を含
む。アクティブマトリクス型の場合には、一方の基板に
細分化された画素電極が形成されており、他方の基板に
は連続的な対向電極が形成されている。両電極が平面的
に重なる部分にマトリクス状の画素領域が規定される。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to improve the viewing angle dependence of halftone display in a twisted nematic mode liquid crystal display panel by simple alignment control. And The following measures have been taken in order to achieve this object. That is, the liquid crystal display panel according to the present invention has, as a basic structure, a pair of substrates opposed to each other with a predetermined gap, and a nematic liquid crystal layer held in the gap. Predetermined electrodes are formed on the inner surfaces of both substrates and face each other to define a matrix of pixel regions. An alignment layer is formed on the inner surface of each substrate and is in contact with the nematic liquid crystal layer to maintain it in a twist alignment state. As a feature of the present invention, at least one of the alignment layers on the substrate side is partially subjected to ultraviolet irradiation treatment in each pixel region, and the twist alignment state of the nematic liquid crystal layer is controlled by alignment division. . For example, the alignment layer is made of a rubbing-treated polyimide alignment film, and is subjected to ultraviolet irradiation treatment to change the pretilt angle of liquid crystal molecules contained in the nematic liquid crystal layer. In this case, the alignment film always has a constant ultraviolet irradiation area even if the ultraviolet irradiation site changes in each pixel region. Liquid crystal display panels having such a structure include active matrix type and simple matrix type. In the case of the active matrix type, subdivided pixel electrodes are formed on one substrate, and continuous counter electrodes are formed on the other substrate. A matrix-shaped pixel region is defined in a portion where both electrodes overlap in a plane.

【0006】[0006]

【作用】本発明によれば、個々の画素領域内で配向膜は
部分的もしくは選択的に紫外線照射処理を受けている。
これにより、ネマティック液晶層のツイスト整列状態が
配向分割的に制御される。例えば、ラビング処理を施さ
れたポリイミド配向膜に対して紫外線照射処理を行なう
と、表面のポリイミド分子鎖が切断されミクロ的に荒れ
た状態になる。この為、紫外線の選択的照射を受けた部
位は液晶分子のプレティルト角が高くなり、その分光学
的閾値電圧が低くなる。一方、紫外線照射を受けていな
い部位では液晶分子のプレティルト角が0°に近く低い
状態のままであり、光学的閾値電圧は高くなる。この様
に、光学的閾値電圧を配向分割的に異ならせた状態で、
中間調レベルの電圧を印加すると、一方の部位は液晶分
子が寝た状態となり、他方の部位は液晶分子が立ち上が
った状態となり、両部位の透過率の合成として所望の中
間調表示が得られる。個々の画素領域は全体として中間
調を呈するが、実際には液晶分子は立ち上がった状態と
寝た状態の混合となり、最も視野角特性の悪い傾斜状態
が含まれていない。従って、従来に比し中間調表示にお
ける視野角依存性を大幅に抑制する事が可能になる。
According to the present invention, the alignment film is partially or selectively subjected to ultraviolet irradiation treatment in each pixel region.
As a result, the twist alignment state of the nematic liquid crystal layer is controlled by alignment division. For example, if the polyimide alignment film that has been subjected to the rubbing treatment is subjected to an ultraviolet irradiation treatment, the polyimide molecular chains on the surface are broken and the surface becomes microscopically rough. For this reason, the pretilt angle of the liquid crystal molecules becomes high and the spectroscopic threshold voltage thereof becomes low at the site where the ultraviolet rays are selectively irradiated. On the other hand, the pretilt angle of the liquid crystal molecule remains low near 0 ° in the portion not irradiated with the ultraviolet light, and the optical threshold voltage becomes high. In this way, in the state where the optical threshold voltage is changed in the orientation division manner,
When a voltage of a halftone level is applied, liquid crystal molecules are laid down in one part and liquid crystal molecules are erected in the other part, and a desired halftone display is obtained as a composite of the transmittances of both parts. Although each pixel region exhibits a halftone as a whole, the liquid crystal molecules are actually a mixture of a standing state and a lying state, and the tilted state with the worst viewing angle characteristic is not included. Therefore, it becomes possible to significantly suppress the viewing angle dependency in the halftone display as compared with the related art.

【0007】[0007]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかる液晶表示パネル
の一実施例を示す模式的な部分断面図であり、アクティ
ブマトリクス型液晶表示パネルの例を表わしている。但
し、本発明はアクティブマトリクス型に限られるもので
はなく、単純マトリクス型にも適用可能である事は勿論
である。図示する様に、液晶表示パネルは所定の間隙を
介して対向配置した上下一対の基板1,2と、該間隙に
保持されたネマティック液晶層3とから構成されてい
る。両基板1,2の内表面には所定の電極が形成されて
おり互いに対向してマトリクス状の画素領域を規定して
いる。本例では、下側基板2の内表面にマトリクス状に
細分化された画素電極4が形成されており、上側基板1
の内表面には連続的な対向電極5が形成されている。画
素電極4と対向電極5が平面的に重なる部分にマトリク
ス状の画素領域が規定される。なお、下側基板2には個
々の画素電極4と対応してスイッチング駆動用の薄膜ト
ランジスタ6も集積形成されている。薄膜トランジスタ
6は所定の形状にパタニングされたポリシリコン7を素
子領域として構成されており、その上に絶縁膜8を介し
てゲート電極Gがパタニングされている。又、第1層間
絶縁膜9を介して配線電極10が、薄膜トランジスタ6
のソース領域Sに電気接続している。この配線電極10
は第2層間絶縁膜11により被覆されており、その上に
前述した画素電極4がパタニング形成されている。画素
電極4は第2層間絶縁膜11及び第1層間絶縁膜9に開
口したコンタクトホールを介して薄膜トランジスタ6の
ドレイン領域Dに電気接続している。一方、上側基板1
の内表面には薄膜トランジスタ6と整合する様にブラッ
クマスク12が設けられている。このブラックマスク1
2と対向電極5との間には絶縁膜13が介在している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic partial cross-sectional view showing an embodiment of a liquid crystal display panel according to the present invention, showing an example of an active matrix type liquid crystal display panel. However, it goes without saying that the present invention is not limited to the active matrix type and can be applied to the simple matrix type. As shown in the figure, the liquid crystal display panel is composed of a pair of upper and lower substrates 1 and 2 that are opposed to each other with a predetermined gap, and a nematic liquid crystal layer 3 held in the gap. Predetermined electrodes are formed on the inner surfaces of the substrates 1 and 2 and face each other to define a matrix of pixel regions. In this example, the pixel electrodes 4 subdivided into a matrix are formed on the inner surface of the lower substrate 2, and the upper substrate 1
A continuous counter electrode 5 is formed on the inner surface of the. A matrix-shaped pixel region is defined in a portion where the pixel electrode 4 and the counter electrode 5 overlap in a plane. In addition, on the lower substrate 2, thin film transistors 6 for switching driving are also integrally formed corresponding to the individual pixel electrodes 4. The thin film transistor 6 is configured by using polysilicon 7 patterned in a predetermined shape as an element region, and a gate electrode G is patterned on the polysilicon 7 via an insulating film 8. In addition, the wiring electrode 10 is connected to the thin film transistor 6 via the first interlayer insulating film 9.
Is electrically connected to the source region S of. This wiring electrode 10
Is covered with a second interlayer insulating film 11, on which the above-mentioned pixel electrode 4 is patterned. The pixel electrode 4 is electrically connected to the drain region D of the thin film transistor 6 through a contact hole opened in the second interlayer insulating film 11 and the first interlayer insulating film 9. On the other hand, the upper substrate 1
A black mask 12 is provided on the inner surface of the so as to match the thin film transistor 6. This black mask 1
An insulating film 13 is interposed between 2 and the counter electrode 5.

【0008】下側基板2の内表面には配向層14が形成
されている。又、上側基板1の内表面にも同様に配向層
15が形成されている。これらの配向層15,14は上
下からネマティック液晶層3と接して液晶分子16をツ
イスト整列状態に維持している。但し、図では理解を容
易にする為液晶分子16のツイスト整列を単純化して表
わしている。実際には、図7に示した様に、液晶分子1
6は上側基板1と下側基板2との間で90°捩れた配列
となっている。本例では配向層14,15はラビング処
理を施されたポリイミド配向膜からなる。
An alignment layer 14 is formed on the inner surface of the lower substrate 2. An alignment layer 15 is similarly formed on the inner surface of the upper substrate 1. These alignment layers 15 and 14 are in contact with the nematic liquid crystal layer 3 from above and below to maintain the liquid crystal molecules 16 in a twisted alignment state. However, in the drawing, the twist alignment of the liquid crystal molecules 16 is simplified for easy understanding. Actually, as shown in FIG.
6 is an arrangement in which the upper substrate 1 and the lower substrate 2 are twisted by 90 °. In this example, the alignment layers 14 and 15 are made of a rubbing-treated polyimide alignment film.

【0009】本発明の特徴事項として、少なくとも一方
の基板側の配向層14又は15は、個々の画素領域内で
部分的(選択的)に紫外線照射処理を受けており、液晶
分子16のツイスト整列状態を配向分割的に制御してい
る。図示の例では、画素領域の左側半分が選択的に紫外
線照射を受けており、ネマティック液晶層3に含まれる
液晶分子16のプレティルト角が高く変化している。一
方、右側半分の紫外線照射を受けなかった部位では、液
晶分子16のプレティルト角は低いままに維持されてい
る。
As a feature of the present invention, at least one of the alignment layers 14 and 15 on the substrate side is subjected to ultraviolet irradiation treatment partially (selectively) in each pixel region, and the twist alignment of the liquid crystal molecules 16 is performed. The state is controlled by orientation division. In the illustrated example, the left half of the pixel area is selectively irradiated with ultraviolet rays, and the pretilt angle of the liquid crystal molecules 16 included in the nematic liquid crystal layer 3 is highly changed. On the other hand, the pretilt angle of the liquid crystal molecules 16 is kept low in the right half of the portion that has not been irradiated with the ultraviolet rays.

【0010】本実施例では高圧水銀灯を用いて上下の配
向層14,15に対して紫外線照射処理を行なった。液
晶分子16のプレティルト角を実際に測定したところ、
紫外線照射部位では3〜4°であった。一方、紫外線未
照射部位では0〜1°であった。この様に、紫外線の選
択的照射により同一画素領域内で、光学的閾値電圧の異
なる部位を作成する事が可能になった。これにより、中
間調レベルの電圧を画素領域に印加すると、紫外線照射
部位では液晶分子16が比較的低電圧で立ち上がり、紫
外線未照射部位ではその後に液晶分子が立ち上がる事に
なる。この為、画素領域全体としては中間表示であって
も、液晶分子が傾斜状態にある事が少なくなる。例え
ば、紫外線照射部位と紫外線未照射部位のどちらか一方
で液晶分子が中間位置にある時、他方の部位では液晶分
子は完全に立っているかあるいは寝ている状態になる。
即ち、視角依存性が最も顕著な液晶分子の傾斜状態を減
少させる事により、液晶表示パネルの視角特性を改善す
る事が可能になる。
In this embodiment, the upper and lower alignment layers 14 and 15 were irradiated with ultraviolet rays using a high pressure mercury lamp. When the pretilt angle of the liquid crystal molecule 16 was actually measured,
It was 3 to 4 ° at the ultraviolet irradiation site. On the other hand, it was 0 to 1 ° at the site not irradiated with ultraviolet rays. In this way, it becomes possible to create regions having different optical threshold voltages in the same pixel region by selective irradiation with ultraviolet rays. As a result, when a voltage of a halftone level is applied to the pixel region, the liquid crystal molecules 16 rise at a relatively low voltage in the ultraviolet ray irradiation region, and the liquid crystal molecules rise after that in the ultraviolet ray non-irradiation region. Therefore, the liquid crystal molecules are less likely to be inclined even in the intermediate display in the entire pixel region. For example, when the liquid crystal molecule is in an intermediate position in either the ultraviolet ray irradiation site or the ultraviolet ray non-irradiation site, the liquid crystal molecule in the other site is in a completely standing or sleeping state.
That is, it is possible to improve the viewing angle characteristics of the liquid crystal display panel by reducing the tilted state of the liquid crystal molecules, which has the most remarkable viewing angle dependency.

【0011】図2はマトリクス状に配列した個々の画素
領域を模式的に表わした平面図である。個々の画素領域
21は上側部位21Uと下側部位21Lとに二分割され
ている。この例では、個々の画素領域21に整合したマ
スクを用いて紫外線照射を行ない、ハッチングで示した
下側部位21Lのみに紫外線照射を加えている。
FIG. 2 is a plan view schematically showing individual pixel regions arranged in a matrix. Each pixel region 21 is divided into an upper portion 21U and a lower portion 21L. In this example, UV irradiation is performed using a mask that is aligned with each pixel region 21, and UV irradiation is applied only to the lower portion 21L shown by hatching.

【0012】図3は、図2に示した紫外線選択照射方式
の改善例を表わす模式的な平面図である。本例では、マ
トリクス状に配列した個々の画素領域21に対して、行
方向に沿って配列したストライプ状のマスクを介して紫
外線を照射している。ストライプ状マスクの開口幅Wは
個々の画素領域の幅寸法Pの半分に設定されている。本
例では、ストライプ状のマスクと、画素領域21のマト
リクス状パタンを正確にアライメントする必要はない。
ストライプ状マスクと画素領域のパタンが上下方向にず
れていても、ハッチングで示した個々の画素領域内にお
ける照射部位の面積は一定に保たれる。但し、照射部位
の位置は変動する。具体的には、個々の画素領域21で
未照射部位を挟み上下に分割された照射部位の合計面積
は常に一定に保たれるが、上下各々の照射部位の面積は
相補的に変動する事になる。
FIG. 3 is a schematic plan view showing an example of improvement of the ultraviolet selective irradiation system shown in FIG. In this example, the individual pixel regions 21 arranged in a matrix are irradiated with ultraviolet rays through a stripe-shaped mask arranged in the row direction. The opening width W of the striped mask is set to half the width P of each pixel region. In this example, it is not necessary to accurately align the stripe-shaped mask and the matrix-shaped pattern of the pixel region 21.
Even if the pattern of the stripe-shaped mask and the pattern of the pixel region are shifted in the vertical direction, the area of the irradiation site in each pixel region shown by hatching is kept constant. However, the position of the irradiation site changes. Specifically, the total area of the irradiation areas divided vertically by sandwiching the non-irradiation area in each pixel region 21 is always kept constant, but the area of each of the irradiation areas of the upper and lower parts varies complementarily. Become.

【0013】図4は、本発明にかかる液晶表示パネルの
透過率と印加電圧との関係を示すグラフである。ノーマ
リホワイトモードを採用しており、電圧の無印加状態で
は透過率は略100%となり、十分に高い電圧を印加し
た場合には透過率が0%に近くなる。グラフ中曲線Aは
紫外線未照射部位の透過率特性を表わしている。又、曲
線Bは紫外線照射部位における透過率特性を表わしてい
る。前述した様に未照射部位では液晶分子のプレティル
ト角が低いままに維持されている為、光学的閾値電圧が
高くなっている。一方、照射部位では配向層の表面状態
が荒れる為液晶分子のプレティルト角が高めに変化し、
その分光学的閾値電圧が低い方向にシフトする。なお、
曲線Cは曲線Aと曲線Bを合成した透過率特性を表わし
ている。今仮に、透過率50%の中間調表示を得る為、
所定の電圧レベルVmを印加したとする。未照射部位で
は液晶分子が略寝たままの状態であり、照射部位では液
晶分子が略立ち上がった状態になる。両部位の合成とし
て、所望の中間調表示が得られる。
FIG. 4 is a graph showing the relationship between the transmittance and the applied voltage of the liquid crystal display panel according to the present invention. The normally white mode is adopted, and the transmittance becomes approximately 100% when no voltage is applied, and the transmittance becomes close to 0% when a sufficiently high voltage is applied. Curve A in the graph represents the transmittance characteristic of the portion not irradiated with ultraviolet rays. Curve B represents the transmittance characteristic at the ultraviolet irradiation site. As described above, since the pretilt angle of the liquid crystal molecules is kept low in the non-irradiated portion, the optical threshold voltage is high. On the other hand, at the irradiated area, the surface state of the alignment layer becomes rough, so the pretilt angle of liquid crystal molecules changes to a higher level
The spectroscopic threshold voltage shifts to the lower direction. In addition,
A curve C represents a transmittance characteristic obtained by combining the curves A and B. Now, to obtain a halftone display with a transmittance of 50%,
It is assumed that a predetermined voltage level Vm is applied. At the non-irradiated portion, the liquid crystal molecules are in a substantially lying state, and at the irradiated portion, the liquid crystal molecules are substantially upright. As a combination of both parts, the desired halftone display is obtained.

【0014】図5は、図4のグラフに示した中間調表示
における液晶分子の整列状態を模式的に表わしたもので
ある。個々の画素領域51において、右側半分の紫外線
未照射部位52では、液晶分子53が寝たままの状態で
ある。一方左側半分の紫外線照射部位54では、液晶分
子53が略立ち上がった状態にある。この様に、画素領
域51全体として見ると中間調表示が行なわれているに
も関わらず、当該画素領域に含まれる液晶分子53は略
立ち上がった状態と略寝たままの状態の混合になる。従
って、視野角依存性が最も顕著な中間の傾斜状態にある
液晶分子が殆ど含まれていない。
FIG. 5 schematically shows the alignment state of liquid crystal molecules in the halftone display shown in the graph of FIG. In each pixel region 51, the liquid crystal molecules 53 are in a lying state in the right half of the ultraviolet ray non-irradiated portion 52. On the other hand, the liquid crystal molecules 53 are almost upright at the ultraviolet irradiation site 54 on the left half. As described above, the liquid crystal molecules 53 included in the pixel region are in a mixture of a substantially raised state and a substantially lying state, even though the halftone display is performed in the pixel region 51 as a whole. Therefore, almost no liquid crystal molecules in an intermediate tilted state in which the viewing angle dependence is most prominent are included.

【0015】図6は従来の液晶表示パネルにおける中間
調表示状態を模式的に表わしている。図示する様に、個
々の画素領域51内において全ての液晶分子53は中間
の傾斜状態にあり、視野角依存性が顕著に現われる事に
なり、画像反転等が生じ表示品位が著しく損なわれる。
FIG. 6 schematically shows a halftone display state in a conventional liquid crystal display panel. As shown in the drawing, all the liquid crystal molecules 53 in the individual pixel regions 51 are in an intermediate tilted state, and the viewing angle dependency is remarkably exhibited, and image reversal or the like occurs, and the display quality is significantly impaired.

【0016】[0016]

【発明の効果】以上説明した様に、本発明によれば、少
なくとも一方の基板側の配向層が、個々の画素領域内で
部分的に紫外線照射処理を受けており、ネマティック液
晶層のツイスト整列状態を配向分割的に制御している。
同一画素内で光学的閾値電圧の異なる部位を作り込める
為、中間調表示は液晶分子の寝た状態と立ち上がった状
態の混合として実現でき、従来に比し視角依存性が著し
く改善する事が可能になるという効果が得られる。視角
に依存した表示濃度の変化や反転が改善され、表示品位
の良好なディスプレイが実現できる。
As described above, according to the present invention, the alignment layer on the side of at least one substrate is partially subjected to the ultraviolet irradiation treatment in each pixel region, and the nematic liquid crystal layer is twist-aligned. The state is controlled by orientation division.
Since parts with different optical threshold voltages can be created in the same pixel, halftone display can be realized as a mixture of the liquid crystal molecules in the lying state and the rising state, and the viewing angle dependency can be significantly improved compared to the past. The effect of becoming is obtained. The change and inversion of the display density depending on the viewing angle are improved, and a display with good display quality can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる液晶表示パネルの一実施例を示
す模式的な部分断面図である。
FIG. 1 is a schematic partial sectional view showing an embodiment of a liquid crystal display panel according to the present invention.

【図2】配向分割的な紫外線照射処理の一例を示す模式
図である。
FIG. 2 is a schematic diagram showing an example of alignment-divisional ultraviolet irradiation processing.

【図3】配向分割的な紫外線処理方式の他の例を示す模
式図である。
FIG. 3 is a schematic view showing another example of an alignment-division type ultraviolet treatment system.

【図4】本発明にかかる液晶表示パネルの透過率特性を
示すグラフである。
FIG. 4 is a graph showing transmittance characteristics of the liquid crystal display panel according to the present invention.

【図5】本発明にかかる液晶表示パネルの分子整列状態
を示す模式図である。
FIG. 5 is a schematic view showing a molecular alignment state of a liquid crystal display panel according to the present invention.

【図6】従来の液晶表示パネルにおける分子整列状態を
示す模式図である。
FIG. 6 is a schematic view showing a molecular alignment state in a conventional liquid crystal display panel.

【図7】従来のツイストネマティックモード液晶表示パ
ネルの動作原理を示す説明図である。
FIG. 7 is an explanatory diagram showing an operation principle of a conventional twist nematic mode liquid crystal display panel.

【符号の説明】[Explanation of symbols]

1 上側基板 2 下側基板 3 ネマティック液晶層 4 画素電極 5 対向電極 6 薄膜トランジスタ 14 配向層 15 配向層 16 液晶分子 1 Upper Substrate 2 Lower Substrate 3 Nematic Liquid Crystal Layer 4 Pixel Electrode 5 Counter Electrode 6 Thin Film Transistor 14 Alignment Layer 15 Alignment Layer 16 Liquid Crystal Molecules

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の間隙を介して対向配置した一対の
基板と、該間隙に保持されたネマティック液晶層とを有
し、 両基板の内表面には所定の電極が形成されており互いに
対向してマトリクス状の画素領域を規定し、 各基板の内表面には配向層が形成されておりネマティッ
ク液晶層と接してこれをツイスト整列状態に維持してい
る液晶表示パネルにおいて、 少なくとも一方の基板側の配向層は、個々の画素領域内
で部分的に紫外線照射処理を受けており、ネマティック
液晶層のツイスト整列状態を配向分割的に制御する事を
特徴とする液晶表示パネル。
1. A pair of substrates, which are arranged to face each other with a predetermined gap, and a nematic liquid crystal layer held in the gap, and predetermined electrodes are formed on the inner surfaces of both substrates to face each other. To define a matrix of pixel areas, and an alignment layer is formed on the inner surface of each substrate to contact the nematic liquid crystal layer and maintain it in a twisted alignment state. The liquid crystal display panel is characterized in that the side alignment layer is partially subjected to ultraviolet irradiation treatment in each pixel region, and the twist alignment state of the nematic liquid crystal layer is controlled by alignment division.
【請求項2】 前記配向層は、ラビング処理を施された
ポリイミド配向膜からなり、紫外線照射処理を受けてネ
マティック液晶層に含まれる液晶分子のプレティルト角
に変化を与える事を特徴とする請求項1記載の液晶表示
パネル。
2. The alignment layer is made of a rubbing-treated polyimide alignment film, and changes the pre-tilt angle of liquid crystal molecules contained in the nematic liquid crystal layer when subjected to ultraviolet irradiation treatment. 1. The liquid crystal display panel according to 1.
【請求項3】 前記配向膜は、各画素領域内において紫
外線照射部位が変動しても常に一定の紫外線照射面積を
有している事を特徴とする請求項1記載の液晶表示パネ
ル。
3. The liquid crystal display panel according to claim 1, wherein the alignment film has a constant ultraviolet irradiation area even if the ultraviolet irradiation site changes in each pixel region.
【請求項4】 一方の基板には細分化された画素電極が
形成されており、他方の基板には連続的な対向電極が形
成されており、両電極が平面的に重なる部分にマトリク
ス状の画素領域が規定される事を特徴とする請求項1記
載の液晶表示パネル。
4. A subdivided pixel electrode is formed on one substrate, and a continuous counter electrode is formed on the other substrate, and a matrix-shaped portion is formed in a portion where both electrodes overlap in a plane. The liquid crystal display panel according to claim 1, wherein a pixel region is defined.
JP02316094A 1994-01-24 1994-01-24 LCD panel Expired - Fee Related JP3469624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02316094A JP3469624B2 (en) 1994-01-24 1994-01-24 LCD panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02316094A JP3469624B2 (en) 1994-01-24 1994-01-24 LCD panel

Publications (2)

Publication Number Publication Date
JPH07209648A true JPH07209648A (en) 1995-08-11
JP3469624B2 JP3469624B2 (en) 2003-11-25

Family

ID=12102863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02316094A Expired - Fee Related JP3469624B2 (en) 1994-01-24 1994-01-24 LCD panel

Country Status (1)

Country Link
JP (1) JP3469624B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253964A (en) * 1997-03-11 1998-09-25 Kagaku Gijutsu Shinko Jigyodan Light control method for liquid crystal
JP2006003917A (en) * 2005-08-12 2006-01-05 Sharp Corp Liquid crystal panel and its manufacturing method
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
KR100777692B1 (en) * 2000-08-29 2007-11-21 삼성전자주식회사 manufacturing metod for liquid crystal display
CN105849628A (en) * 2016-03-23 2016-08-10 香港应用科技研究院有限公司 Phase modulator for holographic perspective display
JPWO2017018279A1 (en) * 2015-07-27 2018-05-17 株式会社Adeka Resin composition and cured product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253964A (en) * 1997-03-11 1998-09-25 Kagaku Gijutsu Shinko Jigyodan Light control method for liquid crystal
KR100777692B1 (en) * 2000-08-29 2007-11-21 삼성전자주식회사 manufacturing metod for liquid crystal display
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
JP2006003917A (en) * 2005-08-12 2006-01-05 Sharp Corp Liquid crystal panel and its manufacturing method
JPWO2017018279A1 (en) * 2015-07-27 2018-05-17 株式会社Adeka Resin composition and cured product
CN105849628A (en) * 2016-03-23 2016-08-10 香港应用科技研究院有限公司 Phase modulator for holographic perspective display

Also Published As

Publication number Publication date
JP3469624B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP0631172B1 (en) Gray scale liquid crystal display panel
US6987551B2 (en) In-plane switching liquid crystal display unit having tinting compensation
US7471367B2 (en) Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
JP3850002B2 (en) Liquid crystal electro-optical device
US6501524B1 (en) Liquid crystal display device
US8054242B2 (en) Liquid crystal display device and method of driving the same
US7196757B2 (en) In-plane switching LCD panel having different alignment layers
JP4156342B2 (en) Liquid crystal display
JP3006643B2 (en) Liquid crystal display
KR20020001235A (en) Muti domain liquid crystal display device and method for fabricating the same
JP3469624B2 (en) LCD panel
JP2856188B2 (en) Active matrix liquid crystal display panel
JPH0713166A (en) Liquid crystal display element
JP2979458B2 (en) Matrix type liquid crystal display
US7312841B2 (en) Liquid crystal display device with wide viewing angle
JP4019906B2 (en) Liquid crystal display
JPH05173135A (en) Liquid crystal display device
KR100246828B1 (en) Transmission liquid crystal display panel
JPH0980473A (en) Liquid crystal display element
JP2955161B2 (en) Liquid crystal display
JPH07294936A (en) Matrix type liquid crystal display device
JP2967810B2 (en) Liquid crystal display device
JPH09146098A (en) Thin-film transistor type liquid crystal display device
JP3100473B2 (en) LCD panel
JP2967811B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees