JPH0713166A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0713166A
JPH0713166A JP15403293A JP15403293A JPH0713166A JP H0713166 A JPH0713166 A JP H0713166A JP 15403293 A JP15403293 A JP 15403293A JP 15403293 A JP15403293 A JP 15403293A JP H0713166 A JPH0713166 A JP H0713166A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
pixel
boundary
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15403293A
Other languages
Japanese (ja)
Inventor
Yuzo Hisatake
雄三 久武
Masumi Okamoto
ますみ 岡本
Takahiro Yamamoto
恭弘 山本
Takeshi Yamamoto
武志 山本
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15403293A priority Critical patent/JPH0713166A/en
Publication of JPH0713166A publication Critical patent/JPH0713166A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix

Abstract

PURPOSE:To fix the points where discrination lines are generated by slit parts and to stabilize the generation of the boundary lines for orientation to different liquid crystal orientation states by providing the slit parts along the boundary parts of the different liquid crystal orientation states in respective pixels to at least one of the first electrode and the second electrode. CONSTITUTION:Lower electrodes 55 of a lower substrate 54 are rectangular and the boundaries b0 of the liquid crystal orientation state of a lower oriented film 60 are formed in the prescribed positions bisected in a longitudinal direction. Namely, the regions of the different orientation states shifting the rubbing direction by 180 deg. are formed within one pixel P. The running orientation regions shifting the rubbing directions b1 and c1 by 180 deg. with the boundary b0 bisecting the one pixel P as a boundary are similarly formed on the upper oriented film 53 on an upper substrate 51 as well. Further, the slit parts 61 are formed by each one pixel along the boundaries b0 of the different orientation states on the common electrode 52 of the upper substrate 51. On the other hand, black matrix layers 62, 59 are formed on the lower substrate 54 surface on the rear side of the lower electrodes 55 corresponding to the slit parts 61.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子に係わる。FIELD OF THE INVENTION The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示素子は主にネマティック液晶を
用いており、表示方式として複屈折モードと旋光モード
の2つの方式に大別できる。
2. Description of the Related Art Liquid crystal display devices mainly use nematic liquid crystal and can be roughly classified into two types of display systems, a birefringence mode and an optical rotation mode.

【0003】捩じれネマティック液晶を用いた複屈折モ
ードの表示方式の液晶表示素子は、例えば、90°以上
捩じれた分子配列を持ち(ST方式と呼ばれる)、急峻
な電気光学特性を持つため、各画素ごとにスイッチング
素子(薄膜トランジスタやダイオード)が無くても時分
割駆動により容易に大容量表示が得られる。
A birefringence mode display type liquid crystal display device using twisted nematic liquid crystal has a molecular arrangement twisted by 90 ° or more (called ST type) and has steep electro-optical characteristics, so that each pixel is Even if there is no switching element (thin film transistor or diode) for each, a large capacity display can be easily obtained by time-division driving.

【0004】一方、旋光モードの液晶表示素子はTN方
式と呼ばれ、90°捩じれた分子配列をもち、応答速度
が数十ミリ秒と速く高いコントラスト比を示すことか
ら、時計や電卓、さらにはスイッチング素子を各画素ご
とに設けることにより大表示容量で高コントラストな高
い表示性を持った液晶表示素子例えばTFT型表示素子
を実現することができる。
On the other hand, a liquid crystal display element of the optical rotation mode is called a TN type, which has a molecular arrangement twisted by 90 ° and has a high response ratio of several tens of milliseconds and a high contrast ratio. By providing a switching element for each pixel, it is possible to realize a liquid crystal display element having a large display capacity and a high contrast and a high display property, for example, a TFT type display element.

【0005】近年、このTFT−液晶表示素子は階調表
示を行っているが、斜めから観察した場合には表示の反
転や黒つぶれ、白抜けといった現象が生じる。
In recent years, this TFT-liquid crystal display element performs gradation display, but when observed obliquely, such phenomena as display inversion, blackout, and white spots occur.

【0006】これらの問題を解決する手段として、一画
素内に液晶分子の起き上がる方向が180°異なる二領
域を設けた液晶表示素子を用いて視角依存性を改善する
方法でTDTN(二領域TN)と呼ばれる方式が提唱さ
れている(例えば特開昭64−88520号公報参
照)。また、液晶分子配列にスプレイ配列を用い、先の
TDTNと同様の効果を得るDDTN(領域分割TN
( Y.Koike,et,al.,1992,SID,p798)などが提案されてい
る。これらは、前述した印加電圧−透過率特性の視角依
存性が異なる二領域を一画素として、前述した現象を事
実上なくすことを目的としている。
As a means for solving these problems, TDTN (two-region TN) is used by a method of improving the viewing angle dependency by using a liquid crystal display element in which two regions in which the rising directions of liquid crystal molecules are different by 180 ° are provided in one pixel. Has been proposed (see, for example, JP-A-64-88520). In addition, a splay alignment is used for the liquid crystal molecule alignment, and a DDTN (region division TN) that achieves the same effect as the above TDTN is obtained.
(Y.Koike, et, al., 1992, SID, p798) have been proposed. The purpose of these is to virtually eliminate the above-mentioned phenomenon by setting two regions, in which the viewing angle dependence of the applied voltage-transmittance characteristic is different, as one pixel.

【0007】DDTN、TDTNは、少なくとも電圧印
加時に画素配向分割の境界部に、ディスクリネーション
ラインが出現するため、このことによって表示品位を著
しく低下させる恐れがある。このため、ディスクリネー
ションラインが出現する位置にブラックマトリクスのよ
うな遮光領域を設け、その表示品位を維持する必要があ
る。このディスクリネーションラインは基本的には配向
境界部に出現するが、特に電圧印加時には、その出現位
置や幅が不定となることが多い。
In DDTN and TDTN, since a disclination line appears at the boundary of pixel orientation division at least when a voltage is applied, this may significantly deteriorate the display quality. Therefore, it is necessary to provide a light-shielding area such as a black matrix at the position where the disclination line appears to maintain the display quality. This disclination line basically appears at the alignment boundary, but the appearance position and width are often indefinite when a voltage is applied.

【0008】すなわち図5、6はDDTN、TDTNに
おける配向境界部の電圧印加時の液晶分子配列を概念的
に示したものである。図5(a)、(b)のようにDD
TNの構成では上基板1に透明電極2を形成し、その全
面に低プレチルト角配向膜3を付け、さらに各画素pの
半分の領域に高プレチルト角配向膜5を設ける。下基板
6も同様に透明電極7、低プレチルト角配向膜8、高プ
レチルト角配向膜9を付け、基板1、6を対向させたと
きに一画素pの領域内に低プレチルト配向膜3と高プレ
チルト角配向膜9が対面するようにしたものである。
That is, FIGS. 5 and 6 conceptually show the alignment of liquid crystal molecules when a voltage is applied to the alignment boundaries in DDTN and TDTN. DD as shown in FIGS.
In the TN structure, the transparent electrode 2 is formed on the upper substrate 1, the low pretilt angle alignment film 3 is attached to the entire surface thereof, and the high pretilt angle alignment film 5 is further provided in a half region of each pixel p. Similarly, the lower substrate 6 is also provided with the transparent electrode 7, the low pretilt angle alignment film 8 and the high pretilt angle alignment film 9, and when the substrates 1 and 6 are opposed to each other, the low pretilt alignment film 3 and the high pretilt alignment film 3 are formed in a region of one pixel p. The pretilt angle alignment film 9 faces each other.

【0009】高、低プレチルト角配向膜のいずれもラビ
ング方向(矢印aで示す、説明上、ねじれを省略)は同
じとする。したがって、液晶を配向させたときに、両プ
レチルト角配向膜により一画素の領域内に丁度反転した
液晶配向状態が生じる。ここで、図は電圧印加状態の液
晶分子Mの配向状態を概念的に表している。
Both the high and low pretilt angle alignment films have the same rubbing direction (indicated by an arrow a, the twist is omitted for explanation). Therefore, when the liquid crystal is aligned, the both pretilt angle alignment films cause the liquid crystal alignment state which is just inverted in the region of one pixel. Here, the drawing conceptually shows the alignment state of the liquid crystal molecules M in a voltage applied state.

【0010】電圧無印加時には、およそ液晶分子配列は
全面同一配向をなしているため、前記ディスクリネーシ
ョンラインは出現せず、このことは問題にならないが、
電圧印加時は液晶分子の立ち上がる方向が各配向領域ご
とに異なるため前記ディスクリネーションラインdが出
現する。TDTNは、図6(a)、(b)に示すように
同一画素p上の配向膜12に180°方向がずれたラビ
ング処理(矢印b、c)を施すものであり、電圧無印加
時から液晶分子配列に境界を持つTDTNもそのディス
クリネーションラインdの出現する位置が問題となる。
ここで、TDTN、DDTNともに画素内で配向処理を
異ならせるため、2種の配向膜を用いたり、ラビング処
理において、画素の一部にラビングがなされない領域を
設けるための覆いとしてマスクするため、図5(b)の
領域DL2 のように配向膜厚分の段差を生じたり、前記
マスク厚分の段差を生じたりして、図6(b)の領域D
L4 のように、配向境界部の付近は配向力が弱まる傾向
にある。このため、電圧印加時においては、ディスクリ
ネーションラインdの出現する位置つまり、液晶分子M
の立ち上がる方向が異なる境界部が、配向処理境界部の
付近の配向力が弱まることによって不定となり、様々な
位置に出現し、問題となっていた。
When no voltage is applied, the liquid crystal molecule alignment is almost the same all over the surface, so that the disclination line does not appear, which is not a problem.
When a voltage is applied, the disclination line d appears because the rising direction of liquid crystal molecules differs for each alignment region. In TDTN, as shown in FIGS. 6A and 6B, the rubbing process (arrows b and c) with the 180 ° -shifted direction is applied to the alignment film 12 on the same pixel p. In TDTN having a boundary in the liquid crystal molecule arrangement, the position where the disclination line d appears becomes a problem.
Here, in order to make the alignment process different in the pixel for both TDTN and DDTN, two kinds of alignment films are used, or in the rubbing process, a mask is provided as a cover for providing a region in which the pixel is not rubbed, As shown in the region DL2 of FIG. 5B, a step corresponding to the alignment film thickness is generated or a step corresponding to the mask thickness is generated, and the region D of FIG.
Like L4, the alignment force tends to weaken near the alignment boundary. Therefore, when the voltage is applied, the position where the disclination line d appears, that is, the liquid crystal molecule M
Boundary portions having different rising directions become indefinite due to weakening of the alignment force in the vicinity of the alignment treatment boundary portion, and appear at various positions, which is a problem.

【0011】また、DDTN、TDTN双方とも、上下
基板間において、配向処理境界部(DDTNの場合、配
向膜種の境界、TDTNの場合、ラビング方向の境界)
が合わせずれを生じた場合にも、図5(a)、図6
(a)の領域DL1 、DL3 に示すように、前記ディス
クリネーションラインdの出現する位置つまり、液晶分
子の立ち上がる方向が異なる境界部が不定となり、様々
な位置に出現し、問題となっていた。
In both DDTN and TDTN, an alignment treatment boundary portion between the upper and lower substrates (in the case of DDTN, the boundary of the alignment film type, in the case of TDTN, the boundary in the rubbing direction).
5A and FIG. 6 also when misalignment occurs in
As shown in the regions DL1 and DL3 of (a), the position where the disclination line d appears, that is, the boundary where the rising direction of the liquid crystal molecules is different is undefined, and appears at various positions, which is a problem. .

【0012】さらに、前記配向処理境界部付近にスペー
サーが配置された場合も、そのスペーサー近辺の液晶分
子配列が乱れるため、特に電圧印加時においては前記デ
ィスクリネーションラインの出現する位置つまり、液晶
分子の立ち上がる方向が異なる境界部が不定となり、様
々な位置に出現し、問題となっていた。
Further, even when a spacer is arranged near the boundary of the alignment treatment, the alignment of liquid crystal molecules in the vicinity of the spacer is disturbed. Therefore, especially when a voltage is applied, the position where the disclination line appears, that is, the liquid crystal molecule. Borders with different rising directions became indefinite and appeared at various positions, which was a problem.

【0013】[0013]

【発明が解決しようとする課題】前述したように、従来
の液晶表示素子には、階調表示を行う際、印加電圧−透
過率特性に極値が存在することによる表示の反転現象等
の視角依存性が生じていた。また、これらを解決する手
段としては、液晶分子の起き上がる方向を一画素内に2
方向以上設けて事実上の極値をなくすことが提案されて
いるが、電圧印加時においては前記ディスクリネーショ
ンラインの出現する位置つまり、液晶分子の立ち上がる
方向が異なる境界部が不定となり、様々な位置に出現
し、問題が生じていた。
As described above, in the conventional liquid crystal display element, when performing gradation display, the viewing angle such as display inversion phenomenon due to the extreme value of the applied voltage-transmittance characteristic exists. There was a dependency. In addition, as a means for solving these problems, the rising direction of liquid crystal molecules is set within two pixels.
It has been proposed to eliminate the extreme value by providing more than one direction, but when voltage is applied, the position where the disclination line appears, that is, the boundary where the rising direction of the liquid crystal molecule is different becomes indefinite and various Appeared at the location, causing problems.

【0014】本発明はこれら不都合を解決するものであ
り、前記ディスクリネーションラインの出現する位置つ
まり、液晶分子の立ち上がる方向が異なる境界部を所定
の位置に出現しうる新規なセル構成を提出するものであ
る。
The present invention solves these inconveniences, and proposes a novel cell structure in which a position where the disclination line appears, that is, a boundary where liquid crystal molecules rise in different directions can appear at a predetermined position. It is a thing.

【0015】[0015]

【課題を解決するための手段】本発明は、複数の画素を
形成するように相互に対向して配置された第1の電極と
第2の電極と、これら電極間に配置され誘電異方性が正
のネマティック液晶からなる液晶層と、前記電極上に設
けられ液晶層を複数の異なる液晶配向状態に配向する配
向膜とからなる液晶表示素子において、第1の電極と第
2の電極の少なくとも一方が各画素内の前記異なる液晶
配向状態の境界部に沿ってスリット部を有する液晶表示
素子を得るものである。
The present invention is directed to a first electrode and a second electrode which are arranged to face each other so as to form a plurality of pixels, and a dielectric anisotropy which is arranged between these electrodes. In a liquid crystal display element comprising a liquid crystal layer made of a positive nematic liquid crystal and an alignment film provided on the electrode and aligning the liquid crystal layer into a plurality of different liquid crystal alignment states, at least a first electrode and a second electrode are provided. One is to obtain a liquid crystal display element having a slit portion along the boundary portion between the different liquid crystal alignment states in each pixel.

【0016】さらに第1の電極が共通電極であり第2の
電極が一画素ごとにスイッチング素子を有する複数の画
素電極であって、前記第1の電極の各画素電極を形成す
る第2の電極に対向する位置にスリット部を有するアク
ティブマトリクス駆動液晶表示素子を得るものである。
Further, the first electrode is a common electrode, the second electrode is a plurality of pixel electrodes having a switching element for each pixel, and a second electrode forming each pixel electrode of the first electrode. To obtain an active matrix drive liquid crystal display element having a slit portion at a position facing to.

【0017】さらに本発明においては、スリット部に対
応する少なくとも一方の基板の面にブラックマトリクス
層を形成する。
Further, in the present invention, the black matrix layer is formed on the surface of at least one substrate corresponding to the slit portion.

【0018】[0018]

【作用】本発明の液晶表示素子の作用を図3により説明
する。図3はDDTN素子であり透明ストライプ電極2
2と、一画素を二分する低プレチルト角配向膜23と高
プレチルト角配向膜24を設けた上基板21と、透明ス
トライプ電極25と、一画素を二分する低プレチルト角
配向膜26と高プレチルト角配向膜27を設けた下基板
28とを10μm以下の間隔で対向させ、この間隙に液
晶層29を挟持させる。矢印aは配向方向を示すが、説
明を簡略にするため、ねじれの状態を省略した。
The operation of the liquid crystal display device of the present invention will be described with reference to FIG. FIG. 3 shows a DDTN device with a transparent stripe electrode 2
2, an upper substrate 21 provided with a low pretilt angle alignment film 23 and a high pretilt angle alignment film 24 that divide one pixel into two, a transparent stripe electrode 25, a low pretilt angle alignment film 26 and a high pretilt angle that divides one pixel into two. The lower substrate 28 provided with the alignment film 27 is opposed at an interval of 10 μm or less, and the liquid crystal layer 29 is sandwiched in this interval. The arrow a indicates the orientation direction, but the twisted state is omitted for simplicity of description.

【0019】上基板の一画素の領域内で高低プレチルト
角配向膜23、24の境界部分24aに沿って、上基板
の電極22は導電部分のないスリット部30を、例えば
5μm幅で形成している。このため、両電極22、25
間に電圧を印加すると、このスリット部30近傍の電界
に横成分を生じて、スリット部30を中心にして斜電界
となり図のように電気力線eが曲がる。すなわち、液晶
分子Mの立上がり方向は、このスリット部を中心にして
異なることになる。図はこの斜電界による液晶分子Mの
異なる立上がりによる配列状態を示している。
In the electrode 22 of the upper substrate, a slit portion 30 having no conductive portion is formed along the boundary portion 24a of the high and low pretilt angle alignment films 23 and 24 in a region of one pixel of the upper substrate, for example, with a width of 5 μm. There is. Therefore, both electrodes 22, 25
When a voltage is applied between them, a horizontal component is generated in the electric field in the vicinity of the slit portion 30, and an oblique electric field is formed around the slit portion 30, and the electric force line e bends as shown in the figure. That is, the rising direction of the liquid crystal molecules M is different with the slit portion as the center. The figure shows an arrangement state in which the liquid crystal molecules M rise differently due to the oblique electric field.

【0020】このように、本発明の構成を用いれば斜め
に電界がかかる作用によって、多少の配向処理境界部の
上下のずれや配向処理境界部付近の配向力の低下が生じ
ても、液晶分子の立ち上がる方向の境界はこの電界の電
気力線eの方向の境界部で決まるため、前記ディスクリ
ネーションラインの出現する位置はこのスリット部30
を中心に安定して出現するため、この位置に僅かな遮光
層を設ければ、表示品位を損なうことがなくなる。
As described above, when the structure of the present invention is used, even if a slight vertical displacement of the alignment treatment boundary portion or a decrease in the alignment force near the alignment treatment boundary portion occurs due to the action of an obliquely applied electric field, liquid crystal molecules The boundary in the rising direction of the electric field is determined by the boundary in the direction of the electric line of force e of the electric field. Therefore, the position where the disclination line appears is the slit portion 30.
Since it appears stably centering around, if a slight light shielding layer is provided at this position, the display quality will not be impaired.

【0021】図から明らかなように電界は異なる2方向
に斜めに印加されるため、多少、液晶分子のチルト方向
を決め得る各基板表面の配向規制力が弱くても、自ずと
所望の方向に液晶分子が立ち上がることを助長する作用
も得られる。
As is apparent from the figure, since the electric field is applied obliquely in two different directions, even if the alignment regulating force on the surface of each substrate that can determine the tilt direction of the liquid crystal molecules is slightly weak, the liquid crystal will naturally move in the desired direction. It also has the effect of promoting the rise of the molecule.

【0022】このスリット部30に発生するディスクリ
ネーシヲンラインを遮光するために、下基板面の電極2
5のスリット部に対向する下層にブラックマトリクス層
31を形成しておく。
In order to shield the discriminative line generated in the slit portion 30, the electrode 2 on the lower substrate surface is shielded.
The black matrix layer 31 is formed in the lower layer facing the slit portion of No. 5.

【0023】TDTNの場合を図4に示す。ストライプ
電極32を一画素上で配向方向b、cを180°異なら
せて有する配向膜33を積層した上基板34と、ストラ
イプ電極35を一画素上で配向方向b、cを180°異
ならせて有する配向膜36を積層した下基板37を対向
させ、これら間に液晶層38を配置する。ストライプ状
の上電極32とストライプ状の下電極35は90°交差
で配列されている。
The case of TDTN is shown in FIG. An upper substrate 34 in which an alignment film 33 having a stripe electrode 32 with 180 ° different orientation directions b and c is laminated, and a stripe electrode 35 with 180 ° different orientation directions b and c on one pixel. The lower substrate 37 on which the alignment film 36 having the above is laminated is made to face, and the liquid crystal layer 38 is arranged between them. The stripe-shaped upper electrodes 32 and the stripe-shaped lower electrodes 35 are arranged at 90 ° intersections.

【0024】これら電極の交差領域が一画素pとなる
が、図のように上電極の一画素内における配向状態が変
わる境界に沿って電極のないスリットすなわちスリット
部分39を形成している。スリット部両端は連絡部によ
りスリット部分両側の電極部分が接続されている。
Although the intersection region of these electrodes is one pixel p, as shown in the figure, a slit without an electrode, that is, a slit portion 39 is formed along the boundary where the alignment state in one pixel of the upper electrode changes. Electrodes on both sides of the slit are connected to both ends of the slit by a connecting portion.

【0025】電圧を印加すると、スリット部分39を中
心に斜電界が発生する。この斜電界による液晶分子Mへ
の影響はスリット部分を中心にして対称的に異なる方向
であり、液晶分子Mを電気力線eに沿わせるように整列
させる。このため、ディスクリネーションラインを狭く
しかも安定してに発生させる。このディスクリネーショ
ンラインが発生する位置の両基板のいずれかにブラック
マトリクス層41を設けて、透過光の乱れを吸収する。
When a voltage is applied, an oblique electric field is generated around the slit portion 39. The influence of the oblique electric field on the liquid crystal molecules M is symmetrically different from each other around the slit portion, and the liquid crystal molecules M are aligned so as to be along the electric force lines e. Therefore, the disclination line is narrowly and stably generated. The black matrix layer 41 is provided on either of the substrates at the position where the disclination line is generated to absorb the disturbance of the transmitted light.

【0026】[0026]

【実施例】以下図面により本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】(実施例1)図1および図2は本発明をア
クティブマトリクス駆動型液晶表示素子に適用した実施
例を示すものである。
(Embodiment 1) FIGS. 1 and 2 show an embodiment in which the present invention is applied to an active matrix drive type liquid crystal display device.

【0028】図において、ガラスの上基板51は一表面
にITOでできた透明共通電極52とその上に被着され
たポリイミドの上配向膜(商品名AL−1051、日本
合成ゴム製)53が設けられる。一方、ガラスの下基板
54は前記上基板51に対向する表面に一画素pを形成
する画素電極55をモザイク条に配置し、これらの間に
信号線56とゲート線57を配線する。各画素電極55
はTFTからなるスイッチング素子58を有しており、
信号線56とゲート線57に接続されている。下基板5
4上の信号線56、ゲート線57およびスイッチング素
子58が位置する領域に光を遮蔽するブラックマトリク
ス層59が配置される。さらに画素電極55面を含む下
基板54全面にポリイミドの下配向膜(商品名AL−1
051、日本合成ゴム製)60が被着される。
In the figure, a glass upper substrate 51 has a transparent common electrode 52 made of ITO on one surface and a polyimide upper alignment film (trade name AL-1051, made by Japan Synthetic Rubber) 53 deposited thereon. It is provided. On the other hand, on the lower substrate 54 of the glass, pixel electrodes 55 forming one pixel p are arranged in a mosaic pattern on the surface facing the upper substrate 51, and a signal line 56 and a gate line 57 are wired between them. Each pixel electrode 55
Has a switching element 58 composed of a TFT,
It is connected to the signal line 56 and the gate line 57. Lower substrate 5
A black matrix layer 59 that shields light is arranged in a region where the signal line 56, the gate line 57, and the switching element 58 on 4 are located. Further, a polyimide lower alignment film (trade name AL-1) is formed on the entire surface of the lower substrate 54 including the pixel electrode 55 surface.
051, made of Japan Synthetic Rubber) 60 is attached.

【0029】下電極55は各330μm×110μmの
長方形の寸法を有しており、長方形を二分する長手方向
中心165μmの位置で、下配向膜60の液晶配向状態
の境界b0 を形成するようにする。すなわち、本実施例
はTDTN型素子であり、一画素p内にラビング処理方
向を180°ずらした異なる液晶配向状態の領域p1、
p2 を形成する。矢印b2 は一方の領域p1 のラビング
配向方向を、矢印c2は他方の領域p2 のラビング配向
方向を示し、フォトレジストのマスクパターンを用いて
2度のラビング処理により、同一配向膜上に形成する。
The lower electrode 55 has a rectangular dimension of 330 μm × 110 μm, and forms a boundary b 0 of the liquid crystal alignment state of the lower alignment film 60 at the position of the center 165 μm in the longitudinal direction that divides the rectangle into two. . That is, this embodiment is a TDTN type device, and the region p1 of different liquid crystal alignment state in which the rubbing processing direction is shifted by 180 ° in one pixel p,
form p2. The arrow b2 indicates the rubbing orientation direction of one region p1 and the arrow c2 indicates the rubbing orientation direction of the other region p2, which are formed on the same orientation film by two rubbing processes using a mask pattern of photoresist.

【0030】上基板51の上配向膜53についても同様
に、一画素p内に一画素を二分する境界b0 を境にラビ
ング方向b1 とc1 が180°ずれたラビング配向領域
を形成する。これらの方向は、上配向膜53のラビング
方向b1 、c1 と下配向膜60のラビング方向b2 、c
2 とが90°交差するように、上下基板を5μmの間隔
で対向させる。
Similarly, for the upper alignment film 53 of the upper substrate 51, a rubbing alignment region in which the rubbing directions b1 and c1 are deviated from each other by 180 ° is formed within a pixel p at a boundary b0 that divides the pixel into two. These directions are the rubbing directions b1 and c1 of the upper alignment film 53 and the rubbing directions b2 and c of the lower alignment film 60.
The upper and lower substrates are opposed to each other at an interval of 5 μm so that 2 and 90 intersect.

【0031】さらに、本実施例では上基板の共通電極5
2に前記異なる配向状態の境界b0に沿って、導電部分
のない長さ110μm、幅5μmのスリット部61が一
画素ごとに形成される。
Further, in this embodiment, the common electrode 5 on the upper substrate is used.
2, a slit portion 61 having a length of 110 μm and a width of 5 μm without a conductive portion is formed for each pixel along the boundary b0 of the different alignment states.

【0032】一方、スリット部61に対応する下電極5
5の裏側で下基板54面に幅20μmのブラックマトリ
クス層62が他のブラックマトリクス層59とともに形
成される。
On the other hand, the lower electrode 5 corresponding to the slit portion 61
A black matrix layer 62 having a width of 20 μm is formed on the surface of the lower substrate 54 on the back side of No. 5 together with another black matrix layer 59.

【0033】得られる上下基板51、54をシール剤で
シールして液晶セルとし、基板間に誘電異方性が正のネ
マティック液晶(商品名ZLI−2293、メルクジャ
パン社製)を液晶層63として配置して液晶表示素子を
得る。
The obtained upper and lower substrates 51 and 54 are sealed with a sealing agent to form a liquid crystal cell, and a nematic liquid crystal having positive dielectric anisotropy (trade name ZLI-2293, manufactured by Merck Japan Co., Ltd.) is used as a liquid crystal layer 63 between the substrates. The liquid crystal display device is obtained by arranging.

【0034】本実施例の液晶表示素子を用いて、両面に
クロスニコル配置の偏光板を配置し、電気光学特性を視
角を振って測定したところ、対称で広い視角特性が得ら
れ、なおかつ、配向境界b0 に生じるディスクリネーシ
ョンラインは、スリット部内側の幅の範囲で発生し最小
幅のブラックマトリクス層のパターンで十分に遮光でき
て良好な表示品位が得られた。
Using the liquid crystal display device of this embodiment, polarizing plates with crossed Nicols arrangement were placed on both sides, and the electro-optical characteristics were measured by changing the viewing angle. As a result, symmetrical and wide viewing angle characteristics were obtained, and the orientation was also improved. The disclination line generated at the boundary b0 is generated within the width of the inside of the slit portion, and the pattern of the black matrix layer having the minimum width can be sufficiently shielded to obtain good display quality.

【0035】(実施例2)図3に示す単純マトリクス型
液晶表示素子において、DDTN型で素子を形成した。
本実施例素子をマルチプレックス駆動し、実施例1同
様、電気光学特性を視角を振って測定したところ、実施
例1同様対称で広い視角特性が得られ、なおかつ、配向
境界に生じるディスクリネーションラインは、スリット
部の内側にしか出現せず、良好な表示品位が得られた。
Example 2 In the simple matrix type liquid crystal display device shown in FIG. 3, a device of DDTN type was formed.
When the element of this example was driven by multiplex and the electro-optical characteristics were measured by changing the viewing angle as in Example 1, a symmetrical and wide viewing angle characteristic was obtained as in Example 1, and the disclination line generated at the alignment boundary was obtained. Appeared only inside the slit portion, and good display quality was obtained.

【0036】(比較例)前記実施例1において上基板の
共通電極にスリット部のない構造である従来構成の画素
配向分割型液晶表示素子を作成したところ、一部の画素
にブラックマトリクス層からはみでるディスクリネーシ
ョンラインが発生し、表示品位を低下させた。
(Comparative Example) A pixel alignment division type liquid crystal display device having a conventional structure in which the common electrode of the upper substrate has no slit portion in Example 1 was prepared, and a part of the pixels protruded from the black matrix layer. The disclination line was generated and the display quality was degraded.

【0037】[0037]

【発明の効果】本発明によれば、画素配向分割型液晶表
示素子において、出現するディスクリネーションライン
の発生位置が安定して所望の位置に出現し、表示品位を
低下させることがない。また、多少配向規制力が弱くて
もチルトリバース等の配向不良は生じにくくなるといっ
た効果を得る。
According to the present invention, in the pixel alignment division type liquid crystal display element, the occurrence position of the disclination line which appears is stably appeared at a desired position, and the display quality is not deteriorated. Further, even if the alignment regulating force is slightly weak, an alignment defect such as tilt reverse is less likely to occur.

【0038】なお、本発明はMIMからなるスイッチン
グ素子を用いても同様の効果を得ることは言うまでもな
く、また、3原色のカラーフィルターを用いての表示の
カラー化をしてもの同様の効果を得ることは言うまでも
ない。
It is needless to say that the present invention can obtain the same effect even if the switching element made of MIM is used, and the same effect can be obtained even if the display is colorized by using the color filters of the three primary colors. Not to mention getting it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示部分的斜視図。FIG. 1 is a partial perspective view showing an embodiment of the present invention.

【図2】図1に示す実施例の作用を説明する略断面図。FIG. 2 is a schematic sectional view for explaining the operation of the embodiment shown in FIG.

【図3】本発明の作用を説明するTDTN素子の略断面
図。
FIG. 3 is a schematic cross-sectional view of a TDTN element for explaining the operation of the present invention.

【図4】本発明の作用を説明するDDTN素子の略断面
図。
FIG. 4 is a schematic cross-sectional view of a DDTN element for explaining the operation of the present invention.

【図5】(a)、(b)は従来のTDTN型液晶表示素
子の構成および出現するディスクリネーションライン発
生位置を説明する略断面図。
5A and 5B are schematic cross-sectional views illustrating a configuration of a conventional TDTN type liquid crystal display element and a disclination line generation position that appears.

【図6】(a)、(b)は従来のDDTN型液晶表示素
子の構成および出現するディスクリネーションライン発
生位置を説明する略断面図。
6 (a) and 6 (b) are schematic cross-sectional views illustrating a configuration of a conventional DDTN type liquid crystal display element and an emerging disclination line generation position.

【符号の説明】 51…上基板 52…共通電極 53…上配向膜 54…下基板 55…画素電極 58…スイッチング素子 59…ブラックマトリクス層 60…下配向膜 61…スリット部 62…ブラックマトリクス層 63…液晶層 b0 …液晶配向状態境界[Explanation of Codes] 51 ... Upper Substrate 52 ... Common Electrode 53 ... Upper Alignment Film 54 ... Lower Substrate 55 ... Pixel Electrode 58 ... Switching Element 59 ... Black Matrix Layer 60 ... Lower Alignment Film 61 ... Slit 62 ... Black Matrix Layer 63 ... Liquid crystal layer b0 ... Liquid crystal alignment state boundary

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 武志 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Yamamoto 8 Shinsitada-cho, Isogo-ku, Yokohama, Kanagawa Stock company Toshiba Yokohama office (72) Inventor Ren Hato 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の画素を形成するように相互に対向
して配置された第1の電極と第2の電極と、これら電極
間に配置され誘電異方性が正のネマティック液晶からな
る液晶層と、前記電極上に設けられ前記液晶層を複数の
異なる液晶配向状態に配向する配向膜とからなる液晶表
示素子において、 前記第1の電極と第2の電極の少なくとも一方が前記各
画素内の前記異なる液晶配向状態の境界部に沿ってスリ
ット部を有する事を特徴とする液晶表示素子。
1. A liquid crystal comprising a first electrode and a second electrode which are arranged to face each other so as to form a plurality of pixels, and a nematic liquid crystal which is arranged between these electrodes and has a positive dielectric anisotropy. A liquid crystal display element comprising a layer and an alignment film which is provided on the electrode and aligns the liquid crystal layer in a plurality of different liquid crystal alignment states, wherein at least one of the first electrode and the second electrode is in each pixel. 2. A liquid crystal display device having a slit portion along the boundary between the different liquid crystal alignment states.
【請求項2】 第1の電極が共通電極であり第2の電極
が一画素ごとにスイッチング素子を有する複数の画素電
極であって、前記第1の電極の各画素電極を形成する第
2の電極に対向する位置にスリット部を有する請求項1
に記載された液晶表示素子。
2. A first electrode is a common electrode, a second electrode is a plurality of pixel electrodes having a switching element for each pixel, and a second electrode forming each pixel electrode of the first electrode. The slit portion is provided at a position facing the electrode.
The liquid crystal display element described in 1.
【請求項3】 スリット部に対応する少なくとも一方の
基板の面にブラックマトリクス層を形成してなる請求項
1または2に記載の液晶表示素子。
3. The liquid crystal display element according to claim 1, wherein a black matrix layer is formed on the surface of at least one substrate corresponding to the slit portion.
JP15403293A 1993-06-25 1993-06-25 Liquid crystal display element Pending JPH0713166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15403293A JPH0713166A (en) 1993-06-25 1993-06-25 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15403293A JPH0713166A (en) 1993-06-25 1993-06-25 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0713166A true JPH0713166A (en) 1995-01-17

Family

ID=15575422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15403293A Pending JPH0713166A (en) 1993-06-25 1993-06-25 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0713166A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
JP2003140172A (en) * 2001-08-22 2003-05-14 Advanced Display Inc Liquid crystal display device and method of manufacturing liquid crystal display device
KR100360781B1 (en) * 1997-05-08 2003-06-12 산요 덴키 가부시키가이샤 LCD Display
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
KR100446077B1 (en) * 2000-09-05 2004-08-30 산요덴키가부시키가이샤 Liquid crystal display
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
KR100825097B1 (en) * 2002-01-07 2008-04-25 삼성전자주식회사 Liquid crystal display

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360781B1 (en) * 1997-05-08 2003-06-12 산요 덴키 가부시키가이샤 LCD Display
US7133111B2 (en) 1997-06-10 2006-11-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8035785B2 (en) 1997-06-10 2011-10-11 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7440065B2 (en) 1997-06-10 2008-10-21 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7826020B2 (en) 1997-06-10 2010-11-02 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7304704B2 (en) 1998-08-06 2007-12-04 Lg.Philips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7697097B2 (en) 1998-08-06 2010-04-13 Lg Display Co., Ltd. Liquid-crystal display and method of its fabrication
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
KR100446077B1 (en) * 2000-09-05 2004-08-30 산요덴키가부시키가이샤 Liquid crystal display
JP2003140172A (en) * 2001-08-22 2003-05-14 Advanced Display Inc Liquid crystal display device and method of manufacturing liquid crystal display device
KR100825097B1 (en) * 2002-01-07 2008-04-25 삼성전자주식회사 Liquid crystal display

Similar Documents

Publication Publication Date Title
KR100293811B1 (en) Ips mode liquid crystal display device
US7586573B2 (en) Substrate for liquid crystal display and liquid crystal display having the same
EP2345927B1 (en) Liquid crystal display device
US7982836B2 (en) Liquid crystal display device
JP5093714B2 (en) Liquid crystal display
US20040105062A1 (en) Wide-viewing angle display device and fabrication method for thereof
JP2001249350A (en) Liquid crystal display device and method of manufacturing the same
JPH1124068A (en) Method for forming dual domain inside liquid crystal layer, manufacture of liquid crystal display device using the method and liquid crystal display device
KR20020031455A (en) Inplain swiching mode liquid crystal display device and method for manufacturing the same
JPH0728063A (en) Liquid crystal display device
JP4202062B2 (en) Liquid crystal display
KR19980042256A (en) Liquid crystal display
US6614497B2 (en) Liquid crystal display device having particular pixel electrodes
JPH0713166A (en) Liquid crystal display element
US6469764B1 (en) Liquid crystal display and method for manufacturing the same
JPH0736044A (en) Pixel orientation dividing type liquid crystal display element
JPH07181493A (en) Liquid crystal display element
JP2001235748A (en) Multi-domain type liquid crystal display device
US6097463A (en) Liquid crystal display device
KR20040060107A (en) In-Plane Switching mode Liquid Crystal Display Device
JP3130682B2 (en) Liquid crystal display device
US20020044249A1 (en) Liquid crystal display device
KR100872562B1 (en) Liquid Crystal Display
JPH08190104A (en) Liquid crystal display element
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd