JPH07209533A - Optical function device - Google Patents

Optical function device

Info

Publication number
JPH07209533A
JPH07209533A JP475294A JP475294A JPH07209533A JP H07209533 A JPH07209533 A JP H07209533A JP 475294 A JP475294 A JP 475294A JP 475294 A JP475294 A JP 475294A JP H07209533 A JPH07209533 A JP H07209533A
Authority
JP
Japan
Prior art keywords
electrode
heating
optical waveguide
heating electrode
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP475294A
Other languages
Japanese (ja)
Inventor
Tadao Nakazawa
忠雄 中沢
Shinji Taniguchi
眞司 谷口
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP475294A priority Critical patent/JPH07209533A/en
Publication of JPH07209533A publication Critical patent/JPH07209533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a mode conversion device which can give large wavelength variation width with a relatively low applied voltage by forming an inter digital electrode formed by connecting one-end sides of electrode pieces to a common electrode and a heating electrode which faces the other end sides of the electrode pieces and generates heat by being fed with electricity. CONSTITUTION:The inter-digital electrode 5 formed by connecting one-end sides of the electrode pieces 51, arrayed at equal intervals, to the common electrode 5 respectively and the heating electrode 7 which has one side opposite to the other/end sides of the electrode pieces 51 and generates heat by being fed with electricity are formed on a substrate 1 which is made of an electrooptic material having a light guide 2 formed on a surface; and the heating electrode 7 is arranged in parallel to the light guide 2. Consequently, mode switching can be performed by periodically applying an electric field to the light guide 2 by applying a voltage between the inter-digital electrode 5 and heating electrode 7. Further, the heating electrode 7 is fed with the electricity to generate the heat, and then the large wavelength variation width can be obtained with the relatively low voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は櫛型電極を介して光導波
路に周期的に電界を加え光の偏光モードを可逆的に変換
する光機能デバイスに係り、特に加熱電極に通電し加熱
することによってモード変換される光の波長を選択可能
にしたモード変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical functional device for reversibly converting the polarization mode of light by applying an electric field periodically to an optical waveguide via a comb-shaped electrode, and in particular, for heating by energizing a heating electrode. The present invention relates to a mode conversion device that makes it possible to select the wavelength of light that is mode-converted by.

【0002】電気光学材料からなる基板が有する光導波
路に該基板上に形成された櫛型電極を介して周期的に電
界を加えることで、光導波路を透過する光の偏光モード
をTMからTEに、TEからTMに変換させるモード変
換装置は良く知られている。
A polarization mode of light passing through the optical waveguide is changed from TM to TE by periodically applying an electric field to an optical waveguide of a substrate made of an electro-optical material via comb-shaped electrodes formed on the substrate. , TE to TM for converting mode is well known.

【0003】かかる装置は一般にモード変換機能の他に
モード変換される光の波長を任意に選択できる波長選択
機能を具えており、例えば、基板上に光導波路と平行に
設けられたチューニング電極に電圧を印加し波長フィル
タとして用いることがある。
In general, such a device has a mode selection function as well as a wavelength selection function capable of arbitrarily selecting the wavelength of light to be mode-converted. For example, a voltage is applied to a tuning electrode provided in parallel with an optical waveguide on a substrate. May be applied and used as a wavelength filter.

【0004】しかし、チューニング電極に電圧を印加し
波長を選択する方法は波長可変幅を拡大すると印加する
電圧が高くなる。そこで比較的低い電圧を印加すること
によって大きい波長可変幅が得られるモード変換装置の
実現が要望されている。
However, in the method of applying a voltage to the tuning electrode and selecting the wavelength, the applied voltage increases as the wavelength tunable width is expanded. Therefore, it is desired to realize a mode conversion device that can obtain a large wavelength tunable width by applying a relatively low voltage.

【0005】[0005]

【従来の技術】図8は従来のモード変換装置を示す斜視
図である。従来のモード変換装置は図8(a) に示す如く
LiNbO3等の電気光学材料からなる基板1に光導波路2が
形成されており、Tiを拡散させることで単一モードの直
線状光導波路2が形成された基板1の表面はバッファ層
3により被覆されている。
2. Description of the Related Art FIG. 8 is a perspective view showing a conventional mode converter. The conventional mode converter is as shown in Fig. 8 (a).
The optical waveguide 2 is formed on the substrate 1 made of an electro-optical material such as LiNbO 3, and the surface of the substrate 1 on which the single mode linear optical waveguide 2 is formed by diffusing Ti is covered with the buffer layer 3. Has been done.

【0006】光導波路2に平行な接地電極4と櫛型電極
5とチューニング電極6がバッファ層3を介して基板1
の上に形成され、櫛型電極5とチューニング電極6に挟
まれた接地電極4は少なくとも一部が光導波路2と対向
する位置に形成されている。
The ground electrode 4, the comb-shaped electrode 5, and the tuning electrode 6 which are parallel to the optical waveguide 2 are arranged on the substrate 1 via the buffer layer 3.
At least a part of the ground electrode 4 formed on the above and sandwiched between the comb-shaped electrode 5 and the tuning electrode 6 is formed at a position facing the optical waveguide 2.

【0007】櫛型電極5は等間隔に配列されてなる複数
の電極片51と電極片51の一端を接続する共通電極52とで
構成されており、接地電極4の長さ方向に配列されてな
る電極片51の他端は所定の間隙を介してそれぞれ接地電
極4の側方と対向している。
The comb-shaped electrode 5 is composed of a plurality of electrode pieces 51 arranged at equal intervals and a common electrode 52 connecting one end of the electrode piece 51, and arranged in the longitudinal direction of the ground electrode 4. The other ends of the electrode pieces 51 are opposed to the sides of the ground electrode 4 with a predetermined gap therebetween.

【0008】図8(b) に示す如く接地電極4と櫛型電極
5の間に電圧VMCを印加し光導波路2に周期的な電界を
加えることにより、光導波路2を透過する光の偏光モー
ドをTMモードからTEモードに、或いはTEモードか
らTMモードに変換できる。
As shown in FIG. 8 (b), a voltage V MC is applied between the ground electrode 4 and the comb-shaped electrode 5 to apply a periodic electric field to the optical waveguide 2 to polarize the light transmitted through the optical waveguide 2. The mode can be converted from TM mode to TE mode or from TE mode to TM mode.

【0009】ここで、Λを電極片51の配列ピッチ、
TE、NTMをそれぞれTEモード、TMモードにおける
実効屈折率とすると、前記モード変換装置に偏光入射さ
れた光から次の条件を満たす波長λの光がモード変換さ
れ検光子を介して取り出される。
Where Λ is the arrangement pitch of the electrode pieces 51,
Assuming that N TE and N TM are effective refractive indices in the TE mode and TM mode, respectively, the light having the wavelength λ satisfying the following condition is mode-converted from the light polarized and incident on the mode converter and is extracted through the analyzer. .

【0010】λ=Λ|NTE−NTM| また、接地電極4とチューニング電極6の間に電圧VT
を印加すると印加電圧VT に対応して|NTE−NTM|が
変化し、このときの|NTE−NTM|の変化をΔNとする
と波長可変幅ΔλはΔλ=ΛΔNなる式により算出する
ことができる。
Λ = Λ | N TE −N TM | Further, a voltage V T between the ground electrode 4 and the tuning electrode 6
Is applied, | N TE −N TM | changes corresponding to the applied voltage V T, and when the change of | N TE −N TM | at this time is ΔN, the wavelength tunable width Δλ is calculated by the formula Δλ = ΛΔN. can do.

【0011】[0011]

【発明が解決しようとする課題】しかし、チューニング
電極に電圧を印加し電気光学効果により|NTE−NTM
を制御する従来のモード変換装置は、印加する電圧の変
化幅に比べて波長可変幅Δλが小さく比較的高い電圧を
印加しなければならないという問題があった。
However, when a voltage is applied to the tuning electrode and the electro-optic effect is applied, | N TE -N TM |
The conventional mode conversion device that controls the voltage has a problem that the wavelength variable width Δλ is smaller than the change width of the applied voltage and that a relatively high voltage must be applied.

【0012】例えば、電気光学効果を利用した従来のモ
ード変換装置では波長1.55μm の光において10nmの波長
可変幅を得るため、接地電極とチューニング電極の間に
印加される電圧は約 100Vになり絶縁性の確保など装置
の構成が極めて困難になる。
For example, in a conventional mode converter utilizing the electro-optic effect, a wavelength variable width of 10 nm is obtained with a light having a wavelength of 1.55 μm, so that the voltage applied between the ground electrode and the tuning electrode is about 100 V and the insulation is achieved. It becomes extremely difficult to configure the device, such as ensuring security.

【0013】本発明の目的は比較的低い電圧を印加する
ことで大きい波長可変幅が得られるモード変換装置を提
供することにある。
An object of the present invention is to provide a mode conversion device which can obtain a large wavelength tunable width by applying a relatively low voltage.

【0014】[0014]

【課題を解決するための手段】図1は本発明になる光機
能デバイスを示す斜視図である。なお全図を通し同じ対
象物は同一記号で表している。
FIG. 1 is a perspective view showing an optical functional device according to the present invention. Note that the same object is denoted by the same symbol throughout the drawings.

【0015】上記課題は光導波路2が表面に形成された
電気光学材料からなる基板1上に、等間隔に配列された
複数の電極片51の一端がそれぞれ共通電極52に接続され
てなる櫛型電極5と、側方が電極片51の他端に対向し通
電することによって発熱する加熱電極7とが形成され、
加熱電極7が光導波路2と平行に配置されてなる本発明
の光機能デバイスによって達成される。
The above problem is a comb type in which one end of each of a plurality of electrode pieces 51 arranged at equal intervals is connected to a common electrode 52 on a substrate 1 made of an electro-optical material having an optical waveguide 2 formed on the surface thereof. The electrode 5 and the heating electrode 7 whose side faces the other end of the electrode piece 51 and generates heat when energized are formed,
This is achieved by the optical functional device of the present invention in which the heating electrode 7 is arranged in parallel with the optical waveguide 2.

【0016】[0016]

【作用】図1において光導波路が表面に形成された電気
光学材料からなる基板上に、等間隔に配列された複数の
電極片の一端がそれぞれ共通電極に接続されてなる櫛型
電極と、光導波路と平行に配置され側方を電極片の他端
に対向させてなる加熱電極とを形成することにより、櫛
型電極と加熱電極の間に電圧を印加し光導波路に周期的
な電界を加えてモード変換することが可能になる。ま
た、加熱電極に通電し発熱させることによって比較的低
い電圧によって大きい波長可変幅を得ることが可能にな
る。即ち、比較的低い電圧を印加することで大きい波長
可変幅が得られるモード変換装置を実現することができ
る。
In FIG. 1, a comb-shaped electrode in which one end of each of a plurality of electrode pieces arranged at equal intervals is connected to a common electrode on a substrate made of an electro-optical material having an optical waveguide formed on the surface, By forming a heating electrode that is arranged parallel to the waveguide and has its side facing the other end of the electrode piece, a voltage is applied between the comb-shaped electrode and the heating electrode to apply a periodic electric field to the optical waveguide. It becomes possible to change the mode. Further, by energizing the heating electrode to generate heat, it is possible to obtain a large wavelength tunable range with a relatively low voltage. That is, it is possible to realize a mode conversion device that can obtain a large wavelength tunable width by applying a relatively low voltage.

【0017】[0017]

【実施例】以下添付図により本発明の実施例について説
明する。なお、図2は本発明の他の実施例を示す模式
図、図3は一般的な加熱電極の構造を示す平面図、図4
は本発明になる加熱電極の構造を示す平面図、図5は本
発明の他の実施例を示す平面図、図6は本発明の加熱電
極と櫛型電極の配置例を示す図、図7は本発明になる加
熱電極の応用例を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 2 is a schematic view showing another embodiment of the present invention, FIG. 3 is a plan view showing the structure of a general heating electrode, and FIG.
FIG. 7 is a plan view showing a structure of a heating electrode according to the present invention, FIG. 5 is a plan view showing another embodiment of the present invention, FIG. 6 is a view showing an arrangement example of the heating electrode and the comb-shaped electrode of the present invention, FIG. FIG. 8 is a diagram showing an application example of the heating electrode according to the present invention.

【0018】図1(a) において本発明のモード変換装置
はLiNbO3からなる基板1にTiを拡散させて直線状の光導
波路2が形成され、光導波路2が形成された基板1の表
面はSiO2を被着させて形成した厚さが約 0.5μm のバッ
ファ層3で被覆されている。
In FIG. 1 (a), the mode converter of the present invention has a linear optical waveguide 2 formed by diffusing Ti into a substrate 1 made of LiNbO 3, and the surface of the substrate 1 on which the optical waveguide 2 is formed is It is covered with a buffer layer 3 formed by depositing SiO 2 and having a thickness of about 0.5 μm.

【0019】従来の装置とは異なり本発明になるモード
変換装置はバッファ層3に被着させた厚さが 0.1μm の
Siコート層31を有し、Siコート層31をバッファ層3の上
に被着させることで加熱されたときの焦電効果を抑制し
動作の安定化を図っている。
Unlike the conventional device, the mode converter according to the present invention has a thickness of 0.1 μm deposited on the buffer layer 3.
By having the Si coat layer 31 and depositing the Si coat layer 31 on the buffer layer 3, the pyroelectric effect when heated is suppressed and the operation is stabilized.

【0020】前記基板1の上にはバッファ層3を介して
光導波路2と平行に配置され通電することによって発熱
する加熱電極7と、等間隔に配列された複数の電極片51
と電極片51の一端を接続する共通電極52で構成された櫛
型電極5が形成されている。
A heating electrode 7 is disposed on the substrate 1 in parallel with the optical waveguide 2 via a buffer layer 3 and generates heat when energized, and a plurality of electrode pieces 51 arranged at equal intervals.
And the comb-shaped electrode 5 composed of the common electrode 52 connecting one end of the electrode piece 51 with the electrode.

【0021】本実施例では加熱電極7と櫛型電極5とが
共に厚さが10μm になるようSiコート層31上にメッキさ
れた金で形成され、加熱電極7の側方と加熱電極7の長
さ方向に配列された電極片51の他端はそれぞれ7μm の
間隙を介して対向している。
In the present embodiment, both the heating electrode 7 and the comb-shaped electrode 5 are made of gold plated on the Si coating layer 31 so that the thickness thereof is 10 μm. The other ends of the electrode pieces 51 arranged in the length direction face each other with a gap of 7 μm therebetween.

【0022】ここでモード変換される光の波長λが1.55
μm 付近であれば|NTE−NTM|、即ち、ΔNは 0.072
であることから、λ=Λ|NTE−NTM|なる式において
λ=1.55、ΔN= 0.072を代入すると電極片51の配列ピ
ッチΛは21.5μm になる。
Here, the wavelength λ of the light whose mode is converted is 1.55.
If it is around μm, | N TE −N TM |, that is, ΔN is 0.072
Therefore, by substituting λ = 1.55 and ΔN = 0.072 in the formula λ = Λ | N TE −N TM |, the array pitch Λ of the electrode pieces 51 becomes 21.5 μm.

【0023】図1(b) に示す如く加熱電極7と櫛型電極
5に約20Vの制御電圧VMCを印加し光導波路2に周期的
な電界を加えると、光導波路2を透過する光の偏光モー
ドがTMモードからTEモードに、或いはTEモードか
らTMモードに変換される。
As shown in FIG. 1B, when a control voltage V MC of about 20 V is applied to the heating electrode 7 and the comb-shaped electrode 5 and a periodic electric field is applied to the optical waveguide 2, the light transmitted through the optical waveguide 2 is The polarization mode is converted from the TM mode to the TE mode or from the TE mode to the TM mode.

【0024】また、加熱電極7に印加する電力をP(W/c
m)、波長可変幅をΔλ(nm)とするとΔλ=2×10-2Pな
る式により表され、加熱電極7の長さを2cmとすると2
Wの電力を加熱電極7に印加することにより10nmの波長
可変幅を得ることができる。
The power applied to the heating electrode 7 is P (W / c
m), and the wavelength tunable width is Δλ (nm), it is expressed by the following equation: Δλ = 2 × 10 -2 P, and the length of the heating electrode 7 is 2 cm
By applying the electric power of W to the heating electrode 7, a wavelength variable width of 10 nm can be obtained.

【0025】加熱電極7の幅を15μm とすると抵抗値は
約20Ωになり図示の如く加熱電極7に 6.3Vの加熱電圧
H を印加すると、2Wの電力を印加することになり極
めて低い電圧を印加することによって大きい波長可変幅
を得ることが可能になる。
When the width of the heating electrode 7 is 15 μm, the resistance value becomes about 20Ω, and when the heating voltage V H of 6.3 V is applied to the heating electrode 7 as shown in the figure, 2 W of electric power is applied and an extremely low voltage is applied. By applying it, it becomes possible to obtain a large wavelength variable width.

【0026】このように電気光学材料からなり直線状の
光導波路を具備した基板上にバッファ層を介して、等間
隔に配列された複数の電極片の一端がそれぞれ共通電極
に接続されてなる櫛型電極と、光導波路と平行に配置さ
れ側方を電極片の他端に対向させてなる加熱電極とを形
成することにより、櫛型電極と加熱電極の間に電圧を印
加し光導波路に周期的な電界を加えてモード変換するこ
とが可能になる。
A comb in which one ends of a plurality of electrode pieces arranged at equal intervals are respectively connected to a common electrode via a buffer layer on a substrate made of an electro-optical material and provided with a linear optical waveguide. By forming a mold electrode and a heating electrode that is arranged in parallel with the optical waveguide and has its side facing the other end of the electrode piece, a voltage is applied between the comb-shaped electrode and the heating electrode to periodically cycle the optical waveguide. It becomes possible to perform mode conversion by applying a general electric field.

【0027】また、加熱電極に通電し発熱させることに
よって比較的低い電圧によって大きい波長可変幅を得る
ことが可能になる。即ち、比較的低い電圧を印加するこ
とによって大きい波長可変幅が得られるモード変換装置
を実現することができる。
Further, by energizing the heating electrode to generate heat, it is possible to obtain a large wavelength tunable range with a relatively low voltage. That is, it is possible to realize a mode conversion device that can obtain a large wavelength tunable width by applying a relatively low voltage.

【0028】前記実施例は従来のモード変換装置と同様
にZ軸と直交する面に光導波路2を有するZカットの基
板1を用いているが、X軸と直交する面に光導波路2を
有するXカットの基板1を用いる場合は図2に示す如く
基板上の電極配置が異なる。
Although the above embodiment uses the Z-cut substrate 1 having the optical waveguide 2 on the surface orthogonal to the Z axis as in the conventional mode converter, the optical waveguide 2 is provided on the surface orthogonal to the X axis. When the X-cut substrate 1 is used, the electrode arrangement on the substrate is different as shown in FIG.

【0029】図2(a) において本発明になるモード変換
装置の他の実施例はLiNbO3からなる基板1に光導波路2
が形成されており、光導波路2が形成された基板1の表
面はSiO2を被着させて形成した厚さが約 0.5μm のバッ
ファ層3で被覆されている。
In FIG. 2A, another embodiment of the mode converter according to the present invention is a substrate 1 made of LiNbO 3 and an optical waveguide 2.
The surface of the substrate 1 on which the optical waveguide 2 is formed is covered with a buffer layer 3 having a thickness of about 0.5 μm formed by depositing SiO 2 .

【0030】前記実施例と同様に光導波路2の形成面全
体を覆ったバッファ層3に被着させた厚さが 0.1μm の
Siコート層31を有し、Siコート層31をバッファ層3の上
に被着させることで加熱されたときの焦電効果を抑制し
動作の安定化を図っている。
As in the previous embodiment, the buffer layer 3 covering the entire surface on which the optical waveguide 2 is formed has a thickness of 0.1 μm.
By having the Si coat layer 31 and depositing the Si coat layer 31 on the buffer layer 3, the pyroelectric effect when heated is suppressed and the operation is stabilized.

【0031】前記実施例と異なり通電することで発熱す
る加熱電極7が光導波路2と対向する位置に光導波路2
と平行に配置され、加熱電極7の両側に複数の電極片51
と電極片51の一端を接続する共通電極52からなる一対の
櫛型電極5を具備している。
Unlike the above-mentioned embodiment, the heating electrode 7 which generates heat when energized is placed at a position facing the optical waveguide 2.
A plurality of electrode pieces 51 arranged on both sides of the heating electrode 7 in parallel with
And a pair of comb-shaped electrodes 5 composed of a common electrode 52 connecting one end of the electrode piece 51.

【0032】図2(b) に示す如く加熱電極7と櫛型電極
5に約20Vの制御電圧VMCを印加し光導波路2に周期的
な電界を加えると、光導波路2を透過する光の偏光モー
ドがTMモードからTEモードに、或いはTEモードか
らTMモードに変換される。
As shown in FIG. 2B, when a control voltage V MC of about 20 V is applied to the heating electrode 7 and the comb-shaped electrode 5 and a periodic electric field is applied to the optical waveguide 2, the light transmitted through the optical waveguide 2 is The polarization mode is converted from the TM mode to the TE mode or from the TE mode to the TM mode.

【0033】また、図示の如く 6.3Vの加熱電圧VH
印加することで前記実施例と同様に加熱電極7に2Wの
電力が印加され、従来のように高い電圧を印加しないで
10nm程度の大きい波長可変幅が得られるモード変換装置
を実現することができる。
Further, as shown in the drawing, by applying the heating voltage V H of 6.3 V, the electric power of 2 W is applied to the heating electrode 7 as in the above-mentioned embodiment, and the high voltage is not applied unlike the conventional case.
It is possible to realize a mode conversion device which can obtain a large wavelength variable width of about 10 nm.

【0034】なお、図2(c) に示す如く基板1上の加熱
電極7を形成する領域にのみバッファ層3およびSiコー
ト層31を形成し、複数の電極片51と電極片51の一端を接
続する共通電極52で構成された一対の櫛型電極5を基板
1上に直接形成しても良い。
As shown in FIG. 2 (c), the buffer layer 3 and the Si coat layer 31 are formed only on the area where the heating electrode 7 is formed on the substrate 1, and the plurality of electrode pieces 51 and one end of the electrode piece 51 are connected. The pair of comb-shaped electrodes 5 composed of the common electrodes 52 to be connected may be directly formed on the substrate 1.

【0035】前記の実施例では何れも直線状に形成され
ているが通電することで発熱する加熱電極の構造につい
て詳細に説明する。前記の実施例のように直線状の加熱
電極7は一般に図3に示す如く両端がそれぞれ一対の給
電電極8に接続されている。
In each of the above-mentioned embodiments, the structure of the heating electrode, which is linearly formed but generates heat when energized, will be described in detail. As shown in FIG. 3, both ends of the linear heating electrode 7 are connected to a pair of feeding electrodes 8 as shown in FIG.

【0036】しかし、直線状の加熱電極は一箇所でも断
線するとその機能を果たさなくなるためデバイスとして
の信頼性に欠ける。また、電界印加用の電極が近傍にあ
ると加熱電極との相互作用により十分な電気光学効果が
得られない等の問題がある。
However, if the linear heating electrode is broken even at one place, its function will not be fulfilled, and the reliability as a device will be poor. In addition, if an electrode for applying an electric field is near, there is a problem that a sufficient electro-optical effect cannot be obtained due to the interaction with the heating electrode.

【0037】本発明の光機能デバイスは図4に示す如く
加熱電極7が間隔をおいて直列に配列された複数の加熱
電極片72からなり、光導波路2と平行に配列された加熱
電極片72の両端がそれぞれ専用の給電導体81を介して給
電電極8に接続されている。
As shown in FIG. 4, the optical functional device of the present invention comprises a plurality of heating electrode pieces 72 in which the heating electrodes 7 are arranged in series at intervals, and the heating electrode pieces 72 arranged in parallel with the optical waveguide 2. Both ends of each are connected to the power supply electrode 8 via the dedicated power supply conductor 81.

【0038】また、本発明の光機能デバイスの他の実施
例は図5に示す如く一対の給電電極8がそれぞれ複数の
給電導体81を具え、異なる給電電極8に接続されてなる
給電導体81の他端が直線状に形成された加熱電極7の側
方に交互に接続されている。
In another embodiment of the optical functional device of the present invention, as shown in FIG. 5, a pair of power feeding electrodes 8 each comprises a plurality of power feeding conductors 81, and the power feeding conductors 81 are connected to different power feeding electrodes 8. The other end is alternately connected to the lateral side of the heating electrode 7 which is linearly formed.

【0039】このように加熱電極を複数の加熱電極片で
構成し隣接する加熱電極片の相対する端部に同一給電電
極に接続すること、或いは1本の加熱電極の側方に異な
る給電電極に接続された給電導体を交互に接続すること
で前記問題点が解決される。
As described above, the heating electrode is composed of a plurality of heating electrode pieces, and the opposite end portions of the adjacent heating electrode pieces are connected to the same feeding electrode, or one heating electrode is provided with different feeding electrodes laterally. The above problem is solved by alternately connecting the feed conductors that are connected.

【0040】即ち、加熱電極を複数の領域に区分しそれ
ぞれの領域を給電電極に並列接続しており例えば電極の
一部が断線しても、他の領域には電圧が印加されている
ため機能を失うのは断線した領域のみで全ての領域にお
いて機能を失うことはない。
That is, the heating electrode is divided into a plurality of regions, and each region is connected in parallel to the power feeding electrode. For example, even if a part of the electrode is broken, the voltage is applied to the other regions, so that the function is achieved. Is lost only in the broken area, and the function is not lost in all areas.

【0041】しかも、隣接する加熱電極片、または連続
した領域の相対する端部が同一給電電極に接続されるた
め同一電位になり、接続部分の電位上昇に伴う放電破壊
や加熱電極における電位分布に基づく光導波路への不必
要な電界成分が抑制される。
Moreover, since adjacent heating electrode pieces or opposite ends of continuous areas are connected to the same power supply electrode, they are at the same potential, which causes discharge breakdown due to an increase in potential at the connection portion and potential distribution in the heating electrode. Unnecessary electric field components to the optical waveguide based thereon are suppressed.

【0042】なお、前記の実施例では通電することで発
熱する加熱電極を接地電極として利用するため金を用い
て形成されるが、通電することで発熱する加熱電極を単
にヒータとして利用する光機能デバイスではクロム等の
金属薄膜で形成してもよい。
In the above embodiment, the heating electrode which generates heat when energized is used as a ground electrode and is formed of gold, but the heating electrode which generates heat when energized is simply used as a heater. The device may be formed of a metal thin film such as chromium.

【0043】更に、既に知られている技術であり図示省
略されているが加熱電極を挟むように基板上に溝を形成
することによって、光導波路以外の領域に逃げる熱が軽
減され熱損失が抑制されて加熱電極に印加する電圧を更
に低下させることができる。
Further, although not shown in the drawing, which is a known technique, by forming a groove on the substrate so as to sandwich the heating electrode, the heat escaping to the area other than the optical waveguide is reduced and the heat loss is suppressed. Therefore, the voltage applied to the heating electrode can be further reduced.

【0044】図6はかかる加熱電極をモード変換装置に
応用した場合の基板1上における加熱電極7と櫛型電極
5の配置例を示し、基板1は図示省略された光導波路を
具えSiO2を約 0.5μm 被着し形成されたバッファ層3に
より表面が被覆されている。
FIG. 6 shows an arrangement example of the heating electrode 7 and the comb-shaped electrode 5 on the substrate 1 when the heating electrode is applied to a mode converter, and the substrate 1 is provided with an optical waveguide (not shown) and made of SiO 2 . The surface is covered with a buffer layer 3 formed by depositing about 0.5 μm.

【0045】真空蒸着法等によってバッファ層3の上に
クロム等の金属薄膜を形成しホトリソグラフィー法やエ
ッチングによって、光導波路と平行に配置された加熱電
極7や櫛型電極5と共に、給電電極8aおよび複数の給電
導体81a が形成されている。
A metal thin film of chromium or the like is formed on the buffer layer 3 by a vacuum vapor deposition method or the like, and the heating electrode 7 and the comb-shaped electrode 5 arranged in parallel with the optical waveguide are also provided by the photolithography method or etching together with the feeding electrode 8a. And a plurality of feeding conductors 81a are formed.

【0046】加熱電極7は側方に櫛型電極5を具えてい
るため給電電極8aと給電導体81a の一部をSiO2からなる
絶縁層82で被覆し、その上に給電電極8bおよび給電導体
81aと交互に加熱電極7の側方に接続された複数の給電
導体81bが形成されている。
Since the heating electrode 7 is provided with the comb-shaped electrode 5 on its side, a part of the power feeding electrode 8a and the power feeding conductor 81a is covered with an insulating layer 82 made of SiO 2, and the power feeding electrode 8b and the power feeding conductor 8a are provided thereon.
A plurality of feeding conductors 81b connected to the side of the heating electrode 7 alternately with 81a are formed.

【0047】なお、給電電極8a、8bの抵抗値を加熱電極
7に対して十分小さくするには給電電極8a、8bに例えば
金メッキ等を行う。また、±の絶対値が等しい加熱電圧
Hを給電電極8a、8bに印加することで加熱電極7を接
地電極として使用できる。
In order to make the resistance values of the power supply electrodes 8a and 8b sufficiently smaller than that of the heating electrode 7, the power supply electrodes 8a and 8b are plated with gold, for example. Further, the heating electrode 7 can be used as a ground electrode by applying the heating voltage V H having the same absolute value of ± to the power supply electrodes 8a and 8b.

【0048】更に、櫛型電極5における電極片51の配列
ピッチを加熱電極7に接続された給電導体81a 、81bの
配列ピッチに合わせ、電極片51を給電導体81a と81bの
中間において加熱電極7と対向させることで電界を光導
波路に効果的に印加できる。
Furthermore, the arrangement pitch of the electrode pieces 51 in the comb-shaped electrode 5 is adjusted to the arrangement pitch of the power supply conductors 81a and 81b connected to the heating electrode 7, and the electrode pieces 51 are heated between the power supply conductors 81a and 81b. An electric field can be effectively applied to the optical waveguide by making it oppose.

【0049】即ち、加熱電極7内の電圧分布は給電導体
81a 、81bの中間において0になり電極片51は電圧が0
の部分に対向する。その結果、有害な電極間相互作用が
低減され熱光学効果と電気光学効果を併用した光機能デ
バイスの実現が可能になる。
That is, the voltage distribution in the heating electrode 7 is
The voltage becomes 0 in the middle of 81a and 81b, and the voltage of the electrode piece 51 becomes 0.
To face the part. As a result, harmful interaction between the electrodes is reduced, and it becomes possible to realize an optical functional device that combines the thermo-optic effect and the electro-optic effect.

【0050】前記の加熱電極はモード変換装置の他に例
えばマッハツェンダ型光スイッチ等の光機能デバイスへ
の応用も可能である。図7においてマッハツェンダ型光
スイッチはLiNbO3からなる基板91にマッハツェンダ型光
導波路92が形成されている。
The heating electrode can be applied to an optical functional device such as a Mach-Zehnder type optical switch in addition to the mode converter. In FIG. 7, in the Mach-Zehnder type optical switch, a Mach-Zehnder type optical waveguide 92 is formed on a substrate 91 made of LiNbO 3 .

【0051】図示省略されているが光導波路92を形成し
た基板91の表面はSiO2を被着して形成されたバッファ層
によって被覆され、光導波路92が有する平行な2本の光
導波路93のいずれか一方の上部にバッファ層を介して加
熱電極7が形成されている。
Although not shown, the surface of the substrate 91 on which the optical waveguide 92 is formed is covered with a buffer layer formed by depositing SiO 2, and two parallel optical waveguides 93 of the optical waveguide 92 are provided. The heating electrode 7 is formed on either one of them via a buffer layer.

【0052】バッファ層を介して基板91上に形成された
加熱電極7は間隔をおいて直列に配列された複数の加熱
電極片72からなり、光導波路93と平行に配列された加熱
電極片72の両端がそれぞれ専用の給電導体81を介して給
電電極8に接続されている。
The heating electrode 7 formed on the substrate 91 via the buffer layer is composed of a plurality of heating electrode pieces 72 arranged in series at intervals, and the heating electrode pieces 72 arranged in parallel with the optical waveguide 93. Both ends of each are connected to the power supply electrode 8 via the dedicated power supply conductor 81.

【0053】加熱電極7に通電することで加熱電極7の
直下に配置された光導波路93と他方の光導波路93との間
で屈折率に差が生じ、分岐点において同位相で2等分さ
れた光波がそれぞれ平行な2本の光導波路93内を伝播さ
れる間に位相差が発生する。
When the heating electrode 7 is energized, a difference in refractive index occurs between the optical waveguide 93 arranged directly below the heating electrode 7 and the other optical waveguide 93, and the optical waveguide 93 is bisected in the same phase at the branch point. A phase difference occurs during the propagation of the generated light waves in the two parallel optical waveguides 93.

【0054】例えば、波長が 1.5μm のTMモード光に
対する屈折率NTMの温度係数は約4×10-5/℃で加熱部
長を10mmとすると、温度を 1.9℃上昇させることによっ
て生じる二つの光波の位相差はπとなって再び合波して
も出射光はオフ状態になる。
For example, when the temperature coefficient of the refractive index N TM for TM mode light with a wavelength of 1.5 μm is about 4 × 10 −5 / ° C. and the heating section length is 10 mm, two light waves generated by raising the temperature by 1.9 ° C. Has a phase difference of π, and the emitted light is in the off state even if they are combined again.

【0055】[0055]

【発明の効果】上述の如く本発明によれば比較的低い電
圧を印加することで大きい波長可変幅が得られるモード
変換装置を提供することができる。
As described above, according to the present invention, it is possible to provide a mode conversion device which can obtain a large wavelength tunable width by applying a relatively low voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる光機能デバイスを示す斜視図で
ある。
FIG. 1 is a perspective view showing an optical functional device according to the present invention.

【図2】 本発明の他の実施例を示す模式図である。FIG. 2 is a schematic view showing another embodiment of the present invention.

【図3】 一般的な加熱電極の構造を示す平面図であ
る。
FIG. 3 is a plan view showing the structure of a general heating electrode.

【図4】 本発明になる加熱電極の構造を示す平面図で
ある。
FIG. 4 is a plan view showing the structure of a heating electrode according to the present invention.

【図5】 本発明の他の実施例を示す平面図である。FIG. 5 is a plan view showing another embodiment of the present invention.

【図6】 本発明の加熱電極と櫛型電極の配置例を示す
図である。
FIG. 6 is a diagram showing an arrangement example of heating electrodes and comb-shaped electrodes of the present invention.

【図7】 本発明になる加熱電極の応用例を示す図であ
る。
FIG. 7 is a diagram showing an application example of the heating electrode according to the present invention.

【図8】 従来のモード変換装置を示す斜視図である。FIG. 8 is a perspective view showing a conventional mode conversion device.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 3 バッファ層 5 櫛型電極 7 加熱電極 8、8a、8b 給電電極 31 Siコート層 51 電極片 52 共通電極 72 加熱電極片 81、81a 、81b 給電導体 82 絶縁層 91 基板 92、93 光導波路 VMC 制御電圧 VH 加熱電圧1 substrate 2 optical waveguide 3 buffer layer 5 comb-shaped electrode 7 heating electrode 8, 8a, 8b feeding electrode 31 Si coating layer 51 electrode piece 52 common electrode 72 heating electrode piece 81, 81a, 81b feeding conductor 82 insulating layer 91 substrate 92, 93 Optical waveguide V MC control voltage V H Heating voltage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光導波路(2) が表面に形成された電気光
学材料からなる基板(1) 上に、等間隔に配列された複数
の電極片(51)の一端がそれぞれ共通電極(52)に接続され
てなる櫛型電極(5) と、該電極片(51)の他端に対向し通
電することによって発熱する加熱電極(7) とが形成さ
れ、該加熱電極(7) が該光導波路(2) と平行に配置され
てなることを特徴とする光機能デバイス。
1. A common electrode (52) is provided on one end of a plurality of electrode pieces (51) arranged at equal intervals, on a substrate (1) made of an electro-optical material on the surface of which an optical waveguide (2) is formed. A comb-shaped electrode (5) connected to the electrode and a heating electrode (7) facing the other end of the electrode piece (51) and generating heat when energized are formed. An optical functional device characterized by being arranged in parallel with a waveguide (2).
【請求項2】 対向させた櫛型電極(5) と加熱電極(7)
の間に電圧を印加することにより光導波路(2) に周期的
に電界を加え、該光導波路(2) を透過する光の位相差を
変えて該光の偏光モードを可逆的に変換するモード変換
機能を有し、且つ、加熱電極(7) に印加される電力の制
御により該光の波長を選択可能にしてなる請求項1記載
の光機能デバイス。
2. Comb-shaped electrodes (5) and heating electrodes (7) facing each other
A mode that reversibly converts the polarization mode of the light by changing the phase difference of the light passing through the optical waveguide (2) by periodically applying an electric field to the optical waveguide (2) by applying a voltage between The optical functional device according to claim 1, wherein the optical functional device has a conversion function and makes it possible to select the wavelength of the light by controlling the electric power applied to the heating electrode (7).
【請求項3】 光導波路(2) と平行な加熱電極(7) が間
隔をおいて直列に配列されてなる複数の加熱電極片(72)
からなり、該加熱電極片(72)の両端が専用の給電導体(8
1)を介し給電電極(8) に接続された請求項1記載の光機
能デバイス。
3. A plurality of heating electrode pieces (72) in which heating electrodes (7) parallel to the optical waveguide (2) are arranged in series at intervals.
Both ends of the heating electrode piece (72) are
The optical functional device according to claim 1, which is connected to the power feeding electrode (8) via 1).
【請求項4】 加熱電極(7) に通電するため設けられた
一対の給電電極(8)がそれぞれ複数の給電導体(81)を具
え、該給電導体(81)の他端が交互に該加熱電極(7) に接
続されてなる請求項1記載の光機能デバイス。
4. A pair of power supply electrodes (8) provided to energize the heating electrode (7) each comprises a plurality of power supply conductors (81), and the other end of the power supply conductors (81) is alternately heated. The optical functional device according to claim 1, which is connected to the electrode (7).
JP475294A 1994-01-20 1994-01-20 Optical function device Pending JPH07209533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP475294A JPH07209533A (en) 1994-01-20 1994-01-20 Optical function device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP475294A JPH07209533A (en) 1994-01-20 1994-01-20 Optical function device

Publications (1)

Publication Number Publication Date
JPH07209533A true JPH07209533A (en) 1995-08-11

Family

ID=11592649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP475294A Pending JPH07209533A (en) 1994-01-20 1994-01-20 Optical function device

Country Status (1)

Country Link
JP (1) JPH07209533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281483A (en) * 2000-04-03 2001-10-10 Fujikura Ltd Waveguide type variable grating
KR100392367B1 (en) * 2000-11-06 2003-07-22 한국전자통신연구원 Electrode for forming periodically poled optical fibers and fabrication method of periodically poled optical fibers using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281483A (en) * 2000-04-03 2001-10-10 Fujikura Ltd Waveguide type variable grating
JP4498530B2 (en) * 2000-04-03 2010-07-07 株式会社フジクラ Waveguide variable grating
KR100392367B1 (en) * 2000-11-06 2003-07-22 한국전자통신연구원 Electrode for forming periodically poled optical fibers and fabrication method of periodically poled optical fibers using the same

Similar Documents

Publication Publication Date Title
US5970186A (en) Hybrid digital electro-optic switch
US5878175A (en) Electro-optical waveguide element with reduced DC drift phenomena
US6353690B1 (en) Electrically adjustable diffraction grating
US7155088B2 (en) Optical modulator and optical modulator array
US5513283A (en) Te-Me mode converter on polymer waveguide
WO2001033268B1 (en) Differential waveguide pair
US4737002A (en) Tunable optical directional couplers
US4832431A (en) Apparatus for continuous polarization and phase control
US4865408A (en) Low crosstalk reversed Δβ electrodes for directional coupler switch
US5679291A (en) Method of fabricating optical waveguide device
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP3449645B2 (en) Optical function device and driving method thereof
JPH07209533A (en) Optical function device
JP2000028979A (en) Optical control element independent of polarization
JP2940141B2 (en) Waveguide type optical control device
US5103491A (en) Waveguide type optical circuit element
JPS57158616A (en) Optical coupler
JP3492034B2 (en) Optical function device
JP3487664B2 (en) Optical function device and driving method thereof
GB2339028A (en) Optical intensity modulator
JPH06110024A (en) Light reflector
US6961493B2 (en) Optical device
JP3490150B2 (en) Optical function device
JPH06222403A (en) Directional coupling type optical waveguide
JPH05341243A (en) Mode converter and optical filter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030212