JPH07209071A - Piezoelectric vibration sensor - Google Patents

Piezoelectric vibration sensor

Info

Publication number
JPH07209071A
JPH07209071A JP6005465A JP546594A JPH07209071A JP H07209071 A JPH07209071 A JP H07209071A JP 6005465 A JP6005465 A JP 6005465A JP 546594 A JP546594 A JP 546594A JP H07209071 A JPH07209071 A JP H07209071A
Authority
JP
Japan
Prior art keywords
electrode
divided
vibration sensor
piezoelectric
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6005465A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takahashi
克彦 高橋
Satoshi Kunimura
智 國村
Takayuki Imai
隆之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6005465A priority Critical patent/JPH07209071A/en
Publication of JPH07209071A publication Critical patent/JPH07209071A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a piezoelectric vibration sensor, which can be easily manufactured and of which output can be remarkably reduced by pyroelectricity and which can be downsized. CONSTITUTION:A detecting part 5, which is formed by providing electrodes on both surfaces of a piezoelectric body 7, is rigidly fitted onto a base 3. One electrode of the detecting part 5 is formed out of two divided electrodes a1, a2, and shape of these divided electrodes a1, a2 are formed into a linear symmetrical shape arranged in both sides of a line for dividing these divided electrodes. The other electrode of the detecting part 5 is a common electrode (b), which is not divided, and the two divided electrodes a1, a2 are electrically connected in series to each other through the common electrode (b). Shape of a load body 9 is formed into a linear symmetrical shape arranged in both sides of the described line when it is projected to the described line from over. A detecting axis is in parallel with the electrode surface of the detecting unit 5 and vertical to the described line, and the output of a sensor is obtained as a sum of quantity of charge or potential difference generated between the two divided electrode a1, a2 and the common electrode (b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電型振動センサに関
し、その感度の向上と、焦電ノイズによる誤動作の低減
を実現したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibration sensor, which has improved sensitivity and reduced malfunction due to pyroelectric noise.

【0002】[0002]

【従来の技術】一般に振動センサは、機械設備等に関し
てはその振動を測定し機械の異常を監視、診断する設備
診断に用いられている。また、民生機器においても振動
の有無や大きさによって様々な制御を行う商品、例えば
ビデオカメラの手振れ防止機構、ハードディスクドライ
ブ、フロッピィディスクドライブ等の振動や衝撃による
データ読み込みや書き込みエラーの防止機構に用いられ
ている。このような振動センサの一種に圧電型振動セン
サがあり、この圧電型振動センサには片持ち梁型、ダイ
アフラム型、剪断型、圧縮型等、振動の検知方式によっ
ていくつかのタイプに分けられる。
2. Description of the Related Art In general, a vibration sensor is used for facility diagnosis for measuring vibration of machinery and equipment and monitoring and diagnosing abnormality of machinery. It is also used in consumer products that perform various controls depending on the presence or absence of vibration and the size of the device, such as a camera shake prevention mechanism for video cameras and a mechanism for preventing data reading and writing errors due to vibration and shock in hard disk drives, floppy disk drives, etc. Has been. There is a piezoelectric type vibration sensor as a kind of such a vibration sensor, and the piezoelectric type vibration sensor is classified into several types such as a cantilever type, a diaphragm type, a shearing type, a compression type and the like depending on a vibration detecting method.

【0003】ところで、圧縮型の圧電型振動センサ(以
下、圧電型振動センサと略記する。)では、板状あるい
はフィルム状の圧電体の両面に信号取り出し用の電極が
設けられて検知部とし、さらにこの電極にリード線等が
接続されてセンサの信号を出力できるようになってい
る。そして検知部の一方の面は上記検知部からの出力を
処理する処理回路が搭載された基板やセンサパッケージ
等の台座に剛に固定され、他方の面には荷重体が剛に固
定される。このような構成の圧電型振動センサでは、圧
電体上に設けられた電極面と垂直な方向の振動を受ける
と、荷重体の慣性力により、圧電体はその力すなわち加
速度に比例した圧縮および引張の応力を受け、圧電体に
設けられた電極上にその応力の大きさに比例した電荷が
誘起され一対の電極間に電位差が生じ、センサ出力が得
られ振動(加速度)の大きさを知ることができる。ま
た、直交座標系において、この振動検知方向と直交する
他の二方向の振動については、検知部を検知軸に対し点
対称に形成することによって、電極上に発生した誘起電
荷は電極内で互いに相殺され、出力は得られない。従っ
て指向性に優れた圧電型振動センサを得ることができる
(特願平1−273111号)。
By the way, in a compression type piezoelectric vibration sensor (hereinafter abbreviated as piezoelectric type vibration sensor), electrodes for signal extraction are provided on both sides of a plate-shaped or film-shaped piezoelectric body as a detection section, Further, a lead wire or the like is connected to this electrode so that a sensor signal can be output. Then, one surface of the detection unit is rigidly fixed to a pedestal such as a substrate or a sensor package on which a processing circuit for processing the output from the detection unit is mounted, and the load body is rigidly fixed to the other surface. In the piezoelectric vibration sensor having such a configuration, when the piezoelectric body is subjected to vibration in a direction perpendicular to the electrode surface provided on the piezoelectric body, the piezoelectric body is compressed and stretched in proportion to the force, that is, acceleration, due to the inertial force of the load body. Under the stress of, a charge proportional to the magnitude of the stress is induced on the electrode provided on the piezoelectric body, a potential difference occurs between the pair of electrodes, a sensor output is obtained, and the magnitude of vibration (acceleration) is known. You can Further, in the Cartesian coordinate system, for vibrations in the other two directions orthogonal to the vibration detection direction, by forming the detection portion in point symmetry with respect to the detection axis, the induced charges generated on the electrodes are mutually Canceled and no output is obtained. Therefore, a piezoelectric vibration sensor having excellent directivity can be obtained (Japanese Patent Application No. 1-273111).

【0004】そこで従来の圧電型振動センサでは、上述
したようにその構造が比較的単純で指向性にも優れるた
め、振動センサに多く採用されている。しかしながらそ
の単純な構造と圧電体が元々有している特徴によって次
のような欠点が指摘されている。まず第一点目は、その
構造に起因するものであり、圧縮型では前述したよう
に、圧電体の両面に電極を設けるためその両面に出力を
取り出すためのリード線を接続する必要があるが、これ
によって圧電型振動センサを製造するための作業が煩雑
になり、手間がかかる分その価格が高くなったり、また
大量生産に向かないためやはり価格が高くなるといった
欠点があった。
Therefore, the conventional piezoelectric vibration sensor is often used as a vibration sensor because of its relatively simple structure and excellent directivity as described above. However, the following drawbacks have been pointed out due to its simple structure and the characteristics that the piezoelectric body originally has. First of all, the first point is due to its structure. As described above, in the compression type, since electrodes are provided on both sides of the piezoelectric body, it is necessary to connect lead wires for extracting output to both sides thereof. As a result, the work for manufacturing the piezoelectric vibration sensor becomes complicated, and the cost increases due to the time and labor, and the price also rises because it is not suitable for mass production.

【0005】第二点目は、圧電体が元々有している性質
に起因するものであり、すなわち圧電体は圧電性と同時
に焦電性を有しているため、周囲の温度変化に対しても
圧電体上の電極に電荷が誘起され、圧電型振動センサが
誤動作して出力が生じてしまう。この出力は周囲の温度
変化が急激なほど大きく、圧電体そのものの焦電性の感
度は非常に高いという問題があった。このような問題を
解決するため、従来は圧電型振動センサ本体のボディを
厚くしたり、熱伝導の悪い材料を使うなどして、熱が伝
わりにくい構造とすることで、焦電ノイズを低く抑えて
いたが、これらもやはりコストアップの一因となってし
まう。また圧電体の両面の電極のそれぞれにリード線を
接続したものは、精密機器内への実装等を考えると小型
化に制約があり実現が難しいという欠点があった。
The second point is due to the property that the piezoelectric body originally has. That is, since the piezoelectric body has piezoelectricity and pyroelectricity at the same time, it is resistant to ambient temperature changes. Also, electric charges are induced in the electrodes on the piezoelectric body, and the piezoelectric vibration sensor malfunctions to generate an output. This output is large as the ambient temperature changes rapidly, and there is a problem that the piezoelectric body itself has a very high pyroelectric sensitivity. In order to solve such problems, the structure of the piezoelectric vibration sensor body has been thickened in the past, and materials with poor heat conduction have been used to make it difficult for heat to transfer, thereby reducing pyroelectric noise to a low level. However, these also contribute to the cost increase. Further, the one in which a lead wire is connected to each of the electrodes on both sides of the piezoelectric body has a drawback that it is difficult to realize because of a limitation in miniaturization in consideration of mounting in a precision instrument.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、製造が容易で、焦電性による出
力の大幅な低減が可能であり、かつ小型化が可能な圧電
型振動センサを得ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a piezoelectric type that is easy to manufacture, can significantly reduce the output due to pyroelectricity, and can be miniaturized. To obtain a vibration sensor.

【0007】[0007]

【課題を解決するための手段】本発明は、台座上に、圧
電体の両面に電極を設けた検知部を剛に取り付け、さら
にこの検知部上に荷重体を剛に取り付けてなる圧電型振
動センサにおいて、検知部の一方の電極は二つに分割さ
れた分割電極で、これら二つの分割電極の形状はこれら
分割電極を分割する線分を対称の中心とする線対称であ
り、他方の電極は分割されていない共通電極であり、上
記二つの分割電極は上記共通電極を介して電気的に直列
に接続されており、上記荷重体の形状は該荷重体を上記
線分に対して上方から投影したとき前記線分を対称の中
心とする線対称であり、検知軸は検知部の電極面と平行
で、かつ上記線分に垂直な方向であり、センサの出力は
前記二つの分割電極のそれぞれと共通電極との間に生じ
る電荷量あるいは電位差の和として得られることを特徴
とする。上記分割電極を分割する線分は、電極ギャップ
であって、かつその形状が直線状であることが好まし
い。
SUMMARY OF THE INVENTION According to the present invention, a piezoelectric type vibration is obtained by rigidly mounting a sensing section having electrodes on both sides of a piezoelectric body on a pedestal, and rigidly mounting a load body on the sensing section. In the sensor, one electrode of the detection unit is a divided electrode divided into two, and the shape of these two divided electrodes is line symmetric with the line segment dividing these divided electrodes as the center of symmetry, and the other electrode Is a non-divided common electrode, the two divided electrodes are electrically connected in series through the common electrode, and the shape of the load body is such that the load body is connected to the line segment from above. When projected, it is line-symmetrical with the line segment as the center of symmetry, the detection axis is parallel to the electrode surface of the detection unit, and is in a direction perpendicular to the line segment, and the output of the sensor is of the two divided electrodes. The amount of charge generated between each and the common electrode Characterized in that it is obtained as the sum of the position difference. The line segment that divides the split electrode is preferably an electrode gap and has a linear shape.

【0008】[0008]

【実施例】図1は本発明の圧電型振動センサの一実施例
を示す斜視図である。この圧電型振動センサは、台座3
と、この台座3上に剛に取り付けられた検知部5と、こ
の検知部5上に剛に取り付けられた荷重体9とから概略
構成されている。
1 is a perspective view showing an embodiment of a piezoelectric vibration sensor of the present invention. This piezoelectric vibration sensor has a base 3
The detection unit 5 is rigidly mounted on the pedestal 3, and the load body 9 is rigidly mounted on the detection unit 5.

【0009】台座3は、十分な剛性を有するものであ
り、検知部5からの電気的出力を処理する処理回路が搭
載された基板や圧電型振動センサを収納するパッケージ
等が挙げられる。
The pedestal 3 has a sufficient rigidity, and examples thereof include a substrate on which a processing circuit for processing an electrical output from the detection section 5 is mounted, a package for housing a piezoelectric vibration sensor, and the like.

【0010】検知部5は、圧電性を有する材料からなる
圧電体7を金属箔からなる第一の電極11と第二の電極
12とで挾んでなるものである。上記圧電性を有する材
料としては、チタン酸ジルコン酸鉛、チタン酸鉛、チタ
ン酸バリウムなどの無機質圧電材料やポリフッ化ビニリ
デンなどの強誘電性高分子材料などが用いられる。
The detecting section 5 is formed by sandwiching a piezoelectric body 7 made of a material having piezoelectricity with a first electrode 11 and a second electrode 12 made of a metal foil. As the material having piezoelectricity, an inorganic piezoelectric material such as lead zirconate titanate, lead titanate, barium titanate, or a ferroelectric polymer material such as polyvinylidene fluoride is used.

【0011】第一の電極11は、台座3と圧電体7との
間にあるものであり、図2に示すように電極ギャップ
(線分)13により二つに分割されて、第一分割電極a
1と第二分割電極a2から構成されている。これら第一分
割電極a1、第二分割電極a2の形状は、電極ギャップ1
3を対称の中心とする線対称になっている。この電極ギ
ャップ(線分)13は、直線状であることが望ましい。
The first electrode 11 is between the pedestal 3 and the piezoelectric body 7, and is divided into two by an electrode gap (line segment) 13 as shown in FIG. a
1 and the second divided electrode a 2 . The shapes of the first divided electrode a 1 and the second divided electrode a 2 are the electrode gap 1
It has line symmetry with 3 as the center of symmetry. It is desirable that the electrode gap (line segment) 13 be linear.

【0012】第二の電極12は、圧電体7と荷重体9と
の間にあるものであり、分割されていない(以下、この
第二の電極12を共通電極bとする。)。そして、第一
分割電極a1と第二分割電極a2とは、図3に示すように
共通電極bを介して電気的に直列に接続されており、ま
た、第一分割電極a1と第二分割電極a2のそれぞれには
出力を取り出すためのリード線(図示略)の一端部が接
続されている。また、これらリード線の他端部は、電気
的出力を処理する処理回路の接続端子(図示略)に接続
されている。そして、圧電型振動センサが振動を検知し
た場合、その振動の大きさは、出力(V)の大きさによ
り評価でき、このとき出力(V)は図3に示すように第
一分割電極a1と共通電極bとの間の電荷量あるいは電
位差(Va1-b)と、共通電極bと第二分割電極a2との
間の電荷量あるいは電位差(Vb-a2)の和(Va1-b+V
b-a2)として得られるようになっている。
The second electrode 12 is located between the piezoelectric body 7 and the load body 9 and is not divided (hereinafter, this second electrode 12 is referred to as a common electrode b). Then, the first divided electrode a 1 and the second split electrodes a 2, are electrically connected in series via a common electrode b as shown in FIG. 3, also, the first divided electrode a 1 second One end of a lead wire (not shown) for extracting an output is connected to each of the two-divided electrodes a 2 . The other ends of these lead wires are connected to a connection terminal (not shown) of a processing circuit that processes an electrical output. Then, when the piezoelectric vibration sensor detects vibration, the magnitude of the vibration can be evaluated by the magnitude of the output (V), and at this time, the output (V) is the first divided electrode a 1 as shown in FIG. Of the charge amount or potential difference (V a1-b ) between the common electrode b and the common electrode b and the charge amount or potential difference (V b-a2 ) between the common electrode b and the second divided electrode a 2 (V a1- b + V
b-a2 ).

【0013】荷重体9は、慣性質量部として機能する剛
体からなるものであり、振動(加速度)を受けて変位
し、検知部5の圧電体7に歪みまたは応力を生じせしめ
るもので、その形状は該荷重体9を電極ギャップ13に
対して上方から投影したとき電極ギャップ13を対称の
中心とする線対称となっている。
The load body 9 is composed of a rigid body that functions as an inertial mass portion, is displaced by receiving vibration (acceleration), and causes the piezoelectric body 7 of the detection portion 5 to be distorted or stressed. When the load body 9 is projected onto the electrode gap 13 from above, it has line symmetry with the electrode gap 13 as the center of symmetry.

【0014】このような構成の圧電型振動センサは、検
知部5の電極面と平行で、かつ電極ギャップ13に垂直
な方向が検知軸Gとなっており、この方向の振動成分を
検出し、他の方向の振動成分に対して不感となる。
In the piezoelectric type vibration sensor having such a configuration, the direction parallel to the electrode surface of the detection portion 5 and perpendicular to the electrode gap 13 is the detection axis G, and the vibration component in this direction is detected, It becomes insensitive to vibration components in other directions.

【0015】つぎに、図1に示した圧電型振動センサに
おいて、振動が検出される原理を説明する。図1の圧電
型振動センサが、検知部5の電極面と平行で、かつ電極
ギャップ13に垂直な方向からの振動を受けた場合、検
知部5は荷重体9の慣性力によって、台座3の固定面を
支点にして回転のモーメント力を生じ、圧電体7を電極
ギャップ13に対して上方から投影したとき、圧電体7
の電極ギャップ13を対称線とする両側に、それぞれ圧
縮と引張という逆方向で、しかも電極ギャップ13に対
して線対称の位置で絶対値の等しい応力を受ける。する
と、図3に示すように第一分割電極a1と共通電極bと
の間の電荷量あるいは電位差(Va1-b)と、共通電極b
と第二分割電極a2との間の電荷量あるいは電位差(V
b-a2)は等しくなり、その和(Va1-b+Vb-a2)が出力
(V)として得られ、振動の大きさを知ることができ
る。
Next, the principle of detecting vibration in the piezoelectric vibration sensor shown in FIG. 1 will be described. When the piezoelectric type vibration sensor of FIG. 1 receives a vibration from a direction parallel to the electrode surface of the detection unit 5 and perpendicular to the electrode gap 13, the detection unit 5 causes the inertia force of the load body 9 to move the pedestal 3 of the pedestal 3. When the piezoelectric body 7 is projected onto the electrode gap 13 from above by generating a rotational moment force with the fixed surface as a fulcrum, the piezoelectric body 7
On both sides of which the electrode gap 13 is a symmetry line, stresses of the same absolute value are applied in the opposite directions of compression and tension, and at positions symmetrical with respect to the electrode gap 13. Then, as shown in FIG. 3, the charge amount or the potential difference (V a1-b ) between the first divided electrode a 1 and the common electrode b and the common electrode b.
When the charge amount or potential difference between the second divided electrode a 2 (V
b-a2 ) becomes equal, and the sum ( Va1-b + Vb-a2 ) is obtained as the output (V), and the magnitude of vibration can be known.

【0016】また、図1の圧電型振動センサが、検知部
5の電極面と平行で、かつ検知軸Gと垂直な方向からの
振動を受けた場合、第一分割電極a1、第二分割電極a2
のそれぞれと共通電極b間で誘起される電荷が相殺さ
れ、電位差は生じず出力は得られない。また、図1の圧
電型振動センサが圧電体7の面と垂直な方向からの振動
を受けた場合、荷重体9の慣性力により、圧電体7には
ほぼ一様に応力が生じ、第一分割電極a1と共通電極b
間の電位差(Va1-b)と、共通電極bと第二分割電極a
2間の電位差(Vb-a2)との間には、下記式(I)に示
すような関係が成り立つ。 Va1-b=−Vb-a2 ・・・(I) 従って、第一分割電極a1と共通電極b間の電位差(V
a1-b)と、共通電極bと第二分割電極a2間の電位差
(Vb-a2)との和は0となり、出力は得られない。 こ
のように実施例の圧電型振動センサは、従来の圧電型振
動センサと同様に振動検出方向について優れた指向性を
有している。
When the piezoelectric type vibration sensor of FIG. 1 receives vibration from a direction parallel to the electrode surface of the detection portion 5 and perpendicular to the detection axis G, the first divided electrode a 1 and the second divided electrode a 1 Electrode a 2
, And the electric charges induced between the common electrode b and each other are canceled out, no potential difference occurs, and no output is obtained. When the piezoelectric vibration sensor of FIG. 1 receives a vibration from a direction perpendicular to the surface of the piezoelectric body 7, the inertial force of the load body 9 causes a stress to be generated in the piezoelectric body 7 substantially uniformly. Split electrode a 1 and common electrode b
Potential difference (V a1-b ) between the common electrode b and the second divided electrode a
The relationship as shown in the following formula (I) is established between the potential difference (V b-a2 ) between the two . V a1-b = −V b-a2 (I) Therefore, the potential difference between the first divided electrode a 1 and the common electrode b (V
a1-b) and the sum becomes zero between the common electrode b and the potential difference between the second divided electrode a 2 (V b-a2) , the output is not obtained. As described above, the piezoelectric vibration sensor of the embodiment has an excellent directivity in the vibration detection direction, like the conventional piezoelectric vibration sensor.

【0017】つぎに、図1に示した圧電型振動センサに
おいて、焦電性による出力が大幅に低減される原理を説
明する。図1の圧電型振動センサでは、急激な温度変化
が加わった場合、第一分割電極a1、第二分割電極a2のそ
れぞれと共通電極bとの間に焦電効果による電荷が誘起
され、電位差が生じる。焦電効果により誘起される電荷
は、温度変化の方向すなわち温度の上昇または下降と、
圧電体7の分極方向に依存するため、第一分割電極
a1面、第二分割電極a2面のそれぞれと共通電極b面とで
異る符号の電荷が誘起されるが、その大きさは圧電体7
の同一面内ではほぼ等しい。従って、このとき第一分割
電極a1と共通電極b間に生じる焦電出力による電位差
(Va1-b)と、共通電極bと第二分割電極a2間に生じ
る焦電出力による電位差(Vb-a2)との和(Va1-b+V
b-a2)は0となり、焦電効果による出力は得られない。
Next, in the piezoelectric type vibration sensor shown in FIG. 1, the principle that the output due to pyroelectricity is greatly reduced will be described. In the piezoelectric type vibration sensor of FIG. 1, when a sudden temperature change is applied, electric charges are induced by the pyroelectric effect between each of the first divided electrode a1 and the second divided electrode a2 and the common electrode b, and the potential difference is Occurs. The electric charge induced by the pyroelectric effect is due to the direction of temperature change, that is, as the temperature rises or falls,
Since it depends on the polarization direction of the piezoelectric body 7, the first split electrode
Charges having different signs are induced between the a1 surface, the second divided electrode a2 surface, and the common electrode b surface, but the magnitude of the charges is different from that of the piezoelectric body 7.
Are almost equal in the same plane. Therefore, at this time, a potential difference (V a1-b ) due to the pyroelectric output generated between the first divided electrode a 1 and the common electrode b and a potential difference (V a due to the pyroelectric output generated between the common electrode b and the second divided electrode a 2 sum with b-a2 ) (V a1-b + V
b-a2 ) becomes 0, and no output due to the pyroelectric effect can be obtained.

【0018】図1の圧電型振動センサにあっては、圧電
体7の片面に設けられた第一分割電極a1と第二分割電
極a2とは共通電極bを介して電気的に直列に接続され
ていることから、出力を取り出すためのリード線も圧電
体の片側に接続すればよいので、圧電体の両面の電極に
リード線を接続していた従来の圧電型振動センサと異
り、リード線の接続にワイヤボンディングなど半導体製
造等に使用される装置を利用できる。また検知部5の分
割電極側を台座3に固定する場合は、電気的出力を処理
する処理回路上に直接載せることが可能であるので、ワ
イヤーボディングの手間がかからない。従って、実施例
の圧電型振動センサは、製造が容易であり、大量生産が
できるので、コストの低減が可能である。また、出力を
取り出すためのリード線を圧電体7の片側に接続すれば
よいことから、その分小型化が可能で、精密機器への実
装が可能となる。また、焦電効果によるノイズが大幅に
低減されるので、コストの低減が可能であり、さらにま
た振動の検出値の信頼性が向上する。また、第一分割電
極a1と共通電極b間に生じる電位差(Va1-b)と、共
通電極bと第二分割電極a2間に生じる電位差
(Vb-a2)との和(Va1-b+Vb-a2)が出力として得ら
れるので、検知軸G方向の振動に対する感度が高い。
In the piezoelectric vibration sensor of FIG. 1, the first divided electrode a 1 and the second divided electrode a 2 provided on one surface of the piezoelectric body 7 are electrically connected in series via the common electrode b. Since it is connected, the lead wire for extracting the output may be connected to one side of the piezoelectric body, so unlike the conventional piezoelectric vibration sensor in which the lead wire was connected to the electrodes on both sides of the piezoelectric body, An apparatus used in semiconductor manufacturing or the like such as wire bonding can be used for connecting lead wires. Further, when the split electrode side of the detection unit 5 is fixed to the pedestal 3, since it can be directly placed on a processing circuit that processes an electrical output, the wire boding does not take time. Therefore, the piezoelectric vibration sensor of the embodiment is easy to manufacture and can be mass-produced, so that the cost can be reduced. Further, since it is sufficient to connect a lead wire for taking out an output to one side of the piezoelectric body 7, the size can be reduced accordingly, and mounting on a precision device becomes possible. Further, noise due to the pyroelectric effect is significantly reduced, so that the cost can be reduced, and the reliability of the vibration detection value is further improved. Further, the sum (V a1 ) of the potential difference (V a1-b ) generated between the first divided electrode a 1 and the common electrode b and the potential difference (V b-a2 ) generated between the common electrode b and the second divided electrode a 2 Since -b + Vb-a2 ) is obtained as an output, the sensitivity to vibration in the detection axis G direction is high.

【0019】以下、具体例を示す。 (実施例)図1に示されるような圧電型振動センサを以
下のようにして作製した。まず、厚さ450μm、長さ
3mm、幅3mmのチタン酸ジルコン酸鉛製の圧電体7
の一面に、厚さ30μm、長さ1.3mm、幅3mmの
銅箔製の分割電極の二枚を電極ギャップが400μmと
なるようにエポキシ系接着剤を用いて貼着し、ついで圧
電体7の分割電極が貼られた面と相対する面に、厚さ3
0μm、長さ3mm、幅3mmの銅箔製の共通電極bを
エポキシ系接着剤を用いて貼着し、検知部5を作製し
た。ついで、作製した検知部5の分割電極面を、上記検
知部5からの電気的出力を処理するためのインピーダン
ス交換回路、増幅回路、これらの接続端子部を含む電気
回路が搭載されたアルミナ製基板上の接続端子部に導電
性接着剤を用いて固着した。ついで、上記検知部5の共
通電極の上面に、質量1g、厚さ1mm、長さ6mm、
幅3mmの真ちゅう製の荷重体9をエポキシ系接着剤を
用いて固着して圧電型振動センサを得た。これを実施例
の圧電型振動センサとした。この圧電型振動センサにお
いては、検知部5の電極面と平行で、かつ電極ギャップ
13に垂直な方向が検知軸となっている。
Specific examples will be shown below. (Example) A piezoelectric vibration sensor as shown in FIG. 1 was produced as follows. First, a piezoelectric body 7 made of lead zirconate titanate having a thickness of 450 μm, a length of 3 mm and a width of 3 mm.
Two pieces of split electrodes made of copper foil having a thickness of 30 μm, a length of 1.3 mm, and a width of 3 mm are attached to one surface of the piezoelectric body with an epoxy adhesive so that the electrode gap becomes 400 μm, and then the piezoelectric body 7 On the surface opposite to the surface where the divided electrodes of
A common electrode b made of copper foil having a length of 0 μm, a length of 3 mm, and a width of 3 mm was attached using an epoxy adhesive to fabricate the detection unit 5. Next, an alumina substrate on which the divided electrode surface of the produced sensing unit 5 is mounted with an impedance exchanging circuit for processing the electrical output from the sensing unit 5, an amplifying circuit, and an electrical circuit including these connecting terminal portions. The upper connection terminal portion was fixed by using a conductive adhesive. Then, on the upper surface of the common electrode of the detection unit 5, a mass of 1 g, a thickness of 1 mm, a length of 6 mm,
A brass load element 9 having a width of 3 mm was fixed using an epoxy adhesive to obtain a piezoelectric vibration sensor. This was used as the piezoelectric vibration sensor of the example. In this piezoelectric vibration sensor, the direction parallel to the electrode surface of the detection unit 5 and perpendicular to the electrode gap 13 is the detection axis.

【0020】(比較例)図4に示すような圧電型振動セ
ンサ(特願平3−139638号)を以下のようにして
作製した。まず、上記実施例で用いたものと同様の圧電
体7の両面に、厚さ30μm、長さ3mm、幅3mmの
銅箔製の電極21をエポキシ系接着剤を用いて貼着し、
検知部5を作製した。ついで、作製した検知部5の一方
の電極21の上面に、厚さ1mm、長さ3mm、幅3m
mのFRP製の支持体22を設け、これの一部に切り欠
きをいれて電極21を露出させ、これにリード線の一端
部を接続した。また、検知部5の他方の電極21面を、
上記検知部5からの電気的出力を処理するためのインピ
ーダンス交換回路、増幅回路、これらの接続端子部を含
む電気回路が搭載されたアルミナ製基板23上の一つの
接続端子部に直接導電性接着剤を用いて固着し、上記リ
ード線の他端部をもう一つの接続端子部に接続した。つ
いで、上記検知部5の支持体22の上面に、質量1g、
厚さ1mm、長さ4.25mm、幅4.25mmの真ち
ゅう製の荷重体9をエポキシ系接着剤を用いて固着して
圧電型振動センサを得た。これを比較例の圧電型振動セ
ンサとした。この圧電型振動センサにおいては、上記実
施例と同方向が検知軸となっている。
(Comparative Example) A piezoelectric vibration sensor (Japanese Patent Application No. 3-139638) as shown in FIG. 4 was produced as follows. First, a copper foil electrode 21 having a thickness of 30 μm, a length of 3 mm, and a width of 3 mm was attached to both surfaces of a piezoelectric body 7 similar to that used in the above-mentioned embodiment using an epoxy adhesive,
The detector 5 was produced. Then, on the upper surface of the one electrode 21 of the manufactured detection unit 5, a thickness of 1 mm, a length of 3 mm, and a width of 3 m.
An FRP support 22 of m was provided, a notch was made in a part of the support to expose the electrode 21, and one end of a lead wire was connected to this. In addition, the other electrode 21 surface of the detection unit 5 is
Directly conductive bonding to one connection terminal portion on the alumina substrate 23 on which an impedance exchange circuit for processing the electric output from the detection unit 5, an amplification circuit, and an electric circuit including these connection terminal portions are mounted. Then, the other end of the lead wire was connected to another connecting terminal portion. Then, on the upper surface of the support 22 of the detection unit 5, a mass of 1 g,
A brass load element 9 having a thickness of 1 mm, a length of 4.25 mm and a width of 4.25 mm was fixed using an epoxy adhesive to obtain a piezoelectric vibration sensor. This was used as a piezoelectric vibration sensor of a comparative example. In this piezoelectric type vibration sensor, the detection axis is in the same direction as in the above embodiment.

【0021】そして、上記実施例の圧電型振動センサと
比較例の圧電型振動センサについて、それぞれの検知軸
方向およびこの検知軸方向と直交する二方向(直交方向
1、直交方向2とする。)に80Hz、1Gの正弦加速
度を与えたときの感度をそれぞれ測定した。その結果を
下記表1に示す。
Then, regarding the piezoelectric type vibration sensor of the above-described embodiment and the piezoelectric type vibration sensor of the comparative example, the respective detection axis directions and two directions orthogonal to the detection axis direction (the orthogonal direction 1 and the orthogonal direction 2). The sensitivities when a sine acceleration of 80 Hz and 1 G was applied were measured. The results are shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】上記表1に示した結果から明かなように、
実施例の圧電型振動センサは比較例の圧電型振動センサ
に比べて検知軸方向の感度が約3倍であることが分る。
また、指向性については実施例および比較例の圧電型振
動センサともに優れており、検知軸方向と直交する二方
向の感度はそれぞれ5%未満に収まっていることが分
る。
As is clear from the results shown in Table 1 above,
It can be seen that the piezoelectric vibration sensor of the example has about three times the sensitivity in the detection axis direction as compared with the piezoelectric vibration sensor of the comparative example.
Further, it can be seen that the directivity is excellent in both the piezoelectric vibration sensors of the example and the comparative example, and the sensitivities in the two directions orthogonal to the detection axis direction are each less than 5%.

【0024】つぎに、実施例の圧電型振動センサと比較
例の圧電型振動センサをそれぞれ室温から60℃の恒温
槽に移したときの焦電出力を測定した。ここでの測定
は、先に行った感度の測定結果において得られた1G当
りの感度に対し、最大で何倍の焦電出力が得られるか
(焦電感度)、また、同センサ感度に対し±10%の出
力範囲に収まるのにかかる時間(収束時間)の2点につ
いて評価した。その結果を下記表2に示す。
Next, the pyroelectric output was measured when the piezoelectric vibration sensor of the example and the piezoelectric vibration sensor of the comparative example were transferred from room temperature to a constant temperature bath at 60 ° C. The measurement here is how many times the maximum pyroelectric output can be obtained (pyroelectric sensitivity) with respect to the sensitivity per 1 G obtained in the result of the sensitivity measurement previously performed, and the sensitivity of the sensor. Two points of time (convergence time) required to fall within the output range of ± 10% were evaluated. The results are shown in Table 2 below.

【0025】[0025]

【表2】 [Table 2]

【0026】上記表2に示した結果から明かなように実
施例の圧電型振動センサは、比較例の圧電型振動センサ
に比べて焦電効果による出力が大幅に少なく、焦電感度
が低いことが分る。
As is clear from the results shown in Table 2 above, the piezoelectric vibration sensor of the embodiment has significantly less output due to the pyroelectric effect and lower pyroelectric sensitivity than the piezoelectric vibration sensor of the comparative example. I understand.

【0027】[0027]

【発明の効果】以上説明したように本発明の圧電型振動
センサは、圧電体の片面に設けられた二つの分割電極が
共通電極を介して電気的に直列に接続されたものである
から、出力を取り出すためのリード線も圧電体の片側に
接続すればよいので、圧電体の両面の電極にリード線を
接続する従来の圧電型振動センサと異り、リード線の接
続にワイヤボンディングなど半導体製造等に使用される
装置を利用でき、また検知部の分割電極側を台座に固定
する場合は、電気的出力を処理する処理回路上に直接乗
せることが可能であるので、ワイヤーボディングの手間
がかからない。従って、本発明の圧電型振動センサは、
製造が容易であり、大量生産ができるので、コストの低
減が可能である。また、出力を取り出すためのリード線
を圧電体の片側に接続すればよいことから、その分小型
化が可能で、精密機器への実装が可能となる。また、焦
電効果によるノイズが大幅に低減されるので、コストの
低減が可能であり、さらにまた振動の検出値の信頼性が
向上する。また、二つの分割電極のそれぞれと共通電極
間に生じる電位差の和が出力として得られるので、検知
軸方向の振動に対する感度が高い。
As described above, in the piezoelectric vibration sensor of the present invention, the two divided electrodes provided on one surface of the piezoelectric body are electrically connected in series via the common electrode. Since the lead wire for extracting the output may be connected to one side of the piezoelectric body, unlike the conventional piezoelectric vibration sensor in which the lead wire is connected to the electrodes on both sides of the piezoelectric body, the semiconductor device such as wire bonding is used for connecting the lead wire. The equipment used for manufacturing can be used, and when fixing the split electrode side of the detection part to the pedestal, it can be placed directly on the processing circuit that processes the electrical output. It doesn't take. Therefore, the piezoelectric vibration sensor of the present invention,
It is easy to manufacture and can be mass-produced, so the cost can be reduced. Further, since it is sufficient to connect a lead wire for taking out the output to one side of the piezoelectric body, it is possible to make the size smaller and mount it on a precision instrument. Further, noise due to the pyroelectric effect is significantly reduced, so that the cost can be reduced, and the reliability of the vibration detection value is further improved. Further, since the sum of the potential differences generated between each of the two divided electrodes and the common electrode is obtained as an output, the sensitivity to vibration in the detection axis direction is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の圧電型振動センサの一実施例を示す
斜視図である。
FIG. 1 is a perspective view showing an embodiment of a piezoelectric vibration sensor of the present invention.

【図2】 図1に示した圧電型振動センサのX−X線に
沿った断面図である。
FIG. 2 is a cross-sectional view of the piezoelectric vibration sensor shown in FIG. 1, taken along line XX.

【図3】 図1に示した圧電型振動センサの二つの分割
電極を共通電極を介して電気的に直列に接続した等価回
路を示す図である。
3 is a diagram showing an equivalent circuit in which two divided electrodes of the piezoelectric vibration sensor shown in FIG. 1 are electrically connected in series via a common electrode.

【図4】 比較例の圧電型振動センサを示す斜視図であ
る。
FIG. 4 is a perspective view showing a piezoelectric vibration sensor of a comparative example.

【符号の説明】[Explanation of symbols]

3・・・台座、5・・・検知部、7・・・圧電体、9・・・荷重体、
11・・・第一の電極、a1・・・第一分割電極、a2・・・第二
分割電極、12・・・第二の電極、b・・・共通電極、13・・
・電極ギャップ、G・・・検知軸
3 ... Pedestal, 5 ... Detection part, 7 ... Piezoelectric body, 9 ... Load body,
11 ... 1st electrode, a 1 ... 1st division electrode, a 2 ... 2nd division electrode, 12 ... 2nd electrode, b ... Common electrode, 13 ...
・ Electrode gap, G ... Detection axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 台座上に、圧電体の両面に電極を設けた
検知部を剛に取り付け、さらにこの検知部上に荷重体を
剛に取り付けてなる圧電型振動センサにおいて、 検知部の一方の電極は二つに分割された分割電極で、こ
れら二つの分割電極の形状はこれら分割電極を分割する
線分を対称の中心とする線対称であり、検知部の他方の
電極は分割されていない共通電極であり、前記二つの分
割電極は前記共通電極を介して電気的に直列に接続され
ており、前記荷重体の形状は該荷重体を前記線分に対し
て上方から投影したとき前記線分を対称の中心とする線
対称であり、検知軸は検知部の電極面と平行で、かつ前
記線分に垂直な方向であり、センサの出力は前記二つの
分割電極のそれぞれと共通電極との間に生じる電荷量あ
るいは電位差の和として得られることを特徴とする圧電
型振動センサ。
1. A piezoelectric vibration sensor comprising a pedestal, to which a detection unit having electrodes provided on both sides of a piezoelectric body is rigidly attached, and a load body is rigidly attached to the detection unit. The electrode is a divided electrode divided into two, and the shape of these two divided electrodes is line symmetry with the line segment dividing these divided electrodes as the center of symmetry, and the other electrode of the detection unit is not divided. A common electrode, the two divided electrodes are electrically connected in series via the common electrode, and the shape of the load body is the line when the load body is projected onto the line segment from above. Is a line symmetry with the center of the symmetry as the center of symmetry, the detection axis is parallel to the electrode surface of the detection unit and is in a direction perpendicular to the line segment, and the output of the sensor is that of the two divided electrodes and the common electrode. As the sum of the amount of charge or the potential difference that occurs between The piezoelectric vibration sensor, characterized in that it is.
【請求項2】 分割電極を分割する線分が電極ギャップ
であって、かつ該電極ギャップの形状が直線状であるこ
とを特徴とする請求項1記載の圧電型振動センサ。
2. The piezoelectric vibration sensor according to claim 1, wherein the line segment that divides the split electrode is an electrode gap, and the shape of the electrode gap is linear.
JP6005465A 1994-01-21 1994-01-21 Piezoelectric vibration sensor Pending JPH07209071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6005465A JPH07209071A (en) 1994-01-21 1994-01-21 Piezoelectric vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6005465A JPH07209071A (en) 1994-01-21 1994-01-21 Piezoelectric vibration sensor

Publications (1)

Publication Number Publication Date
JPH07209071A true JPH07209071A (en) 1995-08-11

Family

ID=11611993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6005465A Pending JPH07209071A (en) 1994-01-21 1994-01-21 Piezoelectric vibration sensor

Country Status (1)

Country Link
JP (1) JPH07209071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578421B1 (en) 1999-12-28 2003-06-17 Fujitsu Limited Acceleration sensor, acceleration sensor device, and method of fabricating an acceleration sensor
WO2003071287A1 (en) * 2002-02-25 2003-08-28 Fujitsu Media Devices Limited Acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578421B1 (en) 1999-12-28 2003-06-17 Fujitsu Limited Acceleration sensor, acceleration sensor device, and method of fabricating an acceleration sensor
US6792806B2 (en) 1999-12-28 2004-09-21 Fujitsu Limited Acceleration sensor device
WO2003071287A1 (en) * 2002-02-25 2003-08-28 Fujitsu Media Devices Limited Acceleration sensor
JP2003248015A (en) * 2002-02-25 2003-09-05 Fujitsu Media Device Kk Accelerometer
US7299695B2 (en) 2002-02-25 2007-11-27 Fujitsu Media Devices Limited Acceleration sensor

Similar Documents

Publication Publication Date Title
JP3373032B2 (en) Acceleration sensor
JP3040816B2 (en) Operation test method in device for detecting physical quantity using change in distance between electrodes, and physical quantity detection device having function of performing this method
US6397677B1 (en) Piezoelectric rotational accelerometer
US9448068B2 (en) Angular velocity sensor
US5691471A (en) Acceleration and angular velocity detector
TW384399B (en) Speed-up sensor and speed-up apparatus using said speed-up sensor
US11105828B2 (en) Microelectromechanical device for out-of-plane motion detection
US11668728B2 (en) Acceleration transducer
EP2037217A1 (en) Inertia force sensor
JPH0715485B2 (en) Piezoelectric mechanical sensor
JP5845447B2 (en) Acceleration sensor
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
JPS59158566A (en) Semiconductor acceleration sensor
US3506857A (en) Compressive mode piezoelectric transducer with isolation of mounting base strains from the signal producing means thereof
JPH07209071A (en) Piezoelectric vibration sensor
JP2007225527A (en) Triaxial acceleration sensor
JPH0627133A (en) Three dimensional acceleration sensor
JP3347316B2 (en) Apparatus for detecting physical quantity using change in distance between electrodes and operation test method thereof
JP2009068936A (en) Physical quantity detecting apparatus
US11680797B2 (en) Physical quantity sensor
JPH0654274B2 (en) Semiconductor pressure transducer
JP3280009B2 (en) Apparatus for detecting physical quantity using change in distance between electrodes and operation test method thereof
CN220455346U (en) Acceleration sensor and electronic equipment
US20230138452A1 (en) Physical Quantity Sensor and Inertial Measurement Unit
JP3307257B2 (en) Acceleration sensor