JPH0715485B2 - Piezoelectric mechanical sensor - Google Patents

Piezoelectric mechanical sensor

Info

Publication number
JPH0715485B2
JPH0715485B2 JP12240087A JP12240087A JPH0715485B2 JP H0715485 B2 JPH0715485 B2 JP H0715485B2 JP 12240087 A JP12240087 A JP 12240087A JP 12240087 A JP12240087 A JP 12240087A JP H0715485 B2 JPH0715485 B2 JP H0715485B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
mechanical quantity
piezoelectric elements
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12240087A
Other languages
Japanese (ja)
Other versions
JPS63289460A (en
Inventor
昭 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12240087A priority Critical patent/JPH0715485B2/en
Priority to DE19883817354 priority patent/DE3817354A1/en
Publication of JPS63289460A publication Critical patent/JPS63289460A/en
Publication of JPH0715485B2 publication Critical patent/JPH0715485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/10Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/222Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Gyroscopes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、圧電素子を用いた力学量センサに関し、特に
車両用の加速度センサとして好適な力学量センサに関す
るものである。
TECHNICAL FIELD The present invention relates to a mechanical quantity sensor using a piezoelectric element, and more particularly to a mechanical quantity sensor suitable as an acceleration sensor for a vehicle.

〔従来技術〕 圧電素子を用いた加速度センサとしては、例えば公開実
用新案公報昭和61年187462号に示されているものがあ
る。
[Prior Art] As an acceleration sensor using a piezoelectric element, for example, there is one disclosed in Japanese Utility Model Publication No. 187462 in 1986.

第8図は上記の加速度センサの全体構成を示す断面図、
第9は圧電ダイアフラムの平面図及び断面図である。
FIG. 8 is a cross-sectional view showing the overall configuration of the above acceleration sensor,
Ninth is a plan view and a sectional view of the piezoelectric diaphragm.

第8図において、1は圧電ダイアフラム、2は筺体の下
半部、3は筺体の上半部であり、圧電ダイアフラム1
は、ポリウレタン等の弾性材からなる支持部材4を介し
て筺体2,3に装着されている。
In FIG. 8, 1 is the piezoelectric diaphragm, 2 is the lower half of the housing, and 3 is the upper half of the housing.
Is attached to the housings 2 and 3 via a support member 4 made of an elastic material such as polyurethane.

その他、5は電子部品6を載置する電子回路基板、6は
検出信号を増幅したりフイルタリングする電子回路を構
成する電子部品、7はポッティング材、8は検出信号を
外部へ取り出す外部リード線、13,14は圧電ダイアフラ
ム1の圧電素子と電子回路とを接続するリード線であ
る。
In addition, 5 is an electronic circuit board on which the electronic component 6 is mounted, 6 is an electronic component that constitutes an electronic circuit that amplifies or filters the detection signal, 7 is a potting material, and 8 is an external lead wire for extracting the detection signal to the outside. , 13 and 14 are lead wires connecting the piezoelectric element of the piezoelectric diaphragm 1 and an electronic circuit.

次に、第9図において、金属薄板10の両面には、それぞ
れ圧電素子11,12が接着剤によって接着されている。
Next, in FIG. 9, piezoelectric elements 11 and 12 are adhered to both surfaces of the thin metal plate 10 by an adhesive agent, respectively.

金属薄板10は、圧電素子11,12と熱膨張をできるだけ同
じ値にする必要があり、そのため例えば圧電素子として
P.Z.Tを用いた場合には、それと熱膨張係数の近いNi-Fe
合金を用いる。
The thin metal plate 10 needs to have the same thermal expansion value as that of the piezoelectric elements 11 and 12, and therefore, for example, as a piezoelectric element.
When PZT is used, it has a similar coefficient of thermal expansion to that of Ni-Fe.
Use an alloy.

なお、圧電素子11,12は、金属薄板10より小面積のもの
を用い、圧電ダイアフラム1の周辺部には金属薄板10が
露出している。
The piezoelectric elements 11 and 12 have a smaller area than the metal thin plate 10, and the metal thin plate 10 is exposed in the peripheral portion of the piezoelectric diaphragm 1.

また、圧電素子は、焦電性のために温度変化に応じて電
圧が発生するので、上記のように2枚の圧電素子を反対
の出力特性となるように張り合わせた、いわゆるバイモ
ルフ構造とすることによって焦電出力を除去している。
Further, since the piezoelectric element generates voltage in response to temperature change due to pyroelectricity, it is necessary to adopt a so-called bimorph structure in which the two piezoelectric elements are bonded together so as to have opposite output characteristics as described above. Pyroelectric output is removed by.

その他、15〜18は緩衝材、19は空気通路となる小孔であ
る。
In addition, 15 to 18 are cushioning materials, and 19 is a small hole that serves as an air passage.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような従来の圧電型力学量センサに
おいては、2枚の薄い圧電素子の分極方向を、力学量印
加方向に対して互いに逆向きになるように金属薄板に固
定し、かつ、電気的接続を直列接続にしていたため、バ
イモルフ構造とすることによって本来キャンセルされる
べきノイズ電圧、すなわち環境温度変化に対応して発生
する圧電素子固有の焦電電荷に基づいて発生するノイズ
電圧が、2枚の圧電素子間の静電容量差及び絶縁抵抗差
の影響によって大きなノイズ電圧として発生し、力学量
センサの低周波力学量検出精度を悪化させるという問題
点があった。なお、上記の影響の詳細は後述する。
However, in such a conventional piezoelectric mechanical quantity sensor, the polarization directions of two thin piezoelectric elements are fixed to a metal thin plate so that the polarization directions are opposite to each other with respect to the mechanical quantity application direction, and the Since the connections were made in series, the noise voltage that should be canceled by the bimorph structure, that is, the noise voltage generated based on the pyroelectric charge peculiar to the piezoelectric element generated in response to the environmental temperature change has two noise voltages. There is a problem that a large noise voltage is generated due to the influence of the capacitance difference and the insulation resistance difference between the piezoelectric elements, and the low frequency mechanical quantity detection accuracy of the mechanical quantity sensor is deteriorated. The details of the above influence will be described later.

本発明は上記のごとき従来技術の問題を解決し、低周波
域における検出精度を向上させた圧電型力学量センサを
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems of the prior art as described above and to provide a piezoelectric mechanical quantity sensor with improved detection accuracy in a low frequency range.

〔問題を解決するための手段〕[Means for solving problems]

上記の目的を達成するため本発明においては、2枚の圧
電素子の分極方向が力学量印加方向に対して相互に同じ
方向となるように上記2枚の圧電素子をダイアフラムの
両面に固着し、かつ、上記2枚の圧電素子の電気的接続
を並列接続とするように構成している。
In order to achieve the above object, in the present invention, the two piezoelectric elements are fixed to both sides of the diaphragm so that the polarization directions of the two piezoelectric elements are the same with respect to the mechanical quantity application direction. Moreover, the two piezoelectric elements are electrically connected in parallel.

上記のように構成することにより、バイモルフ構造にし
てもなおノイズがキャンセルされない主な要因であると
ころの2枚の圧電素子の電気的特性偏差(焦電電流差、
静電容量差、絶縁抵抗差)のうち、静電容量差及び絶縁
抵抗差の二つの要因を無視することができ、そのため直
列接続に比べでノイズ電圧を1/2以下に低減することが
出来る。
With the above-described configuration, even if the bimorph structure is used, the electrical characteristic deviations (pyroelectric current difference,
Of the difference in capacitance and difference in insulation resistance, the two factors of difference in capacitance and difference in insulation resistance can be neglected. Therefore, the noise voltage can be reduced to 1/2 or less compared to series connection. .

〔発明の実施例〕Example of Invention

以下、この発明を図面に基づいて説明する。 The present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例図であり、(A)は圧電ダ
イアフラム100の断面図、(B)は圧電ダイアフラムの
主要部分の拡大断面図、(C)は2枚の圧電素子の分極
方向を示す図である。なお、その他の部分は前記第8、
9図と同様である。
FIG. 1 is an embodiment of the present invention, (A) is a sectional view of the piezoelectric diaphragm 100, (B) is an enlarged sectional view of a main part of the piezoelectric diaphragm, and (C) is a piezoelectric element of two sheets. It is a figure which shows the polarization direction. The other parts are the eighth and
It is similar to FIG.

第1図において、金属薄板20の両側に固着されている2
枚の圧電素子21,22は、それぞれ表面に薄い電極23,24,2
5,26が形成されている。この電極の材料としては、例え
ばNi-Cu合金が用いられ、スパッタリング、蒸着等の手
法によって形成される。これらの電極は通常0.1〜0.5μ
mの極めて薄い電極である。
In FIG. 1, 2 fixed on both sides of the thin metal plate 20
The piezoelectric elements 21, 22 are thin electrodes 23, 24, 2 on the surface, respectively.
5,26 are formed. As a material for this electrode, for example, a Ni—Cu alloy is used and is formed by a method such as sputtering or vapor deposition. These electrodes are usually 0.1-0.5μ
m is an extremely thin electrode.

また、圧電ダイアフラム100から信号を取り出すための
リード線は、2枚の圧電素子21、22の外側電極23、24間
を電気的に接続する細いリード線27と、2枚の圧電素子
21、22の外側電極に発生した電荷を検出回路に導くため
のリード線29と、2枚の圧電素子21、22の接着側電極2
5、26に発生した電荷を検出回路に導くためのリード線2
8との計3本のリード線から構成される。
Further, the lead wire for extracting a signal from the piezoelectric diaphragm 100 includes a thin lead wire 27 that electrically connects the outer electrodes 23 and 24 of the two piezoelectric elements 21 and 22, and two piezoelectric elements.
Lead wire 29 for guiding the electric charge generated in the outer electrodes of 21, 22 to the detection circuit, and the bonding side electrode 2 of the two piezoelectric elements 21, 22
Lead wire 2 for guiding the charges generated at 5 and 26 to the detection circuit
It is composed of a total of 3 lead wires such as 8.

なお、接着側電極25、26と金属薄板20とは、接着面にお
いて表面の凸部を介して電気的に接続されており、リー
ド線28は金属薄板20に接続されている。また、上記の各
電極及び金属薄板へのリード線の取り付け方法は、例え
ば半田付けが用いられるが、導電性接着剤を用いてもよ
い。第1図(B)の31、32は上記の半田層又は接着剤層
を示す。
The bonding-side electrodes 25 and 26 and the metal thin plate 20 are electrically connected to each other via the convex portion on the surface of the bonding surface, and the lead wire 28 is connected to the metal thin plate 20. Further, as a method of attaching the lead wire to each of the electrodes and the metal thin plate described above, for example, soldering is used, but a conductive adhesive may be used. Reference numeral 31 and 32 in FIG. 1 (B) indicate the solder layer or the adhesive layer.

また、2枚の圧電素子21、22の固定方向は、第1図
(C)に示すごとく、2枚の圧電素子の分極方向が力学
量印加方向に対して相互に同じ方向となるように金属薄
板20の両面に固着する。
Further, as shown in FIG. 1 (C), the fixing directions of the two piezoelectric elements 21 and 22 are made of metal so that the polarization directions of the two piezoelectric elements are the same with respect to the mechanical quantity application direction. It adheres to both sides of the thin plate 20.

次に、第2図は圧電ダイアフラム100と検出回路の電気
的接続法を示した図である。
Next, FIG. 2 is a diagram showing an electrical connection method between the piezoelectric diaphragm 100 and the detection circuit.

図示のごとく、圧電ダイアフラムの2枚の圧電素子21、
22は電気的に並列に接続され、その出力が演算増幅器33
を介して出力端子34から出力される。
As shown in the figure, the two piezoelectric elements 21 of the piezoelectric diaphragm,
22 is electrically connected in parallel, and its output is an operational amplifier 33.
Is output from the output terminal 34 via.

次に作用を説明する。Next, the operation will be described.

第4図及び第5図は、従来例の直列接続と本発明の並列
接続とを比較して説明するための図であり、第4図は従
来例の場合、第5図は本発明の場合を示す。また、両図
において、(A)は圧電素子の分極方向を示す図、
(B)は力学量が印加された場合の電荷発生方向を示す
図、(C)は温度変化による焦電電荷の発生方向を示す
図、(D)は等価回路図である。
FIG. 4 and FIG. 5 are diagrams for comparing and explaining the conventional series connection and the parallel connection of the present invention. FIG. 4 shows the case of the conventional example, and FIG. 5 shows the case of the present invention. Indicates. In both figures, (A) is a diagram showing the polarization direction of the piezoelectric element,
(B) is a diagram showing a charge generation direction when a mechanical quantity is applied, (C) is a diagram showing a pyroelectric charge generation direction due to temperature change, and (D) is an equivalent circuit diagram.

まず、第4図に基づいて、従来例の直列接続を説明す
る。
First, the series connection of the conventional example will be described with reference to FIG.

直列接続においては、信号は2枚の圧電素子の外側電極
からのみ取り出され、表面凹凸を介して電気的に接続さ
れている金属薄板と圧電素子の接着側電極とは絶縁材か
らなる支持部材によって外部から絶縁されている。
In the serial connection, the signal is taken out only from the outer electrodes of the two piezoelectric elements, and the thin metal plate electrically connected through the surface unevenness and the bonding side electrode of the piezoelectric element are supported by a supporting member made of an insulating material. Insulated from the outside.

力学量センサとしての性能は、印加される力学量に応じ
た歪によって発生する電圧(信号電圧S)と環境温度変
化時に生じる焦電電圧(ノイズ電圧N)との比によって
決まり、これれ一般にS/N比と呼び、この比が大きいほ
どセンサとしての性能は良い。
The performance as a mechanical quantity sensor is determined by the ratio of the voltage (signal voltage S) generated by the distortion according to the applied mechanical quantity to the pyroelectric voltage (noise voltage N) generated when the environmental temperature changes, and generally S It is called the / N ratio, and the larger this ratio, the better the performance as a sensor.

第4図(D)に示す直列接続の等価回路において、力学
量が印加された時に発生する電圧をVFとおくと、時間領
域において、 となる。
In the series-connected equivalent circuit shown in FIG. 4D, if the voltage generated when a mechanical quantity is applied is V F , then in the time domain, Becomes

ここで、i1F、i2Fは2枚の圧電素子において印加力学量
に対応して発生する電流である。またC1、C2は圧電素子
の有する静電容量、IR1、IR2は圧電素子の有する絶縁抵
抗である。
Here, i 1F and i 2F are currents generated in the two piezoelectric elements corresponding to the applied mechanical quantities. C 1 and C 2 are electrostatic capacitances of the piezoelectric element, and IR 1 and IR 2 are insulation resistances of the piezoelectric element.

次に環境温度が変化すると、圧電素子固有の問題とし
て、温度変化率に比例して発生するiT=λ・dT/dtな
る焦電電流が生じる。ここでλは焦電係数と呼ばれ、
一定温度変化率に対する発生電流を表わす定数である。
Next, when the environmental temperature changes, as a problem peculiar to the piezoelectric element, a pyroelectric current of i T = λ T · dT / dt that is generated in proportion to the temperature change rate occurs. Where λ T is called the pyroelectric coefficient,
It is a constant representing the generated current with respect to a constant temperature change rate.

直列接続において発生する環境温度変化時に生じるノイ
ズ電圧VTは次式で表わされる。
The noise voltage V T generated when the environmental temperature changes in series connection is expressed by the following equation.

ここで、2枚の圧電素子の電気的特性が完全に等しけれ
ば、i1F=i2F、i1T=i2T、C1=C2、IR1=IR2となるの
で、信号電圧VF、ノイズ電圧VTは次のようになる。
Here, if the electrical characteristics of the two piezoelectric elements are completely equal, i 1F = i 2F , i 1T = i 2T , C 1 = C 2 , IR 1 = IR 2, and therefore the signal voltage V F , The noise voltage V T is as follows.

しかしながら、実際には、圧電素子製造時の特性偏差、
圧電素子を金属薄板へ接着するために生じる応力歪、支
持部材より生じる応力歪等により、圧電素子の電気的特
性は素子間で少しづつ異なり、このためにノイズ電圧が
発生する。更に、ノイズ電圧は上記の式からも明らかな
ように2枚の圧電素子の電気的特性の差に比例するもの
であるから、わずかな圧電素子の電気的特性の差によっ
て大きなノイズ電圧となり、S/N比を悪化させる。
However, in reality, the characteristic deviation at the time of manufacturing the piezoelectric element,
The electrical characteristics of the piezoelectric elements slightly differ from element to element due to the stress strain caused by bonding the piezoelectric element to the thin metal plate, the stress strain caused by the support member, etc., which causes noise voltage. Further, as is clear from the above equation, the noise voltage is proportional to the difference in the electrical characteristics of the two piezoelectric elements, so a slight difference in the electrical characteristics of the piezoelectric elements results in a large noise voltage. Aggravates the / N ratio.

直列接続におけるノイズ電圧発生の要因は、焦電電流の
差(i1T−i2T)、静電容量差(C1−C2)、絶縁抵抗の差
(IR1−IR2)の3つである。
There are three main causes of noise voltage in series connection: pyroelectric current difference (i 1T −i 2T ), capacitance difference (C 1 −C 2 ), insulation resistance difference (IR 1 −IR 2 ). is there.

次に、第5図に基づいて本発明の並列接続を説明する。Next, the parallel connection of the present invention will be described with reference to FIG.

並列接続においては、信号は電気的に接続されている外
側電極と、表面凹凸を介して接着側電極と導通している
金属薄板とから取り出される。
In the parallel connection, the signal is taken out from the electrically connected outer electrode and the thin metal plate which is electrically connected to the bonding side electrode through the surface unevenness.

第5図(D)に示す並列接続の等価回路においても、力
学量Fが印加された時に発生する電圧をVFとおくと、時
間領域において、VFとなる。また、並列接続において発生する環境温度変化
に伴うノイズ電圧VTは次式で表わされる。
Also in the equivalent circuit of the parallel connection shown in FIG. 5 (D), when placing the voltage generated when the physical quantity F is applied as V F, in the time domain, V F is Becomes Further, the noise voltage V T due to the environmental temperature change that occurs in parallel connection is expressed by the following equation.

2枚の圧電素子の電気的特性が等しければ、 となる。 If the two piezoelectric elements have the same electrical characteristics, Becomes

ここで、前述のように圧電素子の電気的特性が素子間で
異なる場合を考察すると、上記のVT(t)の式から判るよ
うに、ノイズ電圧VTに関して影響を与えるパラメータ
は、焦電電流の差(i1−i2)のみであり、本質的に静電
容量差(C1−C2)と絶縁抵抗差(IR1−IR2)には無関係
である。
Here, considering the case where the electrical characteristics of the piezoelectric element differ from element to element as described above, as can be seen from the above equation of V T ( t ) , the parameter affecting the noise voltage V T is the pyroelectric It is only the current difference (i 1 −i 2 ), and is essentially independent of the capacitance difference (C 1 −C 2 ) and the insulation resistance difference (IR 1 −IR 2 ).

次に信号電圧に着目すると、並列接続は直列接続に比べ
て出力電圧が1/2に低減する。
Next, focusing on the signal voltage, the parallel connection reduces the output voltage by half compared to the series connection.

しかしながら、前述のとおり、並列接続にすると、ノイ
ズ電圧に影響を及ぼす圧電素子の3つの電気的特性偏差
(焦電電流i、静電容量C、絶縁抵抗IR)のうち、2つ
の要因を無視することが可能であり、焦電電流の差のみ
が影響することになる。そのためノイズ電圧を1/2以下
に低減することが可能であることから、全体としてS/N
比を向上させることが可能となる。
However, as described above, when connected in parallel, two factors among the three electrical characteristic deviations of the piezoelectric element that affect the noise voltage (pyroelectric current i, capacitance C, insulation resistance IR) are ignored. It is possible, and only the difference in pyroelectric current will be affected. Therefore, it is possible to reduce the noise voltage to less than 1/2, so the overall S / N
It is possible to improve the ratio.

以上述べてきた本発明の効果を、出願人は実験により確
認した。
The applicant confirmed the effects of the present invention described above by experiments.

第6図は実験に使用した検出回路構成を示した図であ
る。
FIG. 6 is a diagram showing the configuration of the detection circuit used in the experiment.

まず、第6図(A)は従来の直列接続の場合であり、リ
ーク抵抗36は5,000MΩの抵抗値を有し、圧電ダイアフラ
ム101の静電容量は20,000pFであるから、CR積は100(se
c)である。
First, FIG. 6 (A) shows the case of the conventional series connection. Since the leak resistance 36 has a resistance value of 5,000 MΩ and the electrostatic capacity of the piezoelectric diaphragm 101 is 20,000 pF, the CR product is 100 ( se
c).

次に、第6図(B)は本発明の並列接続の場合であり、
リーク抵抗37は1,250MΩの抵抗値を有し、圧電ダイアフ
ラム102の静電容量は80,000pFであるから、CR積は第6
図(A)と同じ100(sec)である。
Next, FIG. 6 (B) shows a case of parallel connection of the present invention,
Since the leak resistance 37 has a resistance value of 1,250 MΩ and the electrostatic capacity of the piezoelectric diaphragm 102 is 80,000 pF, the CR product is the sixth.
It is 100 (sec) which is the same as in the figure (A).

第7図は、上記のごとく同じCR積を有する第6の検出回
路において、一定温度勾配の温度変化を付与した際に発
生する環境温度変化に伴うノイズ電圧を、各々複数の試
料について試験測定した結果のうち、代表的なデータを
示すものである。
FIG. 7 shows that, in the sixth detection circuit having the same CR product as described above, the noise voltage due to the environmental temperature change generated when a temperature change of a constant temperature gradient is applied was measured by testing for each of a plurality of samples. Among the results, representative data are shown.

第7図において、(A),(B),(C)は並列接続に
おける3個の試料の試験結果、(D),(E),(F)
は直列接続における3個の試料の試験結果、(G)及び
(H)は圧電素子に加えた温度変化の特性である。
In FIG. 7, (A), (B), and (C) are test results of three samples in parallel connection, (D), (E), and (F).
Are test results of three samples in series connection, and (G) and (H) are characteristics of temperature change applied to the piezoelectric element.

第7図から明らかなように、本発明の並列接続によれ
ば、ノイズ電圧が従来の直列接続に比べて遥かに小さく
なり、信号電圧が1/2になることを考慮しても、全体のS
/N比は従来より大幅に向上することが実験により確認さ
れた。
As is clear from FIG. 7, according to the parallel connection of the present invention, the noise voltage is much smaller than that of the conventional series connection, and even considering that the signal voltage becomes 1/2, S
It was confirmed by experiments that the / N ratio was significantly improved compared to the conventional one.

次に、通常、力学量センサとして圧電ダイアフラムを使
用し、低周波領域までの力学量を計測する場合におい
て、絶縁抵抗の高い圧電素子を使用するために極めて大
きなものとなるノイズ電圧を低減するために、第3図に
示すように検出回路(演算増幅器33)の入力端子−GND
間にリーク抵抗35を接続する方法が用いられる。
Next, when using a piezoelectric diaphragm as a mechanical quantity sensor and measuring a mechanical quantity up to a low frequency region, a piezoelectric element with high insulation resistance is used to reduce noise voltage, which is extremely large. As shown in FIG. 3, the input terminal of the detection circuit (operational amplifier 33) -GND
A method of connecting a leak resistor 35 between them is used.

このリーク抵抗により、力学量センサが1次ハイパス・
フィルタを形成し、力学量センサの最低計測可能周波数
は、圧電素子の絶縁抵抗とリーク抵抗とを並列接続した
時の抵抗値と圧電素子の静電容量との積(CR積)によっ
て決定される。
This leak resistance allows the mechanical quantity sensor to
The minimum measurable frequency of the mechanical sensor that forms a filter is determined by the product (CR product) of the resistance value and the capacitance of the piezoelectric element when the insulation resistance and the leak resistance of the piezoelectric element are connected in parallel. .

例えば、3dB減衰する周波数(カットオフ周波数fc)
は、fc=1/2πCR(Hz)で表わされる。つまりCR積を大
きくすれば、低周波領域まで減衰せずに力学量が計測可
能となるが、Rを大きくすることは、前記のように で決定されるノイズ電圧を増大させることになる。さら
に、実用的な圧電素子を0.01(Hz)程度の超低周波領域
までの力学量計測を可能とするには、一般に、必要とさ
れるリーク抵抗値は1000(MΩ)〜10,000(MΩ)とな
るが、このような超高抵抗は、安定性、信頼性の面で車
両の環境において使用するには不安が残る。
For example, the frequency that attenuates by 3 dB (cutoff frequency fc)
Is expressed by fc = 1 / 2πCR (Hz). That is, if the CR product is increased, the mechanical quantity can be measured without being attenuated to the low frequency region. However, increasing R is as described above. Will increase the noise voltage determined by. Further, in order to enable the mechanical quantity measurement of a practical piezoelectric element up to an ultra low frequency range of about 0.01 (Hz), generally, the required leak resistance value is 1000 (MΩ) to 10,000 (MΩ). However, such ultra-high resistance remains uncertain in terms of stability and reliability when used in a vehicle environment.

従って、リーク抵抗値はなるべく低くし、しかも低周波
領域まで計測可能とするには静電容量を増大するのが望
ましい。その点、本発明における並列接続は、構成部品
を増加させることなしに、静電容量を前述のように2倍
とすることが可能となり、したがって、同一CR積を確保
するのに必要なリーク抵抗値は半分で済むので、上記の
ごとき高抵抗使用時における問題を低減することが可能
となる。
Therefore, it is desirable to reduce the leak resistance value as much as possible and increase the electrostatic capacitance in order to be able to measure the low frequency region. In that respect, the parallel connection in the present invention makes it possible to double the capacitance as described above without increasing the number of components, and therefore, the leakage resistance required to secure the same CR product. Since the value can be halved, it is possible to reduce the problems when the high resistance is used as described above.

さらに、圧電素子単体に発生する電圧に着目して、本発
明における他の効果を説明する。
Further, other effects of the present invention will be described by focusing on the voltage generated in the single piezoelectric element.

焼成後の圧電素子に圧電性を付与するめには、圧電素子
に高電界を印加し、素子内の結晶配向を電界方向にそろ
える分極(ポーリング)処理を行う、つまり一定の応力
(圧電性)または温度変化(焦電性)に対して生じる電
荷は、この分極条件によって決定される。ここで、直列
接続における圧電素子単体には、急激な温度変化時に
は、数十〜数百ボルトの高い電圧が発生する。これに対
して並列接続においては、焦電電流が互いにキャンセル
されるため、圧電素子には数ボルト程度の電圧しか発生
しない。そして大きな電圧が圧電素子に印加されると、
この電圧によって生じる電界により、製造時に管理され
た結晶配向が変化し、印加力学量に対する感度の変化が
生じるという問題が生じる。
In order to impart piezoelectricity to the piezoelectric element after firing, a high electric field is applied to the piezoelectric element to perform polarization (poling) treatment that aligns the crystal orientation in the element in the direction of the electric field, that is, a certain stress (piezoelectricity) or The electric charge generated due to temperature change (pyroelectricity) is determined by this polarization condition. Here, a high voltage of several tens to several hundreds of volts is generated in a single piezoelectric element connected in series when the temperature changes rapidly. On the other hand, in the parallel connection, the pyroelectric currents cancel each other, so that only a voltage of about several volts is generated in the piezoelectric element. When a large voltage is applied to the piezoelectric element,
The electric field generated by this voltage causes a problem that the crystal orientation controlled at the time of manufacture is changed and the sensitivity is changed with respect to the applied mechanical quantity.

以上の理由から圧電素子に印加される電圧は、なるべく
低い方がよく、この点でも本発明における並列接続の効
果は大きい。
For the above reasons, the voltage applied to the piezoelectric element is preferably as low as possible, and in this respect also, the effect of parallel connection in the present invention is great.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、この発明によれば、2枚の薄
い圧電素子の分極方向が力学量印加方向に対して相互に
同一の方向になるようにダイアフラムの両面に固着し、
かつ、電気的接続を並列接続とするように構成したこと
により、バイモルフ構造にしてもなおノイズがキャンセ
ルされない主な要因であるところの2枚の圧電素子の電
気的特性偏差(焦電電流差、静電容量差、絶縁抵抗差)
のうち、静電容量差及び絶縁抵抗差の二つの要因を無視
することができ、そのため直列接続に比べてノイズ電圧
を1/2以下に低減することが出来、その結果、全体のS/N
比を向上することが出来、低周波域まで良好な検出感度
を維持できるという効果が得られる。
As described above, according to the present invention, the two thin piezoelectric elements are fixed to both sides of the diaphragm so that the polarization directions thereof are the same with respect to the mechanical quantity application direction,
Moreover, since the electrical connection is configured to be connected in parallel, even if the bimorph structure is used, the electrical characteristic deviation (pyroelectric current difference, Capacitance difference, insulation resistance difference)
Of these, the two factors of capacitance difference and insulation resistance difference can be neglected, and as a result, the noise voltage can be reduced to 1/2 or less compared to series connection, and as a result, the overall S / N ratio can be reduced.
The ratio can be improved, and the effect that good detection sensitivity can be maintained even in the low frequency range can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例図、第2図及び第3図は本発
明の接続を示す図、第4図は従来の直列接続の作用説明
図、第5図は本発明の並列接続の作用説明図、第6図は
性能試験に用いた装置の回路図、第7図は性能試験結果
を示す特性図、第8図は従来装置の一例の断面図、第9
図は従来の圧電ダイアフラムの一例の平面図及び断面図
である。 〈符号の説明〉 20……金属薄板(ダイアフラム) 21,22……圧電素子、23,24……外側電極 25,26……接着側電極、27,28,29……リード線 30……支持部材、100……圧電ダイアフラム
FIG. 1 is an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the connection of the present invention, FIG. 4 is an explanatory view of the operation of a conventional series connection, and FIG. 5 is a parallel connection of the present invention. 6 is a circuit diagram of the device used for the performance test, FIG. 7 is a characteristic diagram showing the results of the performance test, FIG. 8 is a sectional view of an example of a conventional device, and FIG.
The drawings are a plan view and a sectional view of an example of a conventional piezoelectric diaphragm. <Explanation of symbols> 20 …… Metal thin plate (diaphragm) 21,22 …… Piezoelectric element, 23,24 …… Outer electrode 25,26 …… Adhesive side electrode, 27,28,29 …… Lead wire 30 …… Support Material, 100 ... Piezoelectric diaphragm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性を有する薄板の少なくとも周辺部を
除いた部分の両面のそれぞれに、電極を備えた薄板状の
圧電素子を固着してなる圧電ダイアフラムを用いた圧電
型力学量センサにおいて、上記2枚の圧電素子の分極方
向が力学量印加方向に対して相互に同じ方向となるよう
に上記2枚の圧電素子を上記薄板に固着し、かつ、上記
2枚の圧電素子の電気的接続を並列接続としたことを特
徴とする圧電型力学量センサ。
1. A piezoelectric mechanical quantity sensor using a piezoelectric diaphragm in which a thin plate-shaped piezoelectric element provided with an electrode is fixed to each of both surfaces of a part excluding at least a peripheral portion of a conductive thin plate, The two piezoelectric elements are fixed to the thin plate so that the polarization directions of the two piezoelectric elements are the same with respect to the mechanical quantity application direction, and the two piezoelectric elements are electrically connected. A piezoelectric-type mechanical quantity sensor characterized by connecting in parallel.
JP12240087A 1987-05-21 1987-05-21 Piezoelectric mechanical sensor Expired - Lifetime JPH0715485B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12240087A JPH0715485B2 (en) 1987-05-21 1987-05-21 Piezoelectric mechanical sensor
DE19883817354 DE3817354A1 (en) 1987-05-21 1988-05-20 Sensor for the detection of kinetic energy, especially piezoelectric sensor for the detection of dynamic or kinetic energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12240087A JPH0715485B2 (en) 1987-05-21 1987-05-21 Piezoelectric mechanical sensor

Publications (2)

Publication Number Publication Date
JPS63289460A JPS63289460A (en) 1988-11-25
JPH0715485B2 true JPH0715485B2 (en) 1995-02-22

Family

ID=14834854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12240087A Expired - Lifetime JPH0715485B2 (en) 1987-05-21 1987-05-21 Piezoelectric mechanical sensor

Country Status (2)

Country Link
JP (1) JPH0715485B2 (en)
DE (1) DE3817354A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130600A (en) * 1989-06-02 1992-07-14 Mitsubishi Petrochemical Co., Ltd. Acceleration sensor
JP2700929B2 (en) * 1989-08-28 1998-01-21 株式会社ゼクセル Acceleration sensor
DE4011910A1 (en) * 1990-04-12 1991-10-17 Busch Dieter & Co Prueftech DEVICE AND METHOD FOR ACCELERATING MEASUREMENT BY PIEZO-ELECTRIC TRANSFORMER
KR930009516B1 (en) * 1990-04-27 1993-10-06 미쓰비시덴키 가부시키가이샤 Vibration detector
JPH049721A (en) * 1990-04-27 1992-01-14 Mitsubishi Electric Corp Vibration detector
DE4135369A1 (en) * 1991-10-26 1993-05-13 Bosch Gmbh Robert Bipolar piezoelectric accelerometer with built-in test facility - has upper and lower electrodes in halves for application of test voltage and measurement of deformation
JP3151927B2 (en) * 1992-04-10 2001-04-03 株式会社村田製作所 Acceleration sensor
DE69403252T2 (en) * 1993-03-19 1997-09-25 Murata Manufacturing Co Accelerometer
GB2301479B (en) * 1994-03-15 1998-02-25 Shaw Ind Ltd Hydrophone bender crystal assembly
US6050144A (en) * 1997-06-04 2000-04-18 Matsushita Electric Industrial Co., Ltd. Acceleration sensor
DE112005000270D2 (en) 2004-03-26 2006-10-12 Conti Temic Microelectronic Vehicle sensor for the detection of structure-borne noise
DE102004015474A1 (en) * 2004-03-26 2004-12-23 Conti Temic Microelectronic Gmbh Vehicle passenger safety system sensor, has piezo sensor fixed to housing through visco elastic fixing layer filtering body noise and acceleration spectra
JP4756309B2 (en) * 2004-08-20 2011-08-24 独立行政法人産業技術総合研究所 High sensitivity piezoelectric element
KR20130077393A (en) * 2011-12-29 2013-07-09 삼성전기주식회사 Inertial sensor and method of manufacturing the same
CN104596675B (en) 2013-10-31 2019-05-14 精工爱普生株式会社 Sensor element, force checking device, robot, electronic component handling apparatus
CN104061122B (en) * 2014-06-30 2017-01-04 北京天源科创风电技术有限责任公司 A kind of belt tension automatic monitoring system and monitoring method and wind turbine pitch-controlled system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2605809C2 (en) * 1976-02-12 1986-11-13 Minnesota Mining And Manufacturing Co., Saint Paul, Minn. Sensor device for detecting a change in temperature or a change in bending stress
DK139085B (en) * 1977-04-19 1978-12-11 Brueel & Kjaer As Accelerometer.

Also Published As

Publication number Publication date
DE3817354A1 (en) 1988-12-01
JPS63289460A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
JPH0715485B2 (en) Piezoelectric mechanical sensor
US6615465B2 (en) Method for producing an acceleration sensor
US7082834B2 (en) Flexible thin film pressure sensor
US11898918B2 (en) Temperature coefficient of offset compensation for force sensor and strain gauge
JPS61501233A (en) Ultra-compact sensitive switch
WO2005012922A1 (en) Accelerator sensor
GB2251693A (en) Miniature silicon accelerometer and method
US9291512B2 (en) Sensor for measuring pressure and/or force
JPS6071927A (en) Pressure transducer and manufacture thereof
US3948089A (en) Strain gauge apparatus
JPH05215766A (en) Inspectable acceleration sensor
JP6184006B2 (en) Pressure sensor
JPS6073425A (en) Force measuring instrument
US7178403B2 (en) Transducer responsive to pressure, vibration/acceleration and temperature and methods of fabricating the same
JP3339425B2 (en) Acceleration sensor and acceleration detection device
JPH0862242A (en) Acceleration sensor
JP3019549B2 (en) Semiconductor acceleration sensor
JPH10123166A (en) Semiconductor acceleration sensor
KR101794764B1 (en) Mems pressure sensor and manufacturing method thereof
JPH0534182A (en) Strain/temperature composite sensor
JPS59217374A (en) Semiconductor strain converter
JPH0786619A (en) Strain gauge and manufacture thereof
JPH02236431A (en) Piezoelectric pressure sensor
JPH0921715A (en) Temperature compensation circuit for sensor
JP3301397B2 (en) Acceleration sensor