JPH07208922A - Fine displacement measuring instrument - Google Patents

Fine displacement measuring instrument

Info

Publication number
JPH07208922A
JPH07208922A JP6023096A JP2309694A JPH07208922A JP H07208922 A JPH07208922 A JP H07208922A JP 6023096 A JP6023096 A JP 6023096A JP 2309694 A JP2309694 A JP 2309694A JP H07208922 A JPH07208922 A JP H07208922A
Authority
JP
Japan
Prior art keywords
light
light source
intensity
signal
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6023096A
Other languages
Japanese (ja)
Inventor
Atsushi Shimamoto
篤 嶋本
Koichi Tanaka
紘一 田中
Norio Yasuda
憲生 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elionix Kk
Original Assignee
Elionix Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elionix Kk filed Critical Elionix Kk
Priority to JP6023096A priority Critical patent/JPH07208922A/en
Publication of JPH07208922A publication Critical patent/JPH07208922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To reduce the drift of a light source and an electronic circuit and to obtain a position measurement accuracy with a high resolution by feeding AC modulation power to a light source and changing 11 lighting intensity at a specific period and then converting the received reflection light into an electrical signal and then performing AC amplification. CONSTITUTION:An AC power from an AC modulation circuit 30 is fed to a light source using a high-brightness LED 31 and then lighting intensity is changed at a specific period, the light is applied to a fiber 1a for irradiation, light reflected by a surface to be measured is received by a photo diode 32 via a fiber lb for receiving light, and then the light is converted to a current (displacement) signal. On the other hand, the lighting intensity change in the LED 31 is received also by a photo diode 33 and is converted into current (reference) signal and is converted go voltage signals 34 and 35 along with the displacement signal. Then, the DC component is cut 36 and 37 and an offset signal is applied 38 and then is subjected to phase-sensitive detection 39 and, 40, then, the output ratio of both is output from a division circuit 41. The drift of the light source is reduced by an LED 31 and by dividing 41 the return intensity by a light source intensity and the drift of an electronic circuit is reduced by performing AC amplification of the light intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被測定面に照射した
光の反射光量が被測定面の変位(位置移動)によって変
化する現象を利用する反射光電方式の微小変位測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection photoelectric type micro-displacement measuring device which utilizes a phenomenon in which the amount of light reflected on a surface to be measured changes due to displacement (positional movement) of the surface to be measured.

【0002】[0002]

【従来の技術】図2,図3は、この種の装置の測定原理
を説明するための図であり、図において、1は光ファイ
バで、照射用ファイバ1aと受光用ファイバ1bとが束
ねられてたものである。2は光源、3は光センサ、4は
被測定面である。図3(A)において、照射用ファイバ
1aから所定の拡がりをもって被測定面4に光が照射さ
れると、この被測定面4から反射される反射光も所定の
拡がりをもって反射され、反射光のうち実質的に受光用
ファイバ1bに入光する反射光量は、受光用ファイバ1
b端面と反射光線束断面とが重なる点線で示す斜線部分
の受光可能範囲と反射光照度との積になる。
2. Description of the Related Art FIGS. 2 and 3 are views for explaining the measuring principle of an apparatus of this type. In the figures, reference numeral 1 is an optical fiber in which an irradiating fiber 1a and a receiving fiber 1b are bundled. It was Reference numeral 2 is a light source, 3 is an optical sensor, and 4 is a surface to be measured. In FIG. 3A, when the surface to be measured 4 is irradiated with a predetermined spread from the irradiation fiber 1a, the reflected light reflected from the surface to be measured 4 is also reflected with a predetermined spread, and the reflected light is reflected. Of these, the amount of reflected light that is substantially incident on the light receiving fiber 1b is
It is the product of the illuminance of reflected light and the receivable range of the shaded area shown by the dotted line where the end face b and the cross section of the reflected ray bundle overlap.

【0003】そして、ファイバ端面1cと被測定面4と
の間の距離Δdと受光用ファイバ1bに入光する反射光
量とは、一般的に図3(B)に示すような曲線になるた
め、変位に対する光量の変化率が高いmの領域を用いれ
ば微小変位を高感度で検出でき、数十nm程度の分解能
をもって変位を検出できることが知られている。(R.O.C
ooK and C.W.Hamm: Fiber Optic Lever Displacement T
ransducer, Appl.Opt., 18, 19,(1979)3230.)。但し、
図2に示すような装置構成では、光センサ3で受光でき
る光量が少なく、かつ変位に無関係な直流成分によって
信号の増幅率が制限されてしまうため、検出感度が悪
い。従ってこのような欠点を除去すべく提唱された装置
として、図4に示す装置がある。
The distance Δd between the fiber end surface 1c and the surface 4 to be measured and the amount of reflected light entering the light receiving fiber 1b generally have a curve as shown in FIG. It is known that a minute displacement can be detected with high sensitivity by using the region of m in which the change rate of the light amount with respect to the displacement is high, and the displacement can be detected with a resolution of about several tens nm. (ROC
ooK and CWHamm: Fiber Optic Lever Displacement T
ransducer, Appl.Opt., 18, 19, (1979) 3230.). However,
In the device configuration as shown in FIG. 2, the amount of light that can be received by the optical sensor 3 is small, and the amplification factor of the signal is limited by the DC component unrelated to the displacement, so the detection sensitivity is poor. Therefore, as a device proposed to eliminate such a defect, there is a device shown in FIG.

【0004】図4は、精密工学会誌(NO.53(19
87年6月)の49頁〜53頁、井川直哉ほか)に掲載
された装置を説明するための図であり、図において、1
0はタングステンランプを用いた光源であり、電源安定
化のためにバッテリ電源11が用いられている。12は
集光レンズ、13は光ファイバを束ねてなる光ファイバ
束、14は参照光学系であり、固定された参照面15と
参照用フォトダイオード16とからなる。17は測定光
学系であり、被測定面18と測定用フォトダイオード1
9とからなる。なお、図に示すように参照光学系14と
測定光学系17とは同じ特性の光学系が用いられる。2
0は差動増幅器である。
FIG. 4 shows the journal of Precision Engineering Society (NO. 53 (19
June 1987) pp. 49-53, Igawa Naoya et al.) For explaining the apparatus, and in the figure,
Reference numeral 0 is a light source using a tungsten lamp, and a battery power source 11 is used for stabilizing the power source. Reference numeral 12 is a condenser lens, 13 is an optical fiber bundle formed by bundling optical fibers, and 14 is a reference optical system, which includes a fixed reference surface 15 and a reference photodiode 16. Reference numeral 17 denotes a measurement optical system, which is a surface to be measured 18 and a photodiode 1 for measurement.
9 and 9. As shown in the figure, the reference optical system 14 and the measurement optical system 17 are optical systems having the same characteristics. Two
0 is a differential amplifier.

【0005】次に図4に示す装置の動作について説明す
る。この装置では先ず測定光量が十分に得られるよう
に、光学系に光ファイバ束13を用いる。この光ファイ
バ束13は、例えば直径25μmの光ファイバを、照射
用と受光用とに、それぞれ1200本づつランダムに束
ねた(直径約2mm)測定用と参照用の2本の光ファイ
バ束をさらに1本化している。また、商用電源を用いる
と周波数の脈動によりSN比が低下するので、電源安定
化のためにバッテリ電源11を用いている。図4に示す
ように、同一光源より照射用光ファイバ束を介して被測
定面18と固定された参照面15とに光を照射し、それ
ぞれの面からの反射光を受光用ファイバ束を介して同一
特性のフォトダイオード16および19に導き、ここで
それぞれ受光強度に応じた電気信号に変換する。そして
作動増幅器20を用いてフォトダイオード19の出力か
らフォトダイオード16の出力を差し引いて微小変位Δ
dの信号成分だけを増幅して出力することで、高感度な
変位出力を得ることとしている。
Next, the operation of the apparatus shown in FIG. 4 will be described. In this apparatus, first, the optical fiber bundle 13 is used in the optical system so that a sufficient amount of measurement light can be obtained. The optical fiber bundle 13 includes, for example, two optical fiber bundles, one for measurement and one for reference, in which 1200 optical fibers each having a diameter of 25 μm are randomly bundled for irradiation and reception (about 2 mm in diameter). It has become one. Further, when a commercial power source is used, the SN ratio is lowered due to frequency pulsation, so the battery power source 11 is used for power source stabilization. As shown in FIG. 4, light is emitted from the same light source to the measured surface 18 and the fixed reference surface 15 through the irradiation optical fiber bundle, and the reflected light from each surface is transmitted through the light receiving fiber bundle. Are led to the photodiodes 16 and 19 having the same characteristics, where they are converted into electric signals corresponding to the received light intensity. Then, using the operational amplifier 20, the output of the photodiode 16 is subtracted from the output of the photodiode 19 to obtain a small displacement Δ.
Highly sensitive displacement output is obtained by amplifying and outputting only the signal component of d.

【0006】[0006]

【発明が解決しようとする課題】従来の微小変位測定装
置は以上のように構成され、図4に示す装置は比較的高
感度で変位出力が得られるものの、参照光学系と測定光
学系の2つの光学系が必要になり、構造が複雑で他の機
器への組込みが容易でないという問題があり、また、光
源にタングステンランプを使用しているため、常時光源
を冷却しておく必要があり、また、タングステンランプ
の寿命は一般に千時間程度で保守上の問題が生じ、さら
に温度変化による光量の変化が大きいという問題があ
る。また、直流増幅を行っているため増幅時のドリフト
で分解能が劣化してしまう等の問題点があった。
The conventional micro-displacement measuring device is constructed as described above, and although the device shown in FIG. 4 can obtain a displacement output with relatively high sensitivity, it has a reference optical system and a measuring optical system. One optical system is required, there is a problem that the structure is complicated and it is not easy to incorporate it in other equipment.Because a tungsten lamp is used for the light source, it is necessary to constantly cool the light source, In addition, the life of a tungsten lamp is generally about 1,000 hours, which causes a problem in maintenance, and there is a problem that a change in light amount due to a temperature change is large. Further, since the DC amplification is performed, there is a problem that the resolution is deteriorated due to a drift at the time of amplification.

【0007】この発明はかかる問題点を解消するために
なされたものであり、光源および電子回路のドリフトを
低減させて高分解能な測位精度が得られる微小変位測定
装置を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a micro-displacement measuring device capable of reducing the drift of a light source and an electronic circuit and obtaining high-resolution positioning accuracy. .

【0008】[0008]

【課題を解決するための手段】この発明に係わる微小変
位測定装置は、光源のドリフトは反射光強度を光源強度
で除算することで低減させ、電子回路のドリフトは光強
度を交流増幅することで低減する回路構成とした。
In the micro-displacement measuring device according to the present invention, the drift of the light source is reduced by dividing the reflected light intensity by the light source intensity, and the drift of the electronic circuit is amplified by AC amplification. The circuit configuration is reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、本発明の一実施例を示す回路図であり、図
において、1aは照射用ファイバ束、1bは受光用ファ
イバ束、30は交流変調回路、31は発光ダイオード、
32,33はフォトダイオード、34,35は電流−電
圧変換回路、36,37はHPF(ハイパスフィル
タ)、38はオフセット信号、39,40はロックイン
アンプ、41は除算回路、42は出力端である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which 1a is a fiber bundle for irradiation, 1b is a fiber bundle for receiving light, 30 is an AC modulation circuit, 31 is a light emitting diode,
32 and 33 are photodiodes, 34 and 35 are current-voltage conversion circuits, 36 and 37 are HPFs (high-pass filters), 38 is an offset signal, 39 and 40 are lock-in amplifiers, 41 is a divider circuit, and 42 is an output terminal. is there.

【0010】次に本実施例の動作について説明する。本
実施例では、光源のドリフトは発光ダイオード31を用
いると共に戻り光強度を光源光度で除算することで低減
させ、電子回路のドリフトは光強度を交流増幅すること
で低減させる回路を構成する。すなわち光源には高輝度
発光ダイオード31(例えばGL5UR3K1)を用
い、この発光ダイオード31に交流変調回路からの交流
電力を給電し、所定周期で光度変化させ、これを照射用
ファイバ束1aに入光させる。なお、発光ダイオード3
1は、ファイバ束に入射する光量を大きくするため、先
端に設けられた集光レンズ部を除去した、集光レンズを
持たない発光ダイオードが適している。照射用ファイバ
束1aから出射用ファイバ束1bまでは、図2と同様の
構成となっており(但し、照射用,受光用共にファイバ
束が用いられる)、入射光は被測定面4で反射して受光
用ファイバ束1bから出射し、この反射光がフォトダイ
オード32で受光され、電流信号(変位信号)に変換さ
れる。
Next, the operation of this embodiment will be described. In this embodiment, the light source drift is reduced by using the light emitting diode 31 and the return light intensity is divided by the light intensity of the light source, and the drift of the electronic circuit is reduced by AC amplification of the light intensity. That is, a high-intensity light emitting diode 31 (for example, GL5UR3K1) is used as a light source, AC power from an AC modulation circuit is supplied to the light emitting diode 31, the luminous intensity is changed at a predetermined cycle, and the light is incident on the irradiation fiber bundle 1a. . The light emitting diode 3
1 is a light emitting diode which does not have a condenser lens, in which the condenser lens portion provided at the tip is removed in order to increase the amount of light incident on the fiber bundle. The irradiation fiber bundle 1a to the emission fiber bundle 1b have the same configuration as in FIG. 2 (however, both the irradiation and reception light fiber bundles are used), and the incident light is reflected by the measured surface 4. Then, the reflected light is emitted from the light receiving fiber bundle 1b, and the reflected light is received by the photodiode 32 and converted into a current signal (displacement signal).

【0011】一方、発光ダイオード31の光度変化は、
フォトダイオード33でも受光され、電流信号(参照信
号)に変換され、それぞれの出力信号は電流−電圧変換
回路34,35でそれぞれ電圧信号に増幅変換され、そ
れぞれHPF36,37を介して直流成分がカットさ
れ、さらに変位信号と参照信号との差をとることによっ
て適当なオフセットをかけ、出力電圧が零におけるファ
イバ端面1cと被測定面4との間隔Δdが、測定可能領
域にくるように調整する。その後変位信号と参照信号と
を、それぞれ別々のロックインアンプ39,40で位相
敏感検波し、直流信号とした後、除算回路41で両者の
出力の比を出力する。なお、出願人らの実験結果によれ
ば、最大の測定範囲約40μm,最大感度70nm/V
の装置が得られた。
On the other hand, the change in luminous intensity of the light emitting diode 31 is
The photodiode 33 also receives the light, converts it into a current signal (reference signal), and amplifies and converts each output signal into a voltage signal in the current-voltage conversion circuits 34 and 35, respectively, and cuts the DC component through the HPFs 36 and 37, respectively. Then, an appropriate offset is applied by taking the difference between the displacement signal and the reference signal, and the distance Δd between the fiber end face 1c and the measured face 4 when the output voltage is zero is adjusted so as to be in the measurable region. After that, the displacement signal and the reference signal are phase-sensitively detected by separate lock-in amplifiers 39 and 40 to form a DC signal, and then a dividing circuit 41 outputs the ratio of both outputs. According to the experimental results of the applicants, the maximum measurement range is about 40 μm and the maximum sensitivity is 70 nm / V.
Was obtained.

【0012】上記実施例では、変位信号と参照信号との
位相敏感検波を行う手段として、ロックインアンプを用
いた構成としているが、振幅変調波復調回路と類似な復
調回路を用いても良い。また、除算回路41による演算
は、位相敏感検波する前に行っても良く、さらに除算回
路としてはAD変換回路を介して数値的に行う回路であ
っても良い。
In the above embodiment, the lock-in amplifier is used as the means for performing the phase sensitive detection of the displacement signal and the reference signal, but a demodulation circuit similar to the amplitude modulation wave demodulation circuit may be used. Further, the calculation by the division circuit 41 may be performed before the phase sensitive detection, and the division circuit may be a circuit that is numerically performed through an AD conversion circuit.

【0013】[0013]

【発明の効果】以上説明したように本発明の微小変位測
定装置は、光源のドリフトは反射光強度を光源強度で除
算することで低減させ、電子回路のドリフトは交流増幅
することで低減させる回路構成により、ドリフトが極め
て小さい高感度で、簡易小型の装置が得られる。また、
光源に発光ダイオードを使用しているので、従来の装置
に使用されるタングステンランプ等と比較して発熱量が
極めて少なく、従って光源の冷却が不要で半永久的に使
用できる等の効果がある。
As described above, in the minute displacement measuring apparatus of the present invention, the drift of the light source is reduced by dividing the reflected light intensity by the light source intensity, and the drift of the electronic circuit is reduced by AC amplification. With the configuration, it is possible to obtain a high-sensitivity, simple and compact device with extremely small drift. Also,
Since the light emitting diode is used for the light source, the amount of heat generated is extremely smaller than that of a tungsten lamp or the like used in the conventional apparatus, and therefore, there is an effect that the light source does not need to be cooled and can be used semipermanently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】この種の装置の測定原理を説明するための図で
ある。
FIG. 2 is a diagram for explaining the measurement principle of this type of device.

【図3】この種の装置の測定原理を説明するための図で
ある。
FIG. 3 is a diagram for explaining the measurement principle of this type of device.

【図4】従来のこの種の装置の一例を説明するための図
である。
FIG. 4 is a diagram for explaining an example of a conventional device of this type.

【符号の説明】[Explanation of symbols]

1a 照射用ファイバ 1b 受光用ファイバ 30 交流変調回路 31 発光ダイオード 32,33 フォトダイオード 34,35 電流−電圧変換回路 36,37 HPF(ハイパスフィルタ) 39,40 ロックインアンプ 41 除算回路 1a Irradiation fiber 1b Receiving fiber 30 AC modulation circuit 31 Light emitting diode 32,33 Photodiode 34,35 Current-voltage conversion circuit 36,37 HPF (high-pass filter) 39,40 Lock-in amplifier 41 Division circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 憲生 新潟県長岡市上富岡町1603−1 長岡技術 科学大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Yasuda 1603-1 Kamitomioka Town, Nagaoka City, Niigata Prefecture Nagaoka University of Technology

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 照射用光ファイバ(又はファイバ束)端
面から被測定面に光を照射し、この照射用光ファイバ端
面と同一位置に設けた受光用光ファイバ(又はファイバ
束)端面で反射光を受光し、受光した反射光強度を電気
信号で検出して上記光ファイバ端面に対する上記被測定
面の微小変位を測定する微小変位測定装置において、 照射用光源に交流変調電力を給電して所定周期で光度変
化させ、受光した反射光を電気信号に変換して交流増幅
することで増幅時のドリフトを低減させる手段、 を備えたことを特徴とする微小変位測定装置。
1. Light emitted from an end face of an irradiation optical fiber (or fiber bundle) to a surface to be measured, and reflected light at an end face of a light receiving optical fiber (or fiber bundle) provided at the same position as the end face of the irradiation optical fiber. In a small displacement measuring device that receives the received light and detects the received reflected light intensity with an electric signal to measure the small displacement of the surface to be measured with respect to the end face of the optical fiber. A micro displacement measuring device comprising: a unit for changing a light intensity by converting the received light into an electric signal and performing AC amplification to reduce a drift at the time of amplification.
【請求項2】 受光した反射光強度を照射用光源強度で
除算して光源の光量変化の影響を低減させる手段を備え
たことを特徴とする請求項第1項記載の微小変位測定装
置。
2. The micro displacement measuring device according to claim 1, further comprising means for dividing the intensity of the received reflected light by the intensity of the light source for irradiation to reduce the influence of the change in the light amount of the light source.
【請求項3】 照射用光源に集光レンズを持たない発光
ダイオードを用いたことを特徴とする請求項第1項また
は第2項記載の微小変位測定装置。
3. The micro displacement measuring device according to claim 1, wherein a light emitting diode having no condenser lens is used as the irradiation light source.
JP6023096A 1994-01-25 1994-01-25 Fine displacement measuring instrument Pending JPH07208922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023096A JPH07208922A (en) 1994-01-25 1994-01-25 Fine displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023096A JPH07208922A (en) 1994-01-25 1994-01-25 Fine displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPH07208922A true JPH07208922A (en) 1995-08-11

Family

ID=12100921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023096A Pending JPH07208922A (en) 1994-01-25 1994-01-25 Fine displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPH07208922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738893A2 (en) * 1995-04-19 1996-10-23 THE GENERAL ELECTRIC COMPANY, p.l.c. Synchronous detector circuit arrangement
KR20000034353A (en) * 1998-11-30 2000-06-15 윤종용 Device for detecting minute displacement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108702A (en) * 1980-12-26 1982-07-06 Meidensha Electric Mfg Co Ltd Displacement meter
JPS62159004A (en) * 1986-01-08 1987-07-15 Isuzu Motors Ltd Displacement measuring instrument by optical fiber
JPS63243709A (en) * 1987-03-31 1988-10-11 Mitsubishi Electric Corp Measuring apparatus for distance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108702A (en) * 1980-12-26 1982-07-06 Meidensha Electric Mfg Co Ltd Displacement meter
JPS62159004A (en) * 1986-01-08 1987-07-15 Isuzu Motors Ltd Displacement measuring instrument by optical fiber
JPS63243709A (en) * 1987-03-31 1988-10-11 Mitsubishi Electric Corp Measuring apparatus for distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738893A2 (en) * 1995-04-19 1996-10-23 THE GENERAL ELECTRIC COMPANY, p.l.c. Synchronous detector circuit arrangement
EP0738893A3 (en) * 1995-04-19 1997-05-14 Gen Electric Co Plc Synchronous detector circuit arrangement
KR20000034353A (en) * 1998-11-30 2000-06-15 윤종용 Device for detecting minute displacement

Similar Documents

Publication Publication Date Title
JP7256625B2 (en) Apparatus and method for extending the dynamic range of a particle sensor
JPH0658258B2 (en) String vibration detector
JPS58137710A (en) Optical-fiber measuring device
CA2308644A1 (en) Light-transmitting object identifying apparatus and method
JPH07208922A (en) Fine displacement measuring instrument
EP0221127A1 (en) Optical diffraction velocimeter
JPS6114506A (en) Optical sensor
CN103954572A (en) Multiplexed optical fiber gas sensor capable of measuring various gas components
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration
JP2786120B2 (en) Snowfall detector
JP2000200922A (en) Optical signal detecting device and its method
JPS5610201A (en) Object dimension measuring device
DE69310969T2 (en) Device for measuring the axial speed
CN203572835U (en) Infrared photoelectric rotational speed measuring instrument
JP2851322B2 (en) Surface roughness measuring device
WO2021012336A1 (en) Long-distance high-precision optical fiber interference sensing and positioning system
JP2525980B2 (en) Optical fiber type temperature distribution measuring device
JPH06162886A (en) Photoelectric detecting apparatus
JPS60162901A (en) Noncontacting displacement measuring instrument
JPS6035234A (en) Pressure measuring device
JP2621750B2 (en) Optical temperature measurement device
JP2023062264A (en) Distance measuring device
JP2885979B2 (en) Temperature distribution detector
JPH0647871U (en) Fiber optic accelerometer
JPS6122250Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040914

A02 Decision of refusal

Effective date: 20041019

Free format text: JAPANESE INTERMEDIATE CODE: A02