JPH07208740A - Ceramic heat generator - Google Patents

Ceramic heat generator

Info

Publication number
JPH07208740A
JPH07208740A JP2196294A JP2196294A JPH07208740A JP H07208740 A JPH07208740 A JP H07208740A JP 2196294 A JP2196294 A JP 2196294A JP 2196294 A JP2196294 A JP 2196294A JP H07208740 A JPH07208740 A JP H07208740A
Authority
JP
Japan
Prior art keywords
ceramic
outer shell
filler
heating wire
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2196294A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP2196294A priority Critical patent/JPH07208740A/en
Publication of JPH07208740A publication Critical patent/JPH07208740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To so fill a coiled metal heat generating wire and ceramic powder in an outer shell of a sheath state made of ceramics without generating a volumetric change at the time of burning to be integrated. CONSTITUTION:At least one ceramic film of magnesium oxide and aluminum oxide is provided on a surface of a coiled metal heat generating wire 2 made by coupling two metals having different resistance temperature coefficients, inserted into an outer shell 21 of a sheath state made of silicon nitride, formed at a continued part (matrix) made of silicon, carbon, oxygen and nitrogen, and composite ceramics in which ceramic particles are dispersed as filler is filled in the shell 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関、燃焼器などに
おける液体燃料の気化着火を促すグロープラグ、詳しく
は燃焼室へ突出されるグロープラグのセラミツク発熱体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glow plug for promoting vaporization and ignition of liquid fuel in an internal combustion engine, a combustor, etc., and more particularly to a ceramic heating element of a glow plug protruding into a combustion chamber.

【0002】[0002]

【従来の技術】一般的な内燃機関のグロープラグは、金
属管の内部に2種の金属からなるコイル状の金属発熱線
を嵌装し、金属管の内空部に酸化マグネシウム粉末を充
填した構造になつている。一方、セラミツクを用いたグ
ロープラグでは、セラミツク発熱体が、タングステンま
たはW−Reのような高融点金属からなるジグザグ状の
金属発熱線を、窒化硅素(Si)から成形した上
下1対の板状の外殻の間に挟んだうえ、ホツトプレス方
法により焼成されている。しかし、上述のセラミツク発
熱体は1対の外殻の結合強度が振動や熱履歴に対して十
分なものとはいえない。
2. Description of the Related Art In a general glow plug of an internal combustion engine, a metal heating wire in the form of a coil made of two kinds of metals is fitted inside a metal tube, and magnesium oxide powder is filled in the inner space of the metal tube. It is structured. On the other hand, in a glow plug using a ceramic, a ceramic heating element is a zigzag metal heating wire made of a refractory metal such as tungsten or W-Re formed from silicon nitride (Si 3 N 4 ) in an upper and lower pair. It is sandwiched between the plate-shaped outer shells and baked by the hot pressing method. However, in the ceramic heating element described above, the bond strength of the pair of outer shells cannot be said to be sufficient for vibration and heat history.

【0003】そこで、セラミツク発熱体を高強度の構造
にするために、窒化硅素から成形し焼結した鞘状の外殻
の内部に、鉄・クロム・ニツケル合金などからなるコイ
ル状の金属発熱線を嵌挿し、外殻の内空部に酸化マグネ
シウムの粉末を充填することが考えられるが、窒化硅素
からなる外殻は金属管とは異なり、スウージング加工
(外殻を外周側から加圧する加工)により、外殻と内部
の金属発熱線と酸化マグネシウムの粉末とを圧密化する
ことができない。また、鉄・クロム・ニツケル合金や酸
化マグネシウムは窒化硅素よりも融点が低く、窒化硅素
との熱膨張係数の差が大きいために、一体的に焼成する
こともできない。
Therefore, in order to make the ceramic heating element have a high-strength structure, a coil-shaped metal heating wire made of iron, chromium, nickel alloy or the like is provided inside a sheath-like outer shell formed from silicon nitride and sintered. It is conceivable that the inner shell of the outer shell is filled with magnesium oxide powder, but the outer shell made of silicon nitride is different from the metal tube, and it is swallowed (the outer shell is pressed from the outer peripheral side). Therefore, the outer shell, the metal heating wire inside, and the magnesium oxide powder cannot be consolidated. Further, iron-chromium-nickel alloy and magnesium oxide have lower melting points than silicon nitride and have a large difference in coefficient of thermal expansion from silicon nitride, and therefore cannot be integrally fired.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、セラミツクからなる鞘状の外殻の内部に、
焼成時体積変化が生じないように、コイル状の金属発熱
線とセラミツク粉末を充填して一体化した、耐久性に優
れたセラミツク発熱体を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is to provide a sheath-shaped outer shell made of ceramic,
It is an object of the present invention to provide a ceramic heating element excellent in durability, which is formed by filling a coiled metal heating wire and ceramic powder and integrating them so that the volume change does not occur during firing.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は抵抗温度係数の異なる2種の金属を
結合してなるコイル状の金属発熱線を、窒化硅素からな
る鞘状の外殻の内部に挿入配置し、硅素、炭素、酸素、
窒素からなる非晶質セラミツクが連続部をなしかつセラ
ミツク粒子がフイラーとして分散された複合セラミツク
を、前記外殻の内空部に充填したしたものである。
In order to achieve the above object, the structure of the present invention has a coil-shaped metal heating wire formed by connecting two kinds of metals having different temperature coefficients of resistance, and a sheath-shaped wire made of silicon nitride. Placed inside the outer shell of silicon, carbon, oxygen,
A composite ceramic in which amorphous ceramics made of nitrogen form a continuous portion and ceramic particles are dispersed as a filler is filled in the inner space of the outer shell.

【0006】[0006]

【作用】本発明では、コイル状の金属発熱線は表面に酸
化マグネシウム(Al2O3) または酸化アルミニウムの被膜
を施される。充填材はポリカルボメチルシラザンと窒化
硅素粉末とチタン粉末とを混練してスラリー状にされ
る。
In the present invention, the coil-shaped metal heating wire has a surface coated with magnesium oxide (Al2O3) or aluminum oxide. The filler is made into a slurry by kneading polycarbomethylsilazane, silicon nitride powder and titanium powder.

【0007】窒化硅素から成形しかつ予め焼結した鞘状
の外殻の内部へ、上述のコイル状の金属発熱線にスラリ
ー状の充填材を塗布したものを装填し、さらに、外殻の
内空部へスラリー状の充填材を充填し、温度約900℃
の窒素雰囲気中で充填材を熱分解させる。つまり、ポリ
カルボメチルシラザンを硅素・炭素・窒素系セラミツク
に転化させ、チタンを窒化チタン(TiN)に転化させ
る。
The above-mentioned coil-shaped metal heating wire coated with the slurry-like filler is loaded into the inside of a shell-shaped outer shell formed from silicon nitride and pre-sintered, and further the inside of the outer shell is loaded. Fill the empty space with a slurry-like filler and keep the temperature at about 900 ° C.
The filler is pyrolyzed in the nitrogen atmosphere. That is, polycarbomethylsilazane is converted into silicon / carbon / nitrogen based ceramics, and titanium is converted into titanium nitride (TiN).

【0008】ポリカルボメチルシラザンは熱分解する過
程で体積が約0.1%収縮するが、逆にチタンは窒化チ
タンへ転化する過程で体積が膨張するので、全体として
充填材の体積変化は起らない。これにより、窒化硅素か
らなる外殻とコイル状の金属発熱線と充填材とが高密度
の複合体に一体化される。
The volume of polycarbomethylsilazane contracts by about 0.1% in the process of thermal decomposition, but on the contrary, the volume of titanium expands in the process of conversion to titanium nitride, so that the volume change of the filler as a whole occurs. No As a result, the outer shell made of silicon nitride, the coil-shaped metal heating wire, and the filler are integrated into a high-density composite.

【0009】[0009]

【実施例】図1は本発明に係るセラミツク発熱体を備え
たグロープラグの正面断面図、図2は図1の2A−2A
によるセラミツク発熱体の平面断面図である。グロープ
ラグHは中空の金属製本体4のねじ部4aを機関本体に
螺合支持され、下端のセラミツク発熱体1を機関の予燃
焼室へ突出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a front sectional view of a glow plug provided with a ceramic heating element according to the present invention, and FIG. 2 is 2A-2A of FIG.
2 is a plan sectional view of a ceramic heating element according to FIG. The glow plug H has a threaded portion 4a of a hollow metal body 4 screwed and supported on the engine body, and the ceramic heating element 1 at the lower end is projected into the pre-combustion chamber of the engine.

【0010】金属製本体4の上端を閉鎖する絶縁体12
に、電極棒8が螺合支持され、かつねじ部8aにナツト
13を螺合して締結される。金属製本体4は下端部に金
属製の保護筒3を嵌合固定される。保護筒3は予めセラ
ミツク発熱体1と嵌合部3aでメタライズ接合法などに
より結合される。セラミツク発熱体1は上端に金属キヤ
ツプ5を結合される。好ましくは、金属キヤツプ5は電
極棒8と接する端子5aを一体に構成される。セラミツ
ク発熱体1の下端は保護筒3から下方へ突出される。セ
ラミツク発熱体1は内部に、金属発熱線2を埋め込まれ
る。
Insulator 12 for closing the upper end of the metal body 4
The electrode rod 8 is screwed and supported, and the nut 13 is screwed and fastened to the screw portion 8a. The metallic protective cylinder 3 is fitted and fixed to the lower end of the metallic main body 4. The protective cylinder 3 is previously joined to the ceramic heating element 1 at the fitting portion 3a by a metallizing joining method or the like. The ceramic heating element 1 has a metal cap 5 coupled to the upper end thereof. Preferably, the metal cap 5 is integrally formed with a terminal 5a that contacts the electrode rod 8. The lower end of the ceramic heating element 1 is projected downward from the protective cylinder 3. A metal heating wire 2 is embedded in the ceramic heating element 1.

【0011】図1,2に示すように、例えば直径約0.
2mmの鉄・クロム・ニツケル合金などからなる金属発
熱線2は、リード部19の上端部19aを金属キヤツプ
5に結合される。金属発熱線2は保護筒3のほぼ軸心を
真直ぐに下方へ延び、保護筒3の内部でコイル状に巻か
れた通電制御部17を形成され、さらに通電制御部17
からリード部19bを下方へ延長され、保護筒3の外部
でコイル状に巻かれて発熱部14を形成される。金属発
熱線2はコイル状の発熱部14の下端で、上方へ折り返
してリード部18を形成される。リード部18はコイル
状の発熱部14と通電制御部17の内部を経て上方へ真
直ぐに延び、上端部18aを保護筒3の上端部へ結合さ
れる。
As shown in FIGS. 1 and 2, for example, a diameter of about 0.
The metal heating wire 2 made of 2 mm of iron / chromium / nickel alloy or the like has the upper end portion 19 a of the lead portion 19 joined to the metal cap 5. The metal heating wire 2 extends straight down substantially along the axis of the protective cylinder 3 and forms a coil-shaped energization controller 17 inside the protective cylinder 3. Further, the energization controller 17 is provided.
The lead portion 19b is extended downward from the above to form a heat generating portion 14 by being coiled outside the protective cylinder 3. The metal heating wire 2 is folded back upward at the lower end of the coil-shaped heating portion 14 to form the lead portion 18. The lead portion 18 extends straight through the inside of the coil-shaped heat generating portion 14 and the energization control portion 17, and the upper end portion 18 a is joined to the upper end portion of the protective cylinder 3.

【0012】図2に示すように、金属発熱線2は表面に
酸化マグネシウムと酸化アルミニウムの少なくとも一方
からなる被膜を予め施される。金属発熱線2はコイル状
の発熱部14と通電制御部17を、セラミツクである窒
化硅素から成形しかつ予め焼結した鞘状の外殻21に、
金属発熱線2が外殻21の内面30に接するように装填
される。外殻21の内空部は、焼結に対し無収縮性のセ
ラミツク、詳しくは硅素、炭素、酸素、窒素からなる非
晶質セラミツクが連続部(母相)をなす充填材16を充
填される。充填材16はポリカルボメチルシラザンと窒
化硅素とチタンとをスラリー状に混合され、外殻21の
内空部に充填される。次いで、鞘状の外殻21に金属発
熱線2と充填材16を挿入したものを焼結すれば、外殻
21の内部で金属発熱線2と充填材16とは体積変化が
生じないので、外殻21が割れたり、外殻21の内空部
に空隙が生じたりせず、三者は一体的に結合される。
As shown in FIG. 2, the metal heating wire 2 has a surface coated beforehand with at least one of magnesium oxide and aluminum oxide. The metal heating wire 2 includes a coil-shaped heating portion 14 and an energization control portion 17, which are formed in a sheath-like outer shell 21 formed from ceramic silicon nitride and pre-sintered.
The metal heating wire 2 is loaded so as to contact the inner surface 30 of the outer shell 21. The inner space of the outer shell 21 is filled with a filler 16 which is a non-shrinkable ceramic for sintering, more specifically, an amorphous ceramic composed of silicon, carbon, oxygen, and nitrogen which forms a continuous portion (mother phase). . The filler 16 is a mixture of polycarbomethylsilazane, silicon nitride and titanium in a slurry form, and is filled in the inner space of the outer shell 21. Next, if the metal heating wire 2 and the filler 16 are inserted into the sheath-shaped outer shell 21 and sintered, the metal heating wire 2 and the filler 16 do not change in volume inside the outer shell 21, The outer shell 21 is not cracked or a void is not formed in the inner space of the outer shell 21, and the three are integrally connected.

【0013】本発明によるセラミツク発熱体は次のよう
に製造される。鉄・クロム・ニツケル合金からなるコイ
ル状の金属発熱線2の表面に、電気永動法により酸化マ
グネシウム(MgO)と酸化アルミニウム(Al
)の被膜を施した。充填材16として、ポリカル
ボメチルシラザン溶液に、粒径約0.3μmの窒化硅素
粉末と粒径約10μmのチタン粉末を混練してスラリー
化した。
The ceramic heating element according to the present invention is manufactured as follows. On the surface of the coil-shaped metal heating wire 2 made of iron / chromium / nickel alloy, magnesium oxide (MgO) and aluminum oxide (Al
2 O 3 ) was applied. As the filler 16, a polycarbomethylsilazane solution was kneaded with a silicon nitride powder having a particle size of about 0.3 μm and a titanium powder having a particle size of about 10 μm to form a slurry.

【0014】窒化硅素から予め成形焼結してなる内径
3.5mmの鞘状の外殻21の内部に、酸化マグネシウ
ムと酸化アルミニウムの被膜を施したコイル状の金属発
熱線2を挿入し、外殻21の内空部にスラリー状の充填
材16を加圧注入し、隙間なく充填した。
A coil-shaped metal heating wire 2 coated with magnesium oxide and aluminum oxide is inserted into the inside of a sheath-like outer shell 21 having an inner diameter of 3.5 mm formed and sintered from silicon nitride in advance, and the outside. The slurry-like filler 16 was pressure-injected into the inner space of the shell 21 and filled without gaps.

【0015】金属発熱線2および充填材16を内包する
外殻21を、900℃の窒素雰囲気中で加熱した。ポリ
カルボメチルシラザンは加熱過程で完全に非晶質の硅
素、炭素、酸素、窒素に転化し、またチタンは窒化チタ
ン(TiOおよびTiON)に転化したことを確認し
た。
The outer shell 21 containing the metal heating wire 2 and the filler 16 was heated in a nitrogen atmosphere at 900 ° C. It was confirmed that polycarbomethylsilazane was converted into completely amorphous silicon, carbon, oxygen and nitrogen in the heating process, and titanium was converted into titanium nitride (TiO 2 and TiO).

【0016】チタンは窒化チタンに転化する過程で体積
が膨張するが、逆にポリカルボメチルシラザンはセラミ
ツクに転化する過程で体積が収縮するので、全体として
充填材16の体積変化は起らない。このため、金属発熱
線2および充填材16を内包する外殻21は焼成して
も、全体として体積の膨張・収縮がなく、外殻21と金
属発熱線2と充填材16とが互いによく密着した複合体
が得られた。
The volume of titanium expands in the process of conversion to titanium nitride, while the volume of polycarbomethylsilazane contracts in the process of conversion to ceramics, so that the volume of the filler 16 does not change as a whole. Therefore, even if the outer shell 21 that encloses the metal heating wire 2 and the filler 16 does not expand or contract in volume as a whole, the outer shell 21, the metal heating wire 2 and the filler 16 are in close contact with each other. A complex was obtained.

【0017】図3に示すように、充填材16は焼結時チ
タンが窒化チタン粒子31に、硅素が窒化硅素粒子32
に、ポリカルボメチルシラザンが非晶質のセラミツク
(連続層)33にそれぞれ転化し、非晶質のセラミツク
(連続層)33がフイラーとしての窒化チタン粒子31
と窒化硅素粒子32を一体的に結合する。なお、充填材
16の強度は常温で124MPa、1200℃で131
MPaであり、熱分解する時の寸法変化率は+0.2%
である。チタンは温度600℃で窒化チタンへ転化す
る。
As shown in FIG. 3, when the filler 16 is sintered, titanium is titanium nitride particles 31 and silicon is silicon nitride particles 32.
In addition, polycarbomethylsilazane is converted into an amorphous ceramic (continuous layer) 33, and the amorphous ceramic (continuous layer) 33 is converted into titanium nitride particles 31 as a filler.
And silicon nitride particles 32 are integrally bonded. The strength of the filler 16 is 124 MPa at room temperature and 131 at 1200 ° C.
MPa, the dimensional change rate during thermal decomposition is + 0.2%
Is. Titanium converts to titanium nitride at a temperature of 600 ° C.

【0018】本発明によるセラミツク発熱体1は、上述
のように金属発熱線2が鞘状の外殻21の内面30に接
して装填されているので、図4に示すように通電時発熱
し、外殻21の表面温度は約2秒で1000℃に達す
る。窒化硅素からなる外殻21は耐熱性を有し、鞘状に
成形されているから、熱履歴や振動に対して金属発熱線
2との間に剥離が生じたりする恐れがない。
In the ceramic heating element 1 according to the present invention, as described above, the metal heating wire 2 is loaded in contact with the inner surface 30 of the sheath-like outer shell 21, so that it generates heat when energized, as shown in FIG. The surface temperature of the outer shell 21 reaches 1000 ° C. in about 2 seconds. Since the outer shell 21 made of silicon nitride has heat resistance and is formed into a sheath shape, there is no risk of separation from the metal heating wire 2 due to heat history or vibration.

【0019】[0019]

【発明の効果】本発明は上述のように、抵抗温度係数の
異なる2種の金属を結合してなるコイル状の金属発熱線
を、窒化硅素からなる鞘状の外殻の内部に挿入配置し、
硅素、炭素、酸素、窒素からなる非晶質セラミツクが連
続部(母相)をなしかつセラミツク粒子がフイラーとし
て分散された複合セラミツクを、外殻の内空部に充填し
たものであり、窒化硅素からなる外殻は、耐熱性を有
し、鞘状に成形されているから、熱履歴や振動に対して
金属発熱線との間に剥離が生じたりする恐れがなく、耐
久性と信頼性に優れたセラミツク発熱体が得られる。
As described above, according to the present invention, a coil-shaped metal heating wire formed by coupling two kinds of metals having different temperature coefficients of resistance is inserted and arranged inside a sheath-like outer shell made of silicon nitride. ,
A composite ceramic in which amorphous ceramics composed of silicon, carbon, oxygen, and nitrogen form a continuous part (matrix) and ceramic particles are dispersed as a filler is filled in the inner space of the outer shell. The outer shell made of is heat-resistant and is molded into a sheath, so there is no risk of peeling between the metal heating wire and heat history or vibration, and durability and reliability are improved. An excellent ceramic heating element can be obtained.

【0020】鞘状の外殻に充填される充填材は、焼結時
チタンの窒化チタンへの転化に伴う体積膨張が、ポリカ
ルボメチルシラザンのセラミツクへの転化に伴う体積収
縮により吸収されるので、全体として体積の膨張・収縮
がなく、外殻と金属発熱線と充填材とが互いによく密着
した複合体が得られる。
In the filler filled in the sheath-like outer shell, the volume expansion due to the conversion of titanium into titanium nitride during sintering is absorbed by the volume contraction due to the conversion of polycarbomethylsilazane into ceramic. As a whole, there is no volume expansion / contraction, and a composite body is obtained in which the outer shell, the metal heating wire and the filler are in close contact with each other.

【0021】金属発熱線の表面に、酸化マグネシユウム
と酸化アルミニウムの内の少なくとも1つのセラミツク
被膜を施したので、金属発熱線の劣化が抑えられ、セラ
ミツクからなる外殻および充填材との強固な結合が得ら
れる。
Since the surface of the metal heating wire is coated with at least one ceramic film of magnesium oxide and aluminum oxide, deterioration of the metal heating wire is suppressed, and a strong bond with the outer shell made of ceramic and the filler. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミツク発熱体を備えたグロー
プラグの正面断面図である。
FIG. 1 is a front sectional view of a glow plug including a ceramic heating element according to the present invention.

【図2】図1の2A−2Aによるセラミツク発熱体の平
面断面図である。
2 is a plan sectional view of a ceramic heating element according to 2A-2A in FIG. 1. FIG.

【図3】同セラミツク発熱体における充填材の焼結後の
模式図である。
FIG. 3 is a schematic view after sintering of a filler in the ceramic heating element.

【図4】同セラミツク発熱体の発熱特性を表す線図であ
る。
FIG. 4 is a diagram showing heat generation characteristics of the ceramic heating element.

【符号の説明】 1:セラミツク発熱体 2:金属発熱線 16:充填材
21:外殻 31:窒化チタン粒子 32:窒化硅素
粒子 33:非晶質セラミツクス
[Explanation of Codes] 1: Ceramic heating element 2: Metal heating wire 16: Filler 21: Outer shell 31: Titanium nitride particles 32: Silicon nitride particles 33: Amorphous ceramics

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】抵抗温度係数の異なる2種の金属を結合し
てなるコイル状の金属発熱線を、窒化硅素からなる鞘状
の外殻の内部に挿入配置し、硅素、炭素、酸素、窒素か
らなる非晶質セラミツクが連続部をなしかつセラミツク
粒子がフイラーとして分散された複合セラミツクを、前
記外殻の内空部に充填したことを特徴とするセラミツク
発熱体。
1. A coil-shaped metal heating wire formed by combining two kinds of metals having different temperature coefficients of resistance is inserted and arranged inside a sheath-like outer shell made of silicon nitride, and silicon, carbon, oxygen and nitrogen are provided. A ceramic heating element, characterized in that the amorphous ceramics are formed into a continuous part and the composite ceramics in which ceramic particles are dispersed as filler are filled in the inner space of the outer shell.
【請求項2】前記金属発熱線の表面に、酸化マグネシユ
ウムと酸化アルミニウムの内の少なくとも1つのセラミ
ツク被膜を施した、請求項1に記載のセラミツク発熱
体。
2. The ceramic heating element according to claim 1, wherein the surface of the metal heating wire is coated with at least one ceramic coating of magnesium oxide and aluminum oxide.
【請求項3】前記セラミツク粒子が窒化硅素である、請
求項1に記載のセラミツク発熱体。
3. The ceramic heating element according to claim 1, wherein the ceramic particles are silicon nitride.
【請求項4】前記セラミツク粒子が窒化硅素および窒化
チタンである、請求項1,2に記載のセラミツク発熱
体。
4. The ceramic heating element according to claim 1, wherein the ceramic particles are silicon nitride and titanium nitride.
JP2196294A 1994-01-21 1994-01-21 Ceramic heat generator Pending JPH07208740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196294A JPH07208740A (en) 1994-01-21 1994-01-21 Ceramic heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196294A JPH07208740A (en) 1994-01-21 1994-01-21 Ceramic heat generator

Publications (1)

Publication Number Publication Date
JPH07208740A true JPH07208740A (en) 1995-08-11

Family

ID=12069698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196294A Pending JPH07208740A (en) 1994-01-21 1994-01-21 Ceramic heat generator

Country Status (1)

Country Link
JP (1) JPH07208740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302954A1 (en) * 2017-04-13 2018-10-18 Bradley Fixtures Corporation Ceramic Heating Element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302954A1 (en) * 2017-04-13 2018-10-18 Bradley Fixtures Corporation Ceramic Heating Element
WO2018191610A1 (en) 2017-04-13 2018-10-18 Bradley Fixtures Corporation Ceramic heating element
EP3610206A4 (en) * 2017-04-13 2021-01-20 Bradley Fixtures Corporation Ceramic heating element
US11457513B2 (en) 2017-04-13 2022-09-27 Bradford White Corporation Ceramic heating element

Similar Documents

Publication Publication Date Title
ES2197284T3 (en) MANUFACTURING PROCEDURE OF A CERAMIC WARMING ELEMENT.
JP4751392B2 (en) Brazing structure, ceramic heater and glow plug
US4426568A (en) Glow plug for diesel engines
JPH0155368B2 (en)
JP3658770B2 (en) Ceramic glow plug
JPH07208740A (en) Ceramic heat generator
JPH06251862A (en) Ceramic heating element
JPS618526A (en) Ceramic glow plug
JP2998999B2 (en) Ceramic heater
JPS5895122A (en) Glow plug for high temperature
JPH08250262A (en) Ceramic heater
JPH01121626A (en) Glow plug for diesel engine
JPH07190361A (en) Self-control type glow plug
JPH0155369B2 (en)
JPH07208741A (en) Ceramic heat generator
JP3439807B2 (en) Ceramic heating element
JPS6048422A (en) Ceramic glow plug
JPS6086325A (en) Self-control type ceramic glow plug
JPH07119968A (en) Ceramic heat generating member and its manufacturing method
JPS6222911A (en) Ceramic glow plug
JPS6337848B2 (en)
JP3050262B2 (en) Ceramic glow plug
JPH0233015Y2 (en)
JPS5866721A (en) Ceramic glow plug
JPS60219A (en) Self-regulating type glow plug