JPH07208107A - Reaction type steam turbine - Google Patents

Reaction type steam turbine

Info

Publication number
JPH07208107A
JPH07208107A JP1584894A JP1584894A JPH07208107A JP H07208107 A JPH07208107 A JP H07208107A JP 1584894 A JP1584894 A JP 1584894A JP 1584894 A JP1584894 A JP 1584894A JP H07208107 A JPH07208107 A JP H07208107A
Authority
JP
Japan
Prior art keywords
reaction
blade
steam turbine
steam
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1584894A
Other languages
Japanese (ja)
Other versions
JP3238267B2 (en
Inventor
Ryutaro Umagoe
龍太郎 馬越
Shinichi Hori
進一 掘
Takashi Nakano
隆 中野
Yoshihiro Taruya
佳洋 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01584894A priority Critical patent/JP3238267B2/en
Publication of JPH07208107A publication Critical patent/JPH07208107A/en
Application granted granted Critical
Publication of JP3238267B2 publication Critical patent/JP3238267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the weight of a reaction type steam turbine, and also improve its inside efficiency. CONSTITUTION:The stationary blade 22 of a reaction step is formed integratedly with a partition plate 23 which is divided into two parts on a center surface, and also the center surface of the partition plate 23 is maintained to the outer part casing 1 and an inner part casing of a steam turbine. The blade train of a reaction step is constituted so as to set a reaction degree to 35 to 42 % at the time of constant operation of the steam turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反動型蒸気タービンに
係り、特に軽量化を図った反動型蒸気タービンに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction-type steam turbine, and more particularly to a reaction-type steam turbine whose weight is reduced.

【0002】[0002]

【従来の技術】先ず、従来の反動型蒸気タービンの構造
を、図3および図4を参照して説明する。図3は従来の
大容量蒸気タービンの高圧タービンをロータ方向に沿っ
て切断した部分的な縦断面図、図4は図3の矢視B方向
断面図である。
2. Description of the Related Art First, the structure of a conventional reaction type steam turbine will be described with reference to FIGS. FIG. 3 is a partial vertical cross-sectional view of a high-pressure turbine of a conventional large-capacity steam turbine taken along the rotor direction, and FIG. 4 is a cross-sectional view taken in the direction of arrow B in FIG.

【0003】これらの図に示すように、従来の高圧ター
ビンは、外部ケーシング1と内部ケーシング2に囲まれ
た蒸気室3の中心にロータ4が位置しており、ロータ4
を囲むようにして、図示しない主蒸気入口管を通して、
ボイラからの高温・高圧の主蒸気が導入されるノズル室
5が設けられている。このノズル室5には蒸気室3側に
ノズル板6が取付けられていて蒸気吹出口7を形成して
いる。そして、ノズル板6の蒸気吹出口7に対峙するよ
うに、ロータ4に調速段を形成する衝動翼8が植え込ま
れている。さらに、ロータ4には各ディスク部に植え込
んだ多数の反動動翼9が設けられており、各反動動翼9
に対して、反動段を形成する静翼10がそれぞれ設けら
れている。
As shown in these figures, in the conventional high-pressure turbine, a rotor 4 is located at the center of a steam chamber 3 surrounded by an outer casing 1 and an inner casing 2, and the rotor 4
Through the main steam inlet pipe, not shown,
A nozzle chamber 5 into which high temperature, high pressure main steam from the boiler is introduced is provided. A nozzle plate 6 is attached to the nozzle chamber 5 on the steam chamber 3 side to form a steam outlet 7. Impulse blades 8 forming a speed control stage are implanted in the rotor 4 so as to face the steam outlet 7 of the nozzle plate 6. Further, the rotor 4 is provided with a large number of reaction blades 9 implanted in each disk portion.
On the other hand, each of the stationary blades 10 forming a reaction stage is provided.

【0004】これら静翼10は第1のブレードリング1
1に植込まれた群と、第2のブレードリング12に植込
まれた群とに分かれていて、第1のブレードリング11
は内部ケーシング2に、第2のブレードリング12は外
部ケーシング1にそれぞれ取り付けられている。そし
て、第1のブレードリング11はセンターキー13によ
ってその中心が内部ケーシング2に保持され、第2のブ
レードリング12はセンターキー14によってその中心
が外部ケーシング1に保持されている。従って、静翼1
0は、図3に示されているように、ブレードリング1
1、12に吊り下げられた形となっている。
These vanes 10 are the first blade ring 1
The first blade ring 11 is divided into a group implanted in 1 and a group implanted in the second blade ring 12.
Is attached to the inner casing 2 and the second blade ring 12 is attached to the outer casing 1. The center of the first blade ring 11 is held in the inner casing 2 by the center key 13, and the center of the second blade ring 12 is held in the outer casing 1 by the center key 14. Therefore, the vane 1
0 is a blade ring 1 as shown in FIG.
It is in the form of being hung on 1 and 12.

【0005】このように構成されている高圧タービン
は、図示しないボイラなどから、ノズル室5に導入され
た高温・高圧の主蒸気が、蒸気吹出口7から衝動翼8へ
流入して仕事をした後、反動段静翼10で加速され、反
動動翼9で順次仕事をし、仕事をして温度、圧力の低下
した蒸気は、高圧排気される。
In the high-pressure turbine configured as described above, the high-temperature, high-pressure main steam introduced into the nozzle chamber 5 from a boiler (not shown) or the like flows from the steam outlet 7 into the impulse blades 8 for work. After that, the steam is accelerated by the reaction stage stationary vanes 10 and sequentially worked by the reaction vanes 9, and the steam that has worked and has its temperature and pressure lowered is exhausted at high pressure.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来のター
ビンでは、反動段の静翼の中心をブレードリングで保持
しているので、ロータ4に対して静翼10の芯を一致さ
せることが難しいとともに、タービン自体の構造が極め
て大型化するという問題があった。
In the conventional turbine, since the center of the stationary blade of the reaction stage is held by the blade ring, it is difficult to align the core of the stationary blade 10 with the rotor 4. However, there is a problem that the structure of the turbine itself becomes extremely large.

【0007】また、蒸気タービンの起動時などの暖気運
転時にあっては、ロータ4はブレードリング11、12
よりも先に暖められることになる。そして、静翼10は
ブレードリング11、12から吊り下った構造となって
いるため、静翼10の方がブレードリング11、12よ
りも先に暖められることになる。従って、起動時などの
過渡期に、回転部が静止部に接触しないようにするた
め、反動段を形成する静翼10の先端とロータ4との
間、および動翼9の先端とブレードリング11、12と
の間には予めかなりの隙間S(図3を参照)を設けてお
く必要があった。そして、この隙間Sのために、定常運
転時のクリアランスを小さくすることができず、翼先端
で漏洩損失を生じ内部効率を低下させる原因となってい
た。
Further, during warm-up operation such as startup of the steam turbine, the rotor 4 is provided with the blade rings 11 and 12.
It will be warmed up before. Since the stationary blade 10 has a structure suspended from the blade rings 11 and 12, the stationary blade 10 is warmed before the blade rings 11 and 12. Therefore, in order to prevent the rotating part from coming into contact with the stationary part during a transitional period such as startup, between the tip of the stationary blade 10 and the rotor 4 forming the reaction stage, and between the tip of the moving blade 9 and the blade ring 11. , 12, it was necessary to provide a considerable gap S (see FIG. 3) in advance. Due to this gap S, the clearance during steady operation cannot be reduced, which causes a leakage loss at the blade tip and causes a decrease in internal efficiency.

【0008】さらに一般に、反動段での全断熱熱落差h
aは、動翼での断熱熱落差hbが、静翼での断熱熱落差
hcと互いにほぼ等しくなるように、反動度ρがほぼ5
0%に設計されている。ここで反動度ρは、下記の数式
1で示される。
More generally, the total adiabatic heat drop h at the reaction stage
a is a reaction degree ρ of approximately 5 so that the adiabatic heat drop hb in the moving blade is substantially equal to the adiabatic heat drop hc in the stationary blade.
It is designed to be 0%. Here, the reaction degree ρ is expressed by the following mathematical expression 1.

【数1】ρ=hb/ha このとき、速度比すなわち、静翼入口での蒸気の絶対速
度と動翼の回転速度との比、又は動翼入口での蒸気の相
対速度と動翼の回転速度との比は、いずれも90%程度
であり、このため、反動段の翼素効率は衝動段に比べて
高いが、反動段の段数が多くなるという問題があった。
[Mathematical formula-see original document] ρ = hb / ha At this time, the speed ratio, that is, the ratio of the absolute speed of steam at the inlet of the stationary blade to the rotational speed of the moving blade, or the relative speed of steam at the moving blade inlet and the rotation of the moving blade. The ratio to the speed is about 90% in each case. Therefore, although the blade element efficiency of the reaction stage is higher than that of the impulse stage, there is a problem that the number of reaction stages becomes large.

【0009】本発明は、このような従来技術の課題を解
決するためになされたもので、反動型蒸気タービンの重
量を軽減するとともに、内部効率を向上させることを目
的とする。
The present invention has been made in order to solve the problems of the prior art, and an object thereof is to reduce the weight of the reaction steam turbine and to improve the internal efficiency.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、反動型蒸気タービンにおいて、反動段
の静翼を中心面で上下に二分割された仕切板に一体に形
成するとともに、この仕切板の中心面を蒸気タービンの
外部ケーシング又は内部ケーシングに保持させたもので
ある。
In order to solve the above-mentioned problems, the present invention provides a recoil type steam turbine, in which a stationary blade of a reaction stage is integrally formed on a partition plate which is vertically divided into two parts at a center plane. At the same time, the center plane of the partition plate is held by the outer casing or the inner casing of the steam turbine.

【0011】[0011]

【作 用】上記の手段によれば、仕切板は中心を支持す
る構造であり、ブレードリングがなくても静翼の中心が
保持される。そして、タービンの起動時などの過渡期
に、仕切板は外側へ膨張するので、回転部と静止部との
接触を防止するための隙間は従来よりも狭くしておくこ
とができ、その結果、翼先端からの蒸気の漏洩を減少さ
せることができる。
[Operation] According to the above means, the partition plate has a structure for supporting the center, and the center of the stationary blade is held even without the blade ring. Then, during a transitional period such as when the turbine is started, the partition plate expands outward, so the gap for preventing contact between the rotating part and the stationary part can be made narrower than before, and as a result, The leakage of steam from the blade tip can be reduced.

【0012】[0012]

【実施例】以下本発明に係る反動型蒸気タービンの一実
施例について、図1および図2を参照して詳細に説明す
る。図1は本発明を適用する大容量蒸気タービンの高圧
タービンをロータ方向に沿って切断した部分的な縦断面
図、図2は図1の矢視A方向断面図であり、図3および
図4と同一部分には同一符号を付して示してあるので、
その部分の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a reaction type steam turbine according to the present invention will be described in detail below with reference to FIGS. 1 is a partial vertical cross-sectional view of a high-pressure turbine of a large-capacity steam turbine to which the present invention is applied, taken along the rotor direction, FIG. 2 is a cross-sectional view taken in the direction of arrow A in FIG. 1, and FIGS. Since the same parts as those shown in FIG.
Description of that part is omitted.

【0013】これらの図に示すように、蒸気室3は外部
ケーシング1に囲まれて形成されており、その中心にロ
ータ4が位置している。そして、ロータ4を囲むように
してノズル室5が設けられていて、このノズル室5へ、
図示しないボイラからの高温・高圧の主蒸気が主蒸気入
口管21を通して導入される。ノズル室5の蒸気室3側
にはノズル板6が取付けられていて、蒸気吹出口7を形
成し、ノズル板6の蒸気吹出口7に対峙するように、ロ
ータ4に調速段を形成する衝動翼8が植え込まれてい
る。さらに、ロータ4には各ディスク部に植え込んだ多
数の反動動翼9が設けられている。
As shown in these figures, the steam chamber 3 is formed so as to be surrounded by the outer casing 1, and the rotor 4 is located at the center thereof. A nozzle chamber 5 is provided so as to surround the rotor 4, and to the nozzle chamber 5,
High-temperature, high-pressure main steam from a boiler (not shown) is introduced through the main steam inlet pipe 21. A nozzle plate 6 is attached to the steam chamber 3 side of the nozzle chamber 5 to form a steam outlet 7, and a speed control stage is formed on the rotor 4 so as to face the steam outlet 7 of the nozzle plate 6. Impulse wings 8 are implanted. Further, the rotor 4 is provided with a large number of reaction blades 9 implanted in each disk portion.

【0014】この各反動動翼9に対して、反動段を形成
する静翼22がそれぞれ設けられているが、この静翼2
2は仕切板23に一体に形成されていて、仕切板23が
外部ケーシング1に嵌め込まれたものとなっている。そ
して、この仕切板23は中心面で上下に二分割された構
造をしており、その中心面を外部ケーシング1に保持さ
せることにより、ブレードリングを設けることなく静翼
22の中心を保持している。
Each of the reaction blades 9 is provided with a stationary blade 22 which forms a reaction stage.
The partition plate 23 is formed integrally with the partition plate 23, and the partition plate 23 is fitted in the outer casing 1. The partition plate 23 has a structure in which the center plane is divided into upper and lower halves. By holding the center plane in the outer casing 1, the center of the vane 22 is held without providing a blade ring. There is.

【0015】なお、仕切板23の水平面は、図示してい
ないがキーによって組み合わせて気密を保つようにして
いる。また、仕切板23のロータ4に対向する部分に
は、ラビリンス24が植込まれていて、隙間からの漏洩
蒸気が最少になるようにしている。同様に、反動動翼9
の先端に対向する外部ケーシング1の内壁側にも、ラビ
リンス25を有するスペーサ26が各反動段の静翼22
を形成する仕切板23相互の間に設けられて、反動動翼
9先端部での漏洩蒸気が最少になるようにしている。
Although not shown, the horizontal surface of the partition plate 23 is combined with a key to keep airtightness. Further, a labyrinth 24 is embedded in a portion of the partition plate 23 facing the rotor 4 so that the leaked steam from the gap is minimized. Similarly, the reaction blade 9
A spacer 26 having a labyrinth 25 is provided on the inner wall side of the outer casing 1 facing the tip of each of the stationary blades 22 of each reaction stage.
It is provided between the partition plates 23 forming the above so as to minimize the leaked steam at the tip of the reaction blade 9.

【0016】次に、本発明では、蒸気タービンの定格運
転時に、反動度ρすなわち、上記の数式1に示した動翼
での断熱熱落差hbと反動段での全断熱熱落差haとの
比が35〜42%となるように、反動段の翼列を設計し
ている。すなわち、反動段における翼の回転速度と静翼
又は動翼入口蒸気速度との比(速度比)を下げて設計す
るので、1段当りに必要とする断熱熱落差hbを増加さ
せることができ、これにより反動段全体の段数を削減で
きることになる。従って、効率の向上と製造コストの低
減を図ることができる。
Next, in the present invention, during rated operation of the steam turbine, the reaction degree ρ, that is, the ratio of the adiabatic heat drop hb in the moving blade and the total adiabatic heat drop ha in the reaction stage shown in the above mathematical expression 1 Is designed to be 35 to 42%. That is, since the design is performed by lowering the ratio (speed ratio) of the rotation speed of the blade in the reaction stage and the steam velocity of the stationary blade or the blade inlet, it is possible to increase the adiabatic heat drop hb required for each stage. As a result, the number of reaction stages as a whole can be reduced. Therefore, it is possible to improve efficiency and reduce manufacturing cost.

【0017】なお、本発明は上述の一実施例に限定され
ることなく、要旨を逸脱しない範囲内で種々変形して実
施できることは言うまでもない。例えば、静翼22を一
体に形成した仕切板23を内部ケーシング2(図3を参
照)に嵌め込むようにしてもよい。
It is needless to say that the present invention is not limited to the above-mentioned one embodiment, and can be variously modified and carried out without departing from the scope of the invention. For example, the partition plate 23 integrally formed with the stationary blades 22 may be fitted into the inner casing 2 (see FIG. 3).

【0018】[0018]

【発明の効果】以上詳述したように、本発明によれば、
反動型蒸気タービンにおいて、反動段の段数を減少させ
ることができるとともに、ブレードリングが不要となる
ので、タービンの重量を軽減させることができ、構造が
単純化するので保守も容易となる。例えば、350MW
50Hz発電機用タービンに本発明を適用した場合に
は、高中圧エレメントの重量は、従来のタービンに比べ
ほぼ二分の一になる。また、翼先端からの蒸気の漏洩を
減少させて、タービンの内部効率を約1%向上させるこ
とができる。
As described in detail above, according to the present invention,
In the reaction-type steam turbine, the number of reaction stages can be reduced, and since the blade ring is unnecessary, the weight of the turbine can be reduced, and the structure is simplified, so that maintenance is easy. For example, 350 MW
When the present invention is applied to a turbine for a 50 Hz generator, the weight of the high / intermediate pressure element is approximately one half that of the conventional turbine. Further, it is possible to reduce the leakage of steam from the blade tips and improve the internal efficiency of the turbine by about 1%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する大容量蒸気タービンの高圧タ
ービンをロータ方向に沿って切断した部分的な縦断面図
である。
FIG. 1 is a partial vertical cross-sectional view of a high-pressure turbine of a large-capacity steam turbine to which the present invention is applied, taken along a rotor direction.

【図2】図1の矢視A方向断面図である。FIG. 2 is a sectional view taken in the direction of arrow A in FIG.

【図3】従来の大容量蒸気タービンの高圧タービンをロ
ータ方向に沿って切断した部分的な縦断面図である。
FIG. 3 is a partial vertical cross-sectional view of a high-pressure turbine of a conventional large-capacity steam turbine taken along the rotor direction.

【図4】図3の矢視B方向断面図である。FIG. 4 is a sectional view taken along the arrow B in FIG.

【符号の説明】[Explanation of symbols]

1 外部ケーシング 4 ロータ 5 ノズル室 6 ノズル板 7 蒸気吹出口 8 衝動翼 9 反動動翼 21 主蒸気入口管 22 静翼 23 仕切板 24 ラビリンス 25 ラビリンス 26 スペーサ 1 Outer Casing 4 Rotor 5 Nozzle Chamber 6 Nozzle Plate 7 Steam Outlet 8 Impulse Blade 9 Reaction Blade 21 Main Steam Inlet Pipe 22 Stator Blade 23 Partition Plate 24 Labyrinth 25 Labyrinth 26 Spacer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽谷 佳洋 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Tarutani 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries Takasago Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反動段の静翼を中心面で上下に二分割され
た仕切板に一体に形成するとともに、この仕切板の中心
面を蒸気タービンの外部ケーシング又は内部ケーシング
に保持させたことを特徴とする反動型蒸気タービン。
1. A stator blade of a reaction stage is integrally formed with a partition plate which is vertically divided into two parts with a center plane, and the center plane of the partition plate is held by an outer casing or an inner casing of a steam turbine. Characteristic reaction type steam turbine.
【請求項2】請求項1記載の反動型蒸気タービンにおい
て、反動段の翼列を反動度が蒸気タービンの定格運転時
に35〜42%となるように構成したことを特徴とする
反動型蒸気タービン。
2. The reaction-type steam turbine according to claim 1, wherein the blade row of the reaction stage is configured such that the degree of reaction is 35 to 42% during rated operation of the steam turbine. .
JP01584894A 1994-01-14 1994-01-14 Reaction steam turbine Expired - Lifetime JP3238267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01584894A JP3238267B2 (en) 1994-01-14 1994-01-14 Reaction steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01584894A JP3238267B2 (en) 1994-01-14 1994-01-14 Reaction steam turbine

Publications (2)

Publication Number Publication Date
JPH07208107A true JPH07208107A (en) 1995-08-08
JP3238267B2 JP3238267B2 (en) 2001-12-10

Family

ID=11900246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01584894A Expired - Lifetime JP3238267B2 (en) 1994-01-14 1994-01-14 Reaction steam turbine

Country Status (1)

Country Link
JP (1) JP3238267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027568A1 (en) * 2010-07-30 2012-02-02 Alstom Technology Ltd Low-pressure steam turbine and method for operating thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278329B2 (en) 2015-02-23 2018-02-14 三菱重工コンプレッサ株式会社 Steam turbine
JP7061557B2 (en) 2018-12-07 2022-04-28 三菱重工コンプレッサ株式会社 Steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027568A1 (en) * 2010-07-30 2012-02-02 Alstom Technology Ltd Low-pressure steam turbine and method for operating thereof
CN102418565A (en) * 2010-07-30 2012-04-18 阿尔斯通技术有限公司 Low-pressure steam turbine and method for operating thereof

Also Published As

Publication number Publication date
JP3238267B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US3423070A (en) Sealing means for turbomachinery
US3583824A (en) Temperature controlled shroud and shroud support
US5215435A (en) Angled cooling air bypass slots in honeycomb seals
US3565545A (en) Cooling of turbine rotors in gas turbine engines
CA2741711C (en) Turbine nozzle with crenelated outer shroud flange
US4573867A (en) Housing for turbomachine rotors
CN100590297C (en) Expanding sealing strips for steam turbines
JPH094467A (en) Gas turbine and its operation method
US4668163A (en) Automatic control device of a labyrinth seal clearance in a turbo-jet engine
JP2004060659A (en) Seal for nozzle slash surface of steam turbine
EP0343361A1 (en) Turbine vane shroud sealing system
GB2081392A (en) Turbomachine seal
US7013652B2 (en) Gas turbo set
JP2007120501A (en) Interstage seal, turbine blade, and interface seal between cooled rotor and stator of gas turbine engine
KR20000011912A (en) Steam turbine having a brush seal assembly
CA2899265A1 (en) Turbine arrangement with improved sealing effect at a seal
US10774668B2 (en) Intersage seal assembly for counter rotating turbine
JP2013151936A (en) Retrofittable interstage angled seal
JP2010019261A (en) Spring seal for turbine dovetail
JP2747529B2 (en) Axial steam turbine
EP3058182B1 (en) Sealing clearance control in turbomachines
JP2011140943A (en) Adverse pressure gradient seal mechanism
JP2009209936A (en) Turbine nozzle with integral impingement blanket
GB1211188A (en) Gas turbine engines
JP2013249843A (en) Nozzle diaphragm inducer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

EXPY Cancellation because of completion of term